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A B S T R A C T

Total brain white matter lesion (WML) volume is the most widely established magnetic resonance imaging (MRI) outcome measure in studies of multiple sclerosis
(MS). To estimate WML volume, there are a number of automatic segmentation methods available, yet manual delineation remains the gold standard approach.
Automatic approaches often yield a probability map to which a threshold is applied to create lesion segmentation masks. Unfortunately, few approaches system-
atically determine the threshold employed; many methods use a manually selected threshold, thus introducing human error and bias into the automated procedure.
In this study, we propose and validate an automatic thresholding algorithm, Thresholding Approach for Probability Map Automatic Segmentation in Multiple
Sclerosis (TAPAS), to obtain subject-specific threshold estimates for probability map automatic segmentation of T2-weighted (T2) hyperintense WMLs. Using
multimodal MRI, the proposed method applies an automatic segmentation algorithm to obtain probability maps. We obtain the true subject-specific threshold that
maximizes the Sørensen-Dice similarity coefficient (DSC). Then the subject-specific thresholds are modeled on a naive estimate of volume using a generalized
additive model. Applying this model, we predict a subject-specific threshold in data not used for training. We ran a Monte Carlo-resampled split-sample cross-
validation (100 validation sets) using two data sets: the first obtained from the Johns Hopkins Hospital (JHH) on a Philips 3 Tesla (3T) scanner (n = 94) and a second
collected at the Brigham and Women's Hospital (BWH) using a Siemens 3T scanner (n = 40). By means of the proposed automated technique, in the JHH data we
found an average reduction in subject-level absolute error of 0.1 mL per one mL increase in manual volume. Using Bland-Altman analysis, we found that volumetric
bias associated with group-level thresholding was mitigated when applying TAPAS. The BWH data showed similar absolute error estimates using group-level
thresholding or TAPAS likely since Bland-Altman analyses indicated no systematic biases associated with group or TAPAS volume estimates. The current study
presents the first validated fully automated method for subject-specific threshold prediction to segment brain lesions.

Introduction

Multiple sclerosis (MS) is a chronic inflammatory and degenerative
disease of the central nervous system characterized by multifocal de-
myelinating lesions (Confavreux and Vukusic 2008; Compston and
Coles 2002) and atrophy in both white and gray matter, which may lead
to physical and cognitive disability and poor functional outcomes (e.g.
social isolation, unemployment) (Rovira and León 2008; Tauhid et al.,
2015). In MS research and clinical care, magnetic resonance imaging

(MRI) is a commonly used tool for detection and quantification of
disease activity and severity (Ge 2006; Zivadinov and Bakshi 2004;
Bakshi et al., 2005). MRI allows for the detection of T2-weighted (T2)
hyperintense white matter lesions. Both lesion volume and count have
become important metrics in the clinical and research domain
(Ge 2006; Dworkin et al., 2018). Advanced MRI also allows for cortical
lesion detection, one of the new biomarkers integrated in the revised
McDonald criteria (Thompson et al., 2018). Typically, total lesion
burden (i.e. lesion load), is defined as the volume of total brain matter
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containing lesions and is a cornerstone for assessing disease severity in
MS research and clinical investigations (Popescu et al., 2013;
Calabresi et al., 2014; Tauhid et al., 2014).

To quantify lesion burden, different approaches use MRI to identify
and segment lesional tissue. Manual segmentation is the gold standard
approach and requires a neuroradiologist or imaging expert to inspect
scans visually and delineate lesions. Due to difficulties associated with
manual segmentation such as cost, time, and large intra- and inter-rater
variability, many automatic segmentation methods have been devel-
oped (Egger et al., 2017; Carass, Roy, Jog, Cuzzocreo, Magrath,
Gherman, Button, Nguyen, Prados, et al., 2017a, 2017b; García-Lorenzo
et al., 2013; Lladó et al., 2012). Unfortunately, since lesions present
heterogeneously on MRI scans, automatic segmentation remains a dif-
ficult task, though numerous methods have been proposed. No single
approach is widely accepted or proven to perform optimally across le-
sion types, scanning platforms, and centers (Danelakis, Theoharis, and
Verganelakis 2018; Sweeney et al., 2014). A common key step in au-
tomatically delineating lesions involves creating a continuous map in-
dicating the degree of lesion likelihood using various imaging mod-
alities (Danelakis, Theoharis, and Verganelakis 2018; A. M.
Valcarcel, Linn, Vandekar, et al., 2018a, 2018b;Roy et al., 2015;
Sweeney et al., 2014, 2013). In these cases, a threshold is then applied
to probability maps to obtain binary lesion segmentations, also referred
to as lesion masks.

Automatic approaches are susceptible to biases in lesion volume
estimation associated with the total lesion load (Commowick et al.,
2018); that is, in subjects with few lesions, automated techniques tend
to over-segment lesions, and in subjects with higher lesion load, lesions
are under-segmented. Bias in lesion volume estimation may also be
associated with MRI hardware specifications, differences in protocols,
artifacts, or partial volume effects.

To investigate this volume bias, we leveraged the 2015 Longitudinal
Lesion Challenge (https://smart-stats-tools.org/lesion-challenge)
(Carass, Roy, Jog, Cuzzocreo, Magrath, Gherman, Button, Nguyen,
Bazin, et al., 2017; Carass, Roy, Jog, Cuzzocreo, Magrath, Gherman,
Button, Nguyen, Prados, et al., 2017), a publicly available data set
consisting of imaging of five subjects with MS for training and fourteen
subjects with MS for testing. In training and testing sets, subjects had at
least four imaging visits. The training data contain manual delineations
from two expert raters while the testing set does not publicly provide
manual delineations; rather, the testing set only consists of volume
estimates from each rater. Challengers who wish to compare new seg-
mentation methods can submit their testing set automatic segmenta-
tions. The automatic segmentation method is ranked using a weighted
average of various similarity measures. A leader board with method
performance measures is maintained by challenge organizers and some
published work compares top performing methods (Carass, Roy, Jog,
Cuzzocreo, Magrath, Gherman, Button, Nguyen, Prados, et al., 2017a,
2017b).

We present data from challengers as Bland-Altman plots (Bland and
Altman 2007, 2016) to assess disagreement with manual volumes from
the top two performing approaches described in Carass, Roy, Jog,
Cuzzocreo, Magrath, Gherman, Button, Nguyen, Prados, et al.
(2017a,2017b) (see appendix Table C3). Bland-Altman plots are pro-
vided in Figure 1 to compare the automatically generated and manually
delineated volumetric measures. This graphical approach presents the
differences between techniques, automatic and manual, against the
averages of the two. If no points lie outside the limits of agreement, the
mean difference plus and minus 1.96 times the standard deviation of
the differences, according to classical guidelines this indicates the dif-
ference between techniques is not clinically important and the two
methods can be used interchangeably.

The plots in Figure 1 show systematic deviations in automatic and
manual volumes. Both ranked methods show that as lesion load in-
creases, automatic segmentation approaches underestimate volume
compared with rater 1 and rater 2. This is evident by the dashed fitted

smooth lines which deviate away from the mean and outside the limits
of agreement starting around lesion loads larger than 20 mL in all four
of the plots. While the direction of over- or under-estimation and
magnitude vary for rater 1 and rater 2 across challenge submissions,
each approach shows systematic deviation and bias in volume esti-
mates. Bias in manual segmentation may be due to the inability of
raters to objectively delineate the diffuse part of lesions. Supervised
automatic approaches require manual segmentations for training, and
therefore may be biased in focusing only on the focal portions of lesions
ignoring regions of diffuse signal abnormalities near the boundaries of
lesions.

The bias present in the volumetric estimates from automatic ap-
proaches may be related to the thresholding procedure that segmen-
tation methods apply to probability maps in order to create binary le-
sion masks. Currently, there are no stand-alone automated approaches
for choosing thresholds for segmentation. After probability maps are
created, experts may inspect each subject and visually determine a
threshold to apply that performs well. Likewise, users may pick a single
threshold that generally performs well across all subjects
(Sweeney et al., 2013). These two thresholding methods, similar to
manual segmentation, introduce human bias, cost, and time into the
automated procedure. Several recent publications use cross-validation
approaches for determining a threshold to apply to all subjects (see
Roy et al., 2015; A. M. Valcarcel, Linn, Vandekar, et al., 2018 for ex-
ample), but most methods do not provide sufficient detail to reproduce
the thresholding approach. Further, these methods propose a group-
level threshold rather than subject-specific thresholds.

Using probability maps generated by an automatic segmentation
method, we fit the subject-specific threshold that yields the maximum
expected Sørensen-Dice similarity coefficient (DSC) (Zijdenbos et al.,
1994) based on a naive estimate of lesion volume using a generalized
additive model. This approach provides a supervised method to detect a
subject-specific threshold for lesion segmentation by attempting to es-
timate a threshold that optimizes DSC and reduces bias. DSC is defined
as the ratio of twice the common area to the sum of the individual
areas. That is, = ∈

∩

+
DSC [0, 1]A A

A A
2 # { }

# { } # { }
1 2

1 2
where A#{ } denotes the

number of voxels classified as lesion in measurement A. After training
on a subset of subjects with manual segmentations, the TAPAS model
can be applied to estimate a subject-specific threshold to apply to lesion
probability maps in order to obtain automatic segmentations. The
TAPAS method is fully transparent, fast to implement, and simple to
train or modify for new data sets.

Materials and methods

Data and preprocessing

The first data set studied (JHH data) was collected at the Johns
Hopkins Hospital in Baltimore, Maryland. This data set consists of 98
subjects with MS, four of which were excluded from our analyses due to
poor image quality. Whole-brain 3D T1-weighted (T1), 2D T2-weighted
fluid attenuated inversion recovery (FLAIR), T2-weighted (T2), and
proton density-weighted (PD) images were acquired on a 3 Tesla (3T)
MRI scanner (Philips Medical Systems, Best, The Netherlands). A more
detailed description of the acquisition protocol was provided in pre-
viously published work (Sweeney et al., 2013; A. M. Valcarcel, Linn,
Vandekar, et al., 2018). Manual T2 hyperintense lesion segmentations
for each subject were delineated by a neuroradiology research specialist
with a Bachelor of Arts in Neuroscience trained in manual segmentation
of MS lesions with more than 10 years of experience.

All images were N3 bias corrected (Sled, Zijdenbos, and Evans
1998). The T1 scan for each subject was then rigidly aligned to the
Montreal Neurological Institute (MNI) standard template space at 1
mm3 isotropic resolution. FLAIR, PD, and T2 images were then aligned
to the transformed T1 image. Extracerebral voxels were removed from
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all images using the Simple Paradigm for Extra-Cerebral Tissue Re-
moval: Algorithm and Analysis (SPECTRE) algorithm (Carass et al.,
2011). MRI scans were acquired in arbitrary units, and therefore ana-
lyzing images across subjects required that images be intensity-nor-
malized. We thus intensity normalized each modality using WhiteStripe
(Shinohara et al., 2014; Muschelli and Shinohara 2018). All image
preprocessing was conducted using tools provided in Medical Image
Processing Analysis and Visualization (MIPAV) (McAuliffe et al., 2001),
TOADS-CRUISE (http://www.nitrc.org/projects/toads-cruise/), Java
Image Science Toolkit (JIST) (Lucas et al., 2010), and Neuroconductor
(“Home Neuroconductor” 2018; Muschelli et al., 2018) R (version
3.5.0) (R Development Core Team 2018) packages.

We used a second data resource (BWH data) collected at the
Brigham and Women's Hospital in Boston, Massachusetts from 40
subjects with MS. MRI data were consecutively obtained. High-resolu-
tion 3D T1, T2, and FLAIR scans of the brain were collected on a
Siemens 3T Skyra unit with a 20-channel head coil. The detailed scan
parameters have been reported previously (Meier et al., 2018; A. M.
Valcarcel, Linn, Khalid, et al., 2018).

T2 hyperintense lesions were manually segmented by a reading

panel of two trained observers, referred to here as rater 1 and rater 2,
under the supervision of an experienced observer, referred to as rater 3,
at the Brigham and Women's Hospital. A lesion was included if it ap-
peared as hyperintense on the FLAIR. Raters 1 and 2 independently
marked all MS lesions and then reviewed these results together to form
a consensus. In the event of a disagreement, rater 3 was consulted and
resolved any differences. After a consensus of marked lesions was de-
termined, rater 1 segmented all lesions to determine their volume using
an edge-finding tool in Jim (v. 7.0) (Xinapse Systems Ltd., West
Bergholt, UK; http://www.xinapse.com). This process resulted in a
manually segmented gold standard lesion mask for each subject in the
study. Rater 3 certified the final lesion delineation. Rater 1 had a
neuroscience undergraduate degree as well as three years of work ex-
perience evaluating MS lesions on MRI scans as a research assistant.
Rater 2 had a medical doctorate and four years of experience working in
MS MRI research. Rater 3 had a medical doctor degree as well as more
than 10 years of experience in MS MRI, initially as a trained research
fellow, then serving as a faculty member and image analyst.

We performed N4 bias correction (Tustison et al., 2010) on all
images and rigidly co-registered T1 and T2 images for each participant

Figure 1. Bland-Altman plots using the first (left) and second (right) ranked automatic segmentation methods’ volumes from the 2015 Longitudinal Lesion Challenge
are presented. We show plots comparing volumes obtained from the automatic and manual methods. The manual volumes were delineated by rater 1 (top) and rater
2 (bottom). Using the differences, we highlight the mean (blue) plus and minus 1.96 times the standard deviation (red). Each subject is represented in a unique color
and each point represents a subject-time point. There are fourteen unique subjects with at least four follow-up imaging sessions.
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to the corresponding FLAIR at 1 mm3 resolution. Extracerebral voxels
were removed from the registered T1 images using Multi-Atlas Skull
Stripping (MASS) (Doshi et al., 2013) and the brain mask was applied to
the FLAIR and T2 scans. We intensity-normalized images to facilitate
across-subject modeling of intensities using WhiteStripe
(Shinohara et al., 2014; Muschelli and Shinohara 2018). Image pre-
processing was applied using software available in R (version 3.5.0)
(R Development Core Team 2018) and from NITRC (https://www.nitrc.
org/projects/cbica_mass/).

The Institutional Review Boards at the appropriate institutions ap-
proved these studies.

TAPAS algorithm

Although the two data sets were processed using different pipelines,
the proposed technique is completely independent of the preprocessing
pipeline. We applied the BWH preprocessing pipeline to the JHH data
and re-ran the analyses; we present these results in the supplemental
materials. TAPAS simply relies on a continuous map of degree or
probability of lesion at each voxel in the brain. Maps are generated by
an automatic segmentation algorithm in order to predict a subject-level
threshold for segmentation. In our experiments, we used the predicted
lesion probability maps from a Method for Inter-Modal Segmentation
Analysis (MIMoSA) (A. M. Valcarcel, Linn, Vandekar, et al., 2018; A. M.
Valcarcel, Linn, Khalid, et al., 2018), an automatic segmentation pro-
cedure. We also implemented the lesion prediction algorithm (LPA)
(version 2.0.15) using the lesion segmentation tool (LST), an open
source toolbox for statistical parametric mapping (SPM) (version 12) in
MATLAB R2019a (Schmidt et al., 2012). In the supplemental materials,
we provide results obtained from using LST-LPA as the automatic seg-
mentation algorithm.

We first divide the data set under study into two parts: the first is
used for training TAPAS, and the second we refer to as the test set. In
each subject in the training set of size N/2, we apply a grid of thresholds
τ ∈ {τ1, ..., τJ}, denoted as τ, to the probability map in order to generate
estimated lesion segmentation masks. The estimated lesion segmenta-
tion masks are binary masks indicating estimated lesion presence or
absence generated for each threshold in τ. Figure 2 shows an example
of these lesion masks at 10%, 50%, and 90%. For each subject in the
training set we initially let τ vary from =τ 0%1 to =τ 100%J in 1% in-
crements and calculate DSC between each estimated segmentation
mask and the corresponding manual segmentation for the image. We
then estimate:

1 =
∈

∑ =τ̂ argmaxGroup
τ τ τ

DSC τ
N

{ ,..., }

2 ( )

J

i
N

i

1

1
/2

, and

2 =
∈

τ DSC τ^ argmax { ( )}i
τ τ τ

i
{ ,..., }J1

for each subject i.

The threshold estimated by τ̂Group represents the threshold that
produces maximum average DSC across all subjects in the training set,
and τ̂i is defined as the subject-specific threshold that yields maximum
DSC for subject i. In practice, we suggest initially using a threshold grid
of =τ 0%1 to =τ 100%J in 1% increments but based on training refine
the grid to be more sensitive to the data.

In the event of a tie among thresholds that maximize DSC we first
ensure these tied thresholds are adjacent and then select the median
threshold. In our analyses all ties were in fact adjacent. If ties are not
adjacent, we suggest enlarging the threshold region and repeating the
analysis. In addition, we repeat the optimization minimizing absolute
error (AE) rather than maximizing DSC since DSC can be biased for
patients with low lesion load. These results are presented in the sup-
plemental materials. It is also possible this step could be implemented
using an optimization framework and may result in a reduction in
computation time, but we did not validate other optimization ap-
proaches.

We apply τ̂Group to each respective subject and obtain a naive esti-
mate of the volume, volume τ(^ )i Group . We then regress logit τ(^)i on
volume τ(^ )i Group using a generalized additive model with an identity link
function and a normal error. The generalized additive model was
chosen over linear models after manual inspection of scatter plots in-
dicated non-linear trends. This is evident in the scatter plot displayed in
the bottom left panel of Figure 2 as the scatter plot presented in this
example case does not appear linear but quadratic. This held true for
not just this example case but most cross-validation iterations. We use
an identity link function since both τ̂i and volume τ(^ )i Group are continuous.
The identity link does not bound the outcome τ̂i between 0 and 1; so,
rather than modeling τ̂i, we model logit τ(^)i to force τ̂i to be between 0
and 1. We implement the generalized additive model using the gam
function available through the mgcv package in R. This function fits the
model using a penalized scatter-plot smoother with thin-plate splines
and smoothing parameter estimated using generalized cross-validation
(Wood 2003, n.d., 2004; Wood, Pya, and Säfken 2016). More specifi-
cally, the following generalized additive model is fit as the TAPAS
model:

= +logit τ f volume τ(^) ( (^ )) ϵi i Group i1

where ∼ N σϵ (0, )i
2 .

In the model fitting procedure, we exclude subjects from model
training if their τ̂i produces an estimated segmentation mask with
DSC < 0.03. We found this to empirically improve TAPAS performance
as it removes subjects for which even the best performing τ̂i yields an
inaccurate automatic segmentation mask.

After the TAPAS model is fit, we apply the model to subjects in the
testing set. For each subject i, we obtain a probability map from an
automatic segmentation procedure. We then use τ̂Group to threshold the
probability map in order to estimate volume τ(^ )i Group . We use these pre-
dicted volumes in the TAPAS model to estimate the fitted value logit τ(^)i ,
from which we can obtain the estimated subject-specific threshold. The
probability maps are then re-thresholded using τ̂i to generate the lesion
segmentation masks.

When applying the TAPAS model in the testing set, we aim to re-
duce extrapolation and excessive variability associated with left and
right tail behavior of the spline model. Thus, for any volume we obtain
using τ̂Group that is larger than the volume at the 90th percentile, we use
the threshold for the subject whose volume is at the 90th percentile,
denoted τ̂ 0.9, rather than the fitted τ̂i. Similarly, for any volume we
obtain from τ̂Group that is smaller than the volume at the 10th percentile,
we use the value of τ̂ 0.1. Figure 2 shows an outline of the full TAPAS
procedure and model.

To implement TAPAS, we developed an R package that is available
with documentation on GitHub (https://github.com/avalcarcel9/
rtapas) and Neuroconductor (https://neuroconductor.org/package/
rtapas).

Performance assessment

For the two data sets in this study (JHH and BWH), we ran separate
Monte Carlo-resampled split-sample cross-validations. More specifi-
cally, we repeatedly randomly sampled subjects (100 times) without
replacement to assign half of the subjects in the study to each of the
training and testing sets. Each iteration therefore contained a unique set
of subjects to train TAPAS and a separate set of subjects to test the
algorithm's performance. The Monte Carlo-resampled split-sample
cross-validation analysis assures that the proposed algorithm does not
provide significantly different lesion volume estimations when different
trained regression models are used. In each training set, we applied
MIMoSA using the R package mimosa (A. Valcarcel 2018) available on
Neuroconductor (https://neuroconductor.org/package/mimosa)
(Muschelli et al., 2018). After fitting the MIMoSA model using subjects
in the training set, we generated probability maps for all subjects in the
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training and testing sets.
In each split-sample experiment, the training set was used to fit the

TAPAS model and the testing set applied the TAPAS model to determine
a subject-specific threshold τ̂i. This subject-specific threshold was used
to create binary lesion segmentation masks and calculate lesion volume.
In the BWH data, we found using a threshold grid ranging from =τ 0%1

to =τ 100%J in 1% increments to be too wide in initial experiments.
Therefore, we refined the threshold grid range from =τ 13%1 to

=τ 54%J in 0.4% increments. We compared the TAPAS, group, and
manually generated masks and volumes using the subscripts TAPAS,
Group, and Manual respectively. The use of τ̂Group to threshold prob-
ability maps and generate lesion segmentations was previously applied
(A. M. Valcarcel, Linn, Vandekar, et al., 2018; A. M. Valcarcel, Linn,
Khalid, et al., 2018) and aided in automatic segmentation measures
compared to user-defined threshold application. In addition to calcu-
lating volume from TAPAS, group, and manual lesion masks we also
calculate partial volume denoted with the subscript Partial. We define
partial volume as the sum of the voxel-level probabilities from the
probability map generated by MIMoSA. Calculating partial volume does
not require thresholding. Rather than applying a hard threshold to es-
timate lesion volume, we hypothesize that it may be more advanta-
geous to compute total lesion burden using thecontinuous measures
from probability maps. These partial volumes may yield stronger cor-
relations with clinical outcomes.

We provide quantitative comparisons between TAPAS and the
group thresholding procedure for subjects in the testing set. First, to
assess whether segmentation masks produced using TAPAS or the group
thresholding procedure differed in accuracy as measured by DSC, we
compared segmentations between lesion masks produced by TAPAS
(DSCTAPAS) and those produced by the group thresholding procedure
(DSCGroup) with manual segmentations. We compared these measures
using a paired t-test within each split-sample experiment using subjects
in the test set. Second, to assess bias and inaccuracy present in
volumeTAPAS and volumeGroup we calculated absolute error defined as

= −AE Threshold Volume Manual Volume| |. In order to determine
whether AE differed statistically, paired t-tests were conducted between
AETAPAS and AEGroup within each split-sample experiment. Third, to
adjudicate whether TAPAS yielded volumetrics with similar phenotype
associations, we calculated the Spearman's correlation coefficient be-
tween volumeTAPAS, volumeGroup, volumePartial, and volumeManual and
clinical variables. We denote these correlations by ρ̂TAPAS, ρ̂Group, ρ̂Partial,
and ρ̂Manual, respectively. We estimated correlations in each split-sample
experiment and averaged across experiments.

Expert validation

In addition to the Monte Carlo-resampled split-sample cross-

Figure 2. The TAPAS procedure is shown using sample axial slices from the data. A set of training scans with manual delineations were used to train and apply
MIMoSA in order to obtain probability maps. For each subject's probability map, we applied thresholds at =τ 0% to 100% by 1% to create estimated lesion masks. For
simplicity, in this example, we have only shown =τ 10%, 50%, and 90%. Based on Sørensen-Dice similarity coefficient (DSC) calculations within and across subjects
we estimated τ̂i and τ̂Group. Using τ̂Group we obtained volume τ(^ )i Group . We fit the TAPAS model and applied it to subjects in the test set to determine τ̂i. Red points in the
plot represent τ̂ 0.1 and τ̂ 0.9, or lower and upper bounds at the volume associated with the 10th and 90th percentiles, respectively.
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validations, 3 board-certified neurologists with subspecialty training in
neuroimmunology compared segmentations produced using TAPAS and
the group thresholding approach. For each subject (40 subjects from
BWH data and 94 subjects from JHH data), we randomly selected a
cross-validation iteration in which they were included as a test set
subject and therefore have segmentations produced from TAPAS and
the group thresholding procedure to present to the raters. We randomly
assigned the order in which the subjects were presented to the expert
rater. Additionally, we randomly assigned each segmentation a letter (A
or B) so as to blind the rater to the segmentation algorithm.

We presented each of the 134 MRI studies to the experts in-
dividually. For each study, the expert rater was presented with the set
of two segmentations overlaid onto the FLAIR along with each of the
MRI contrasts simultaneously. For BWH data this included FLAIR, T1,
and T2 imaging modalities, while for the JHH data this included FLAIR,
T1, T2, and PD imaging modalities. The expert was then asked,
“Evaluate how well each of the two segmentations depicts your im-
pression of the extent of the white matter abnormality in the image
displayed.” Ratings were given on a scale of 1-to-5 scale with labels of
“1 - Excellent”, “2 - Good”, “3 - Fair”, “4 - Poor”, “5 – Very Poor”.
Ratings were given independently, with no discussion by raters occur-
ring during the rating process.

Results

Demographics

JHH and BWH participant demographics are included in Table 1. In
the JHH data, disease duration was defined as years since diagnosis and
participants were examined by a neurologist to assess Expanded Dis-
ability Status Scale (EDSS) score. In the BWH data, disease duration was
defined as years since first symptom. In order to assess the level of
physical ability and ambulatory function in the BWH data, an MS
neurologist examined patients to evaluate Expanded Disability Status
Scale (EDSS) and timed 25-foot walk (T25FW) (in seconds).

Volumetric bias assessment

Using Bland-Altman visualization, we compare automatic and
manual volumes in addition to the partial volume estimates in Figure 3.
Subject-level volumes were obtained by averaging each subject's mea-
surement for all split-sample experiments in which it was allocated to
the testing set. The JHH data volumeGroup estimate exhibits systematic

bias, evident in Figure 3, for volumes exceeding 20 mL. Visually, we
observed a moderate inverse relationship in these subjects. This in-
dicates that volumeGroup under-estimates volumeManual in subjects with
larger lesion loads with increasing magnitude. The JHH data volu-
mePartial estimate also exhibits systematic bias using Figure 3. For sub-
jects with small lesion load, volumePartial over-estimates volumeManual

whereas for subjects with moderate and large lesion load volumePartial
under-estimates volumeManual. Unlike the Group Bland-Altman plot, the
TAPAS plot does not exhibit obvious patterns of systematic bias. The
cluster of points that begins to negatively deviate from 0 in the Group
plot is still centered randomly around 0 in the TAPAS plot. Ad-
ditionally, the mean and standard deviation for the differences are
smaller using volumeTAPAS compared to volumeGroup and volumePartial.
There are four points that lie outside the limits of agreement in both
thresholding procedures, but in the TAPAS plot these are closer to 0.

The BWH Bland-Altman plots are nearly identical and almost in-
distinguishable when comparing the group threshold procedure with
the TAPAS outputs. There does not appear to be a systematic bias in
either volumeGroup or volumeTAPAS estimates since points are randomly
scattered around 0 in the positive and negative directions. This ex-
emplifies TAPAS's propensity to conserve unbiased estimates when
systematic bias is absent. The Bland-Altman plot calculated using
volumePartial shows all points lie within the limits of agreement but they
are not randomly scattered around the mean difference. For small lesion
loads, the points cluster above the mean line and show a negative as-
sociation as in the JHH data.

Absolute error assessment

Scatter plots and their corresponding predicted linear models are
presented in Figure 4 to compare AETAPAS, AEGroup, and AEPartial with
volumeManual. The JHH data plot shows smaller AE estimates associated
with volumeTAPAS compared to volumeGroup and volumePartial. This is
highlighted by the negative shift in AETAPAS points throughout as well
as a smaller slope estimate (provided in the top left corner of the
figure). The JHH data point with volumeManual larger than 70 mL is
influential (Cook's distance was larger than 1) for both the group,
TAPAS, and partial fitted models. However, removing this point, volu-
meTAPAS still shows larger reductions in AE compared to volumeGroup.
The coefficient associated with AEPartial is 0.29 and AEGroup is 0.26 while
the coefficient associated with AETAPAS is 0.16. This means that for a 1
mL increase in volumeManual, the predicted change in AE is 0.1 mL less
when using TAPAS compared to the group thresholding procedure. The
reduction in AE associated with using TAPAS over the group thresh-
olding procedure is on the order of magnitude of average differences
found in clinical trial evaluations of MS therapies (see, for example,
Barkhof et al. (2007)). In the BWH data, all values are remarkably si-
milar across TAPAS and the group thresholding approach. The partial
volume leads to notably larger predicted absolute error. The results in
Figure 3 and Figure 4 are consistent and indicate that TAPAS performs
at least as well as or better than the group thresholding procedure in
terms of reducing bias in lesion volume estimates.

Comparing the two thresholding approaches more rigorously we
found the average AETAPAS across subjects in the testing sets and
iterations in the JHH data is 2.09 mL compared to 2.62 mL from AEGroup
and 3.29 mL from AEPartial. In the BWH data, average AETAPAS and
AEGroup were both found to be 2.62 mL and average AEPartial was 3.17
mL. TAPAS yields equal or reduced average AE. The average DSCTAPAS

across subjects in the testing sets and iterations in the JHH data is 0.61
compared to 0.6 from DSCGroup. In the BWH data, the average DSCTAPAS

is 0.67 while average DSCGroup is 0.66. TAPAS yields equal or superior
average DSC. We do not report DSCPartial as the partial volume is cal-
culated from the probability maps rather than the lesion segmentation
masks and binary segmentations are required to calculate DSC.

To examine this statistically, we employed one-sided paired t-tests
to evaluate AE and DSC from TAPAS compared with those obtained

Table 1
Demographic information for subjects in this study are provided. We include
information from 94 patients imaged at the Johns Hopkins's Hospital (JHH) and
40 patients imaged at the Brigham and Women's Hospital (BWH).

JHH (n = 94) Statistics presented: mean (SD, min,
max); %

Age (years) 43.4 (12.3, 21.4, 67.3)
Disease duration (years) 11.3 (9.2, 0, 45)
Expanded Disability Status Scale score 3.9 (2.1, 0, 8)
Lesion volume (mL) 11.5 (13.1, 0, 77)
Female 73
Clinically isolated syndrome 1
Primary progressive 10
Relapsing-remitting MS 64
Secondary progressive MS 25

BWH (n = 40)
Age (years) 50.4 (9.9, 30.4, 69.9)
Disease duration (years) 14.5 (4.6, 3.8, 21.3)
Expanded Disability Status Scale score 2.3 (1.6, 0, 7)
Lesion volume (mL) 13.6 (12.8, 0.6, 52)
Timed 25-ft walk (seconds) 11.5 (6.9, 1, 25)
Female 70
Relapsing-remitting MS 80
Secondary progressive MS 20
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from the group thresholding procedure. Figure 5 shows violin plots of p-
values from both sets of tests for the two data sets. In the JHH data
more than half of the split-sample experiments resulted in p-values
below the =α 0.05 for AE and DSC with no statistically significant re-
sults favoring the group thresholding procedure. This indicates superior
performance using TAPAS compared to the group thresholding proce-
dure. The BWH data was more uniform with approximately equal sta-
tistically significant results favoring TAPAS and the group thresholding
procedure.

Correlation analysis

We assessed the relationship between volumeTAPAS, volumeGroup,
volumePartial, and volumeManual with various clinical variables. These
results are provided in Table 2. All correlations found are modest but
align with previously published literature (A. M. Valcarcel, Linn,

Khalid, et al., 2018; Stankiewicz et al., 2011; Barkhof 1999;
Tauhid et al., 2014). In the JHH data, ρ̂TAPAS and ρ̂Group are indis-
tinguishable from each other and slightly larger than ρ̂Partial and ρ̂Manual.
Similarly, the BWH data show identical ρ̂TAPAS and ρ̂Group nearly
equivalent to ρ̂Partial and ρ̂Manual. In terms of phenotypic associations
volumeTAPAS yielded similar correlation estimates as volumeGroup, volu-
mePartial, and volumeManual.

Threshold evaluation

In Figure 6 we present scatter plots of the thresholds predicted in
the testing set from both TAPAS and the group threshold procedure.
There are a few notable differences between the threshold scatter plots
produced from TAPAS and those produced by the group thresholding
procedure. In both data sets the subject-specific thresholds have a much
wider range than the group thresholds. In the JHH data, the distribution

Figure 3. Bland-Altman plots comparing volumeManual with volumes obtained using automatic approaches (volumeGroup, volumeTAPAS, and volumePartial) are shown. The
mean of the difference in volume is presented in blue and the mean plus and minus the standard error is shown in red. Each point represents a unique subject. Subject-
specific points were obtained by averaging results across test set subjects in each split-sample fold.
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shape is bi-modal for the subject-specific thresholds but uni-modal for
the group thresholds. In the BWH data, the distribution shape is similar
between the two thresholding approaches.

We also present average subject-specific thresholds plotted against
the manual volumes in mL. In the JHH data, the average TAPAS
threshold decreases as manual volume increases. The thresholds pla-
teau after manual volume of 20 mL and similar thresholds are detected
for all lesion loads greater than 20 mL. In the BWH data we see the
points are randomly scattered and there is no apparent association
between average subject-specific threshold and manual volume.

Qualitative results

We present segmentations from the TAPAS and the group threshold
approach as well as manual delineations in Figure 7. This figure shows
that TAPAS and the group thresholding procedure generally agree with
the manual segmentation. Some tissue was manually segmented and

not detected by either thresholding algorithm. The major differences
between all the methods are found at the boundaries of lesions, which
are known to be difficult to discern for both automatic and manual
approaches. Overall, the automatic segmentation algorithm paired with
either thresholding approach is able to detect the majority of lesional
space with few false positives.

Rater study

The mean rating for TAPAS segmentations for each rater was 1.87
(SD=0.81), 2.72 (SD=0.94), and 3.10 (SD=1.14). The mean rating for
the group thresholding approach for each rater was 1.92 (SD=0.81),
2.66 (SD=0.97), and 3.10 (SD=1.14). The mean rating across the three
raters for both TAPAS and the group thresholding approaches was 2.56
(SD = 1.10). Raters evaluated how well each of the two segmentations
depicted the extent of the white matter abnormality in the images
displayed. An overall average score between 2 and 3 indicated therefore
that the segmentations produced from either method are between fair
and good quality. The three raters responded favorably to the seg-
mentations.

77% of the studies resulted in the same rating between TAPAS and
the group threshold segmentations. 12% of the studies resulted in raters
ranking the TAPAS segmentation more favorably than the group

Figure 4. Scatter plots with fitted linear models are presented for the subject-level average absolute error ( ŷ ) on manual volume (x) in mL. Fitted equations are given
in the top left corner.

Figure 5. Violin plots of p-values from paired t-tests to compare subject-level
absolute error (AE) and Sørensen-Dice coefficient (DSC) in each test set are
presented. The mean for each statistic and data set is presented as points within
each violin plot and the black lines extend the mean by the standard deviation.
Labels below represent the number of significant p-values favoring TAPAS
performance measures. Labels above represent the number of significant p-
values favoring group thresholding performance. The dashed horizontal blue
line highlights the =α 0.05 cutoff.

Table 2
Subject-specific volume estimates, volumeManual (Manual), volumeTAPAS (TAPAS),
volumeGroup (Group), and volumePartial (Partial), were compared with clinical
covariates available from the data collected at the Johns Hopkins Hospital
(JHH) and the Brigham and Women's Hospital (BWH) and are represented in
this table. Spearman's correlation coefficient (ρˆ) was obtained in the testing set
for each iteration and averaged across folds. Clinical variables included
Expanded Disability Status Scale (EDSS) score, disease duration in years, and
timed 25-ft walk (T25FW) in seconds.

Estimates for ρˆ

Partial Group TAPAS Manual

JHH
EDSS 0.32 0.34 0.34 0.29
Disease duration 0.37 0.39 0.39 0.39

BWH
EDSS 0.42 0.43 0.43 0.45
Disease duration 0.31 0.32 0.32 0.29
T25FW 0.02 0.02 0.02 0.03
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threshold segmentation whereas 11% of the studies resulted in raters
favoring group threshold segmentation.”

Though both thresholding approaches were trained using manual
segmentations, the gold standard approach, we and our expert raters
believe the resulting segmentations from the automatic approaches do
in fact capture the extent of white matter abnormality in the brain fairly
well.

Computation Time

The TAPAS thresholding procedure is easily implemented using the
rtapas R package available with documentation on GitHub (https://
avalcarcel9.github.io/rtapas/). The model is supervised and must be
trained. All benchmarking was done on a 2017 MacBook Pro with 3.1
GHz Intel Core i5 and 16GB of memory using a single core. To
benchmark, a single subject with voxel size 1mm3 was used. Before
training the TAPAS model, the training data must be generated and
takes approximately 20 minutes per subject. This process is paralle-
lizeable through the package to decrease computation time. The model
itself takes less than a second to train. After a model has been fit, a
single test subject's prediction data and segmentation mask can be
generated in about 30 seconds.

Most automatic segmentation algorithms produce continuous maps
of lesion likelihood, which are subsequently thresholded to create
binary lesion segmentation masks. While a number of automatic

approaches exist for lesion segmentation, there are few automatic al-
gorithms available for threshold selection. Thresholds are commonly
chosen using cross-validation procedures conducted at the group level,
or arbitrarily through subjective human input. This introduces varia-
bility and biases in automatic segmentation results. Furthermore,
thresholding approaches often apply a single common threshold value
to all subjects’ probability maps. This lack of subject specificity may
lead to inaccuracy in lesion segmentation masks, especially in subjects
with the smallest and largest lesion loads.

This study sought to address these issues by introducing a su-
pervised fully automated algorithm for subject-specific threshold pre-
diction that also reduces volumetric bias if present. The TAPAS proce-
dure is easily implemented and performs well on data acquired with
different scanning protocols or pre-processed with different pipelines.
We validated TAPAS in two unique data sets from different imaging
centers using 3T MRI scanners from different vendors. In the supple-
mental material we applied a different preprocessing pipeline to the
JHH data and found TAPAS outperforms the group thresholding pro-
cedure even under varying processing.

The TAPAS procedure is a supervised fully automated thresholding
approach that determines a subject-specific threshold to apply to con-
tinuous maps (including predicted probability maps) for automatic le-
sion segmentation. TAPAS volume estimates are accurate and reduce
systematic biases associated with differential total lesion load when
present. In the JHH data, we observed such a bias using the MIMoSA

Figure 6. Scatter plots of the subject-specific threshold τ̂i (TAPAS) and τ̂Group (group thresholding procedure) on cross-validation number are presented with marginal
histograms for both data sets in the first two columns. The third column presents scatterplots of the average subject-specific thresholds from TAPAS and the manually
delineated lesion volume.

Figure 7. T2 hyperintense lesion segmentations from an example axial slice are displayed. The colors represent the different individual or overlapping segmentations
obtained from manual, TAPAS threshold, and group threshold masks. The majority of segmented area was in agreement among all lesion masks (green). Both the
group thresholding approach and TAPAS missed some area that was manually segmented (red). There was a small area where only TAPAS and manual segmentations
agreed (yellow), but almost no area where only the group threshold agreed with the manual segmentation (fuchsia).
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algorithm, which was mitigated using TAPAS.
The BWH data used a consensus approach with two trained raters to

manually segment lesions consulting a third rater in the event of a
disagreement. We believe this approach reduces intra- and inter-rater
variability normally present with a single rater and allows for a closer
approximation of the ground truth, and, thus, better training of auto-
matic approaches. The Bland-Altman plots in these data indicate un-
biased estimation using a group threshold or TAPAS. In this study, we
showed that without systematic biases TAPAS preserves the unbiased
volumetric estimation of the automated segmentation technique.

In clinical trial evaluations of therapeutic efficacy, associations be-
tween clinical variables and lesion volume are of primary interest. This
study shows that TAPAS and group threshold volumes resulted in si-
milar correlations to clinical variables as the manual volume.
Therefore, the automatic segmentations produced after thresholding,
using either TAPAS or group thresholding, should be as sensitive to
image-phenotype correlations as manual measures. Correlations were
thus estimated to compare volumeManual, volumeTAPAS, and volumeGroup
with clinically relevant variables. The results indicate the correlations
between respective volumes and clinical variables are all approximately
equal. Agreement across the thresholding methods with manual mea-
sures advocates for the use of TAPAS to reduce cost and time while
providing a subject-specific threshold.

Currently, available assessments of lesion volume are weakly cor-
related with clinical outcomes. This may be in part due to discarding
voxels with low estimated probability of containing lesion, mostly
around the edges of lesions, that may capture signal. The partial volume
computed in this analysis was an attempt to include these voxels in the
calculation of volume in the hopes of reducing biases and providing a
metric that correlates better with clinical assessments. Unfortunately,
these partial volumes did not yield stronger correlations with clinical
outcomes and showed more bias compared to volumes computed with a
threshold. These methods have not been assessed in clinical trials to
date, and additional studies and methodological innovations are war-
ranted.

TAPAS is a post-hoc subject-specific threshold detection algorithm
built to reduce volumetric bias associated with automatic segmentation
procedures. In this study, we optimized TAPAS using DSC in this main
text and AE in the supplemental material provided. Both optimizations
favor TAPAS over group thresholding with DSC having more dramatic
improvements than AE. Though DSC can be biased or under-estimate
true accuracy in subjects with low lesion load, we find it performs well
compared to AE. Automatic approaches are constantly being built and
improved upon to yield more accurate and robust methods. TAPAS
allows for improvement upon even the most accurate and robust au-
tomatic segmentation procedures with no observed addition of error.
Beyond MS or MRI, this methodology can be used for automatic seg-
mentation of other tissues or body parts using different imaging types
after proper validation.

We initially ran all cross-validation settings with a threshold grid
ranging from 0% to 100% in 1% increments. In certain settings, these
increments were too large which led to sub-optimal TAPAS models. We
refined threshold grids in these settings and found improved perfor-
mance. Due to the iterated nature of cross-validations, we chose to use
one threshold grid for the entire set of cross-validation folds (100). In
practice, data will likely consist of a training and testing set. We suggest
applying the original threshold grid, 0% to 100% by 1% increments,
and evaluating model fit through subject-specific threshold selection in
the training and testing data in order to inform the selection of a finer
grid. The grid should be updated until results are stable. We believe this
will lead to optimal performance.

There are several notable limitations to the proposed algorithm.
First, the method must be used in conjunction with continuous maps of
likelihood of lesion, so investigators must use automatic approaches
that generate these maps for adaptive thresholding. Second, since the
TAPAS model fits a generalized additive model, training data sets with

small sample size, uniform lesion load, or those dissimilar from testing
data may result in poor model fit or inappropriate threshold estimation.
For example, when we applied TAPAS to the 2015 Longitudinal Lesion
Challenge data we found poor model fit associated with fitting a gen-
eralized additive model to data that only included 5 unique subjects for
training. To apply TAPAS to longitudinally acquired data, such as those
presented in the 2015 segmentation challenge, a sufficiently large
sample of subjects with variable lesional volume is required.

Atrophy of the brain and spinal cord are key measures of disease
progression in MS and may be more closely associated with clinical
status than lesion volume (Sanfilipo et al., 2006; Fisher et al., 2008;
Fisniku et al., 2008; Keshavan et al., 2016; Bakshi et al., 2008). It is
important to note that TAPAS is easily extended or applied to settings in
which brain volumes are estimated. Many segmentation methods for
structures other than lesions, for example the thalamus which is of key
interest in MS presently (Fadda et al., 2019; Neema et al., 2009;
Oh et al., 2019), also use thresholding to determine binary segmenta-
tions and volumes. Future work will include assessments of whether
biases such as those studied in this paper exist for atrophy assessments
and techniques for their mitigation.

Future developments will also include specialized methods for the
analysis of longitudinal lesion volumetrics. Additionally, to investigate
the repeatability of this study and stability of the algorithm we will
implement the method on scan-rescan data to evaluate reliability of the
subject-specific probability and lesion volume estimation. It is possible
that the underlying method may benefit from dynamic thresholds for
smaller lesions and larger lesions even within the same subject. That is,
we may need to move beyond even a subject-specific threshold since,
when a subject has larger lesions, the error associated with those lesions
contributes more to the DSC metric than the same relative error asso-
ciated with smaller lesions. There may thus be a tendency of TAPAS to
better segment larger lesions at the cost of doing worse on smaller le-
sions.
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