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ABSTRACT: The capability of current force fields to reproduce
RNA structural dynamics is limited. Several methods have been
developed to take advantage of experimental data in order to enforce
agreement with experiments. Here, we extend an existing framework
which allows arbitrarily chosen force-field correction terms to be
fitted by quantification of the discrepancy between observables back-
calculated from simulation and corresponding experiments. We
apply a robust regularization protocol to avoid overfitting and
additionally introduce and compare a number of different
regularization strategies, namely, L1, L2, Kish size, relative Kish
size, and relative entropy penalties. The training set includes a
GACC tetramer as well as more challenging systems, namely,
gcGAGAgc and gcUUCGgc RNA tetraloops. Specific intramolecular
hydrogen bonds in the AMBER RNA force field are corrected with automatically determined parameters that we call gHBfixopt. A
validation involving a separate simulation of a system present in the training set (gcUUCGgc) and new systems not seen during
training (CAAU and UUUU tetramers) displays improvements regarding the native population of the tetraloop as well as good
agreement with NMR experiments for tetramers when using the new parameters. Then, we simulate folded RNAs (a kink−turn and
L1 stalk rRNA) including hydrogen bond types not sufficiently present in the training set. This allows a final modification of the
parameter set which is named gHBfix21 and is suggested to be applicable to a wider range of RNA systems.

1. INTRODUCTION

As viral pandemics are approached with RNA vaccines1 and
RNA is becoming an increasingly relevant target in
therapeutics,2 accurate methods for predicting and designing
structure and dynamics of nucleic acids are needed to
accelerate progress in these fields. Molecular dynamics (MD)
simulations, in principle, allow RNA dynamics to be modeled
by computing interactions using empirical force fields and
directly solving the equations of motion. However, the
capability of MD simulations to predict RNA dynamics is
limited both by sampling issues and by force-field accuracy.3

Depending on the size of the system and on the complexity of
the investigated conformational transitions, enhanced sampling
techniques4,5 can help decrease the time-scale issue signifi-
cantly. However, especially when long simulation time scales or
enhanced sampling methods are employed, the accuracy of the
underlying force fields can become a critical issue and can lead
to structural ensembles that do not agree with experiment for
disordered oligomers6,7 or for difficult structural motifs.8,9 A
number of possible approaches can be used to take advantage
of available experimental data in order to enforce agreement
between experiments and simulation data10−14 (see also refs 15
and 16 for recent reviews and Figure 1 for a schematic).

Critical and partly related issues in the application of these
methods are (a) avoiding overfitting, which can be moderated
by using properly tuned regularization terms,13,16 and (b)
explicitly modeling experimental errors, which can be naturally
done in Bayesian formulations.14 Both approaches require the
degree of confidence one has in experiments and simulations
to be tuned. These approaches are expected to generate
transferable force fields and should not be confused with
nontransferable ensemble refinements that aim at minimal
ensemble corrections without requiring transferability of the
resulting force-field form (see, e.g., refs 17−21). In particular,
approaches for transferable force-field refinement are depend-
ent on the functional form of the correction terms to be fixed a
priori using chemical intuition. For atomistic MD simulations,
these corrections could, for instance, act on dihedral angle
potentials.11,13 This is a natural choice, since dihedral angles
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are usually fitted as a last step, are expected to compensate for
all of the errors accumulated in other force-field terms, and are
naturally connected to the population of different rotamers.22

However, recent works suggested that an imbalance in the
relative strength of solute−solute hydrogen bonds might be a
key problem of current RNA force fields, so that fixing these
terms might be more effective than acting on dihedral
angles.9,23,24 In these works, a limited number of hydrogen-
bond types were corrected using a so-called generalized
hydrogen-bond fix (gHBfix, see Figure 2) with promising
results. This approach allows for minimal corrections that are
less likely to present side effects when compared to the more

extensive reparametrization of nonbonded interactions known
as the DESRES force field,25 as shown in ref 23. Correction
factors for the gHBfix force field, leading to either supporting
or disfavoring specific hydrogen-bond types, were chosen by
trial and error using a protocol that might be difficult to
generalize.23

In this paper, we expand on this idea and show that it is
possible to train in an automatic fashion the correction factors
associated with hydrogen-bond stabilization in the gHBfix
model so as to stabilize the native structure of the difficult9

UUCG tetraloop structural motif. To avoid overfitting on the
UUCG tetraloop, a tetraloop representative of a different class
and a flexible tetramer are included in the training set. We use
an approach heavily based on that reported in ref 13. As an
important extension, here, we introduce and compare (a)
different forms of the regularization term and (b) different
protocols that can be used to perform cross-validation.
Training of the 12 parameters of the gHBfix force field is
done and demonstrates that this approach can lead to
transferable and interpretable force-field corrections that
match experimental data on a range of systems. A critical
assessment of the side effects of the optimized corrections is
made. Further tests on carefully chosen folded RNAs allow us
to design a final set of parameters (gHBfix21) that is
transferable on a wider range of RNA structural motifs. This
is an upgrade of the set suggested earlier,23 which is also
known as gHBfix19.9 Similarly to the preceding gHBfix19
variant, gHBfix21 should be coupled with the OL3 force
field26−29 with modified phosphate parameters30,31 and OPC
water model32 as used here.

2. METHODS

2.1. Simulation Protocols. We performed simulations of
several RNA systems, namely, (i) GACC, CAAU, and UUUU
tetranucleotides, (ii) gcGAGAgc and gcUUCGgc 8-mer
tetraloops, (iii) a ggcacUUCGgugcc 14-mer tetraloop (PDB
ID 2KOC33), (iv) gcaccguugg (PDB ID 1QC034) and
uuauauauauauaa (PDB ID 1RNA35) RNA duplexes, and (v)
kink−turn (Kt-7, PDB ID 1S72,36 19 nucleotides) and L1 stalk
rRNA (PDB ID 3U4M,37 80 nucleotides) motifs. The starting
structures of the tetranucleotides and 8-mer tetraloops (in
unfolded states) were prepared using Nucleic Acid Builder of
AmberTools1438 as one strand of an A-form duplex. The
topology and coordinates of the simulated systems were
prepared using the tLEaP module of the AMBER16 program

Figure 1. Schematic visualization of the workflow for automatic force-field refinement.16 After performing MD simulations on training systems for
which experimental data are available, experimental quantities are back-calculated and compared with actual experimental data points. One then
chooses a basis set for the correction function. gHBfix corrections23 are a natural choice to compensate for the possibly incorrect relative stability of
hydrogen bonds in the AMBER force field. Numerical minimization is then performed so as to maximize the agreement between simulation and
experiment, based on reweighting the simulated trajectories. Ideally, the resulting force field parameters enable new simulations to generate
structural ensembles in better agreement with experiment also for systems not included in the training set. If necessary, a new minimization can be
performed using a combination of the original and new trajectories in an iterative fashion.

Figure 2. (a) Functional form for the gHBfix-correction potential,23

displayed as a function of the distance between a hydrogen and the
corresponding acceptor. Color scale indicates corrections that could
either support (blue) or disfavor (red) a hydrogen bond type. (b) In
the present work, six possible acceptors and two possible donors are
systematically considered, leading to a total of 12 trainable
parameters. Numbers show the initial set of parameters (η parameters
proposed in ref 23, also referred to as gHBfix19 parameters),
expressed here as kBTλ in kcal/mol. Parameters are colored in blue or
red according to the same scale used in panel a.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00200
J. Chem. Theory Comput. 2022, 18, 4490−4502

4491

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00200?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00200?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00200?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00200?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00200?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00200?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00200?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00200?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00200?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


package.39 Several trajectories for analysis were taken from our
previous works (see SI Table 1 for a full list of systems and
simulations). All systems were solvated using a rectangular box
of OPC32 water molecules with a minimum distance between
the box walls and the solute of 12 Å. We used the standard
OL3 RNA ff

26−29 with the vdW modification of phosphate
oxygens developed in ref 30 where the affected dihedrals were
adjusted as described elsewhere.31 The AMBER library file of
this ff version can be found in the Supporting Information of
ref 40. Standard MD simulations were run at ∼0.15 M KCl
using the Joung−Cheatham ion parameters41 (K+: r = 1.705 Å,
ϵ = 0.1937 kcal/mol. Cl−: r = 2.513 Å, ϵ = 0.0356 kcal/mol).
Enhanced sampling simulations of the tetranucleotides and
tetraloops were run at ∼0.15 and ∼1.0 M KCl salt excess,
respectively. We used the hydrogen mass repartitioning
scheme,42 allowing a 4 fs integration time step (see the
Supporting Information of ref 23 for other details about the
simulation protocol). Hydrogen bonds were tuned by various
versions of the gHBfix potential23 (Table 2 in the reference
and SI Table 1 of this study). Standard MD simulations were
run in AMBER18,43 whereas both AMBER18 and GRO-
MACS201844 were used for enhanced sampling simulations.
PARMED45 was used to convert AMBER topologies and
coordinates into GROMACS inputs. Two different enhanced
sampling schemes were employed, i.e., a standard replica
exchange solute tempering (REST2)46 protocol and well-
tempered Metadynamics47−49 (MetaD) in combination with
the REST2 method (ST-MetaD).50,51 REST2 simulations were
performed at 298 K (the reference replica) with 8 and 16
replicas for the tetranucleotides and UUCG 8-mer tetraloop,
respectively. Details about the settings can be found else-
where.23 The scaling factor (lambda) values ranged from 1 to
0.601700871 and from 1.0454 to 0.59984 for 8 and 16 replicas,
respectively. Those values were chosen to maintain an
exchange rate above 20%. The effective solute temperature
ranged from 298 (8 replicas) or 285 (16 replicas) to ∼500 K.
REST2 simulations were performed with the AMBER GPU
MD simulation engine (pmemd.cuda).52 ST-MetaD simula-
tions of both GAGA and UUCG 8-mer tetraloops were
performed with 12 replicas starting from unfolded single
strands and were simulated in the effective temperature range
of 298−497 K for 5 μs per replica. The average acceptance rate
was ∼30% for both tetraloops. The eRMSD metric53 was used
as a biased collective variable.8 We used eRMSD with an
augmented cutoff (set at 3.2) for biasing, which was shown to
allow forces to drive the system toward and away from the
native state even when nucleobases are far from each other.8 In
a separate manuscript, we showed that using ST-MetaD with
MetaD on eRMSD greatly improved the performance of pure
ST for RNA tetraloops.51 Similar conclusions were drawn in
ref 54, where parallel tempering-MetaD55,56 with MetaD on
the number of native contacts,57 a variable highly correlated
with eRMSD, was suggested to be significantly more efficient
than pure parallel tempering for a GNRA tetraloop. ST-MetaD
simulations were carried out using a GPU-capable version of
GROMACS201844 in combination with PLUMED 2.558,59

(see section 2.7 for more details about implementation of the
gHBfix function within PLUMED code and Table 1 in the
Supporting Information for a full list of standard as well as
enhanced sampling simulations). In theory, all replicas could
be combined using a suitable reweighting procedure. However,
to keep the data sets smaller, here, we decided to only analyze
the reference replica of each replica-exchange simulation.

Simulations for the same system performed with different force
fields were combined with binless weighted-histogram
analysis60−62 so as to maximize the statistical efficiency of
the reweighting procedure.

2.2. Experiment-Based Force-Field Fitting. We briefly
review the formalism behind experiment-based force-field
fitting. Here, we used the procedure discussed in ref 13.
Considering P0(x) as the equilibrium probability distribution
of observing a conformation x with the original force field, the
refined force field will include a correction in the form f(x,{λ}),
where {λ} is a set of N parameters, leading to an equilibrium
distribution P(x, {λ}) ∝P0(x)e−f(x,{λ}). Here, we assume that
the correction f(x,{λ}) is a linear combination of N correction
functions: λ λ{ } = ∑ =f x f x( , ) ( )j

N
j j1 . The modified distribu-

tion is then used to estimate the expectation value of M
experimental observables, defined through forward models
Oi(x) that connect the atomic coordinates of conformation x
with the experiment. Forward models might correspond, for
instance, to Karplus equations63 or to indicator functions equal
to 1 if x is a folded conformation and to 0 otherwise. Their
e x p e c t a t i o n v a l u e s a r e c o m p u t e d a s

λ λ⟨ ⟩ { } = ∑ { }O O x P x( ) ( ) ( , )i x i . The cost function, to be
minimized in the fitting procedure, can be written as an
average of squared discrepancies between these expectation
values and the corresponding experimental observations

∑χ λ
λ

σ
{ } =

⟨ ⟩ { } −

=

i
k
jjjjj

y
{
zzzzzM

O O
( )

1 ( )

i

M
i i

i

2

1

exp 2

(1)

Here, σi is an estimate of the experimental error associated
with the ith data point.
In this work, the functions f are defined following the gHBfix

potential function as formulated in ref 23. In our
implementation, the parameters {λ} are unitless. However,
when reporting them in figures and tables, we convert them to
kcal/mol units for clarity by multiplying them by kBT, where kB
is the Boltzmann constant and T is the simulation temperature.
Each of the fitted parameters thus report on how much a given
hydrogen-bond type is supported (positive) or disfavored
(negative).

2.3. Back-Calculation of Experimental Observables.
The analysis was done using the same procedure used in ref 23,
namely, for the tetraloops we used eRMSD53,64 and hydrogen
bonds to identify native structures. For the tetramers, we
computed the agreement with previously published NMR
data.65−67 Exhaustive explanations can be found in the SI.

2.4. Fitting on Multiple Systems. The procedure above
can be straightforwardly generalized to multiple systems. In
practice, separate error functions are computed for each system
and their linear combination is taken. Explicitly, if χi

2({λ}) is
the error function for the ith system, computed using eq 1, the
total cost function over S systems can be defined as

∑χ λ ωχ λ{ } = { }
=

( ) ( )
i

S

i i
2

1

2

(2)

The prefactor associated with each system in this linear
combination (ωi) allows the weight of each system in the
fitting procedure to be tuned. Each of the 3 systems considered
in this study is assigned the same weight ωi = 1, so that they
equally contribute to the overall error. Note that these
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parameters have to be chosen arbitrarily and might have a
significant impact on the combined χ2.
2.5. Regularization Terms. The cost function in eq 2 can

be augmented with a regularization term so as to decrease the
degree of overfitting

χ λ χ λ α λ̃ { } = { } + { }R( ) ( ) ( )2 2 (3)

Here, R is a function that takes into account how much the
force field has been fitted and thus typically grows as the
refined force field departs from the reference one. α is a
regularization hyperparameter that can be tuned using a cross-
validation procedure. Here, we compare a number of different
functional forms for the regularization function R({λ}). The
most common type of regularization is L2 regularization,
where the function R is defined as

∑λ λ λ λ{ } = { } = −
=

R L( ) ( ) ( )
i

N

i i2
1

0 2

(4)

where {λ0} are the parameters suggested in the original work,23

shown in Figure 2. This type of regularization corresponds to
setting a Gaussian prior on the parameters {λ}. Indeed, the
logarithm of a Gaussian function of the {λ}’s is proportional to
a quadratic function of the {λ}’s. Similarly, a Laplace prior
would result in a L1 regularization

∑λ λ λ λ{ } = { } = | − |
=

R L( ) ( )
i

N

i i1
1

0

(5)

L1 regularization leads to more sparse corrections than L2
regularization, meaning it also offers the potential to identify
the most important parameters. In addition to comparing L1
and L2 regularization functions, we also tested a function that
depends on the statistical significance of the generated
ensemble, namely, the inverse of the Kish sample size of the
reweighted trajectory68,69

∑λ
λ

{ } =
{ }

=R
K

w x( )
1

( )
( )

x

2

(6)

Here, the sum runs over the whole trajectory and w(x)
depends on {λ} and represents the reweighting factor for the

frame with coordinates x, namely, =
′∑ ′

λ

λ

− { }

′
− { }w x( ) w x

w x

( )e

( )e

f x

x
f x

0
( , )

0
( , ) ,

where w0(x) is the weight associated with the original force
field, included here to take into account that simulations might
have included a bias potential. We notice that a term
depending on the Kish size, though different from this one,
was also employed in a recent work.14

We then considered regularization terms that take into
account the discrepancy between the prior distribution P0(x)
and the posterior one P(x). We tested the inverse of the
relative Kish size, defined as

∑λ
λ

{ } =
{ }

=R
K N

w x
w x

( )
1
( )

1 ( )
( )xrel f

2

0 (7)

We also considered the exponential of the negative relative
entropy, defined as

λ{ } = =λ− { } ∑R e e( ) S w x w x w x( ) ( )log ( )/ ( )xrel 0 (8)

Although these last two forms are different, they are both
expected to grow as the distribution associated with the

original force field and that associated with the refined force
field depart from each other.
Since the last three regularization terms depend on the

analyzed trajectories, they should be combined so as to take
into account how each system is affected by the corrections.
We decided to combine them with a LogSumExp (LSE)
function

∑λ{ } = λ

=

{ }eLSE( ) log
i

S
R

1

( )i

(9)

that effectively picks the largest regularization across all
systems. This makes sure that all systems have a sufficient
Kish size or a sufficient similarity with the initial ensembles.
The five regularization terms discussed above were

modulated by a hyperparameter α. Although in principle
they could be combined, we only tested one regularization type
at a time. In addition, we added boundaries for the parameter
minimizations relative to the reference parameters (Figure 2).
These boundaries can be interpreted as a L-infinite

regularization term ( = ∑ λ λ
λ=
−

∞
R i

N
1

i i
0

max
with kBTλmax = 1

kcal/mol) used on top of one of the five regularization
strategies discussed above. In practice, these boundaries avoid
divergence in parameters that could otherwise become
arbitrarily positive or negative.

2.6. Cross-Validation Strategies. The hyperparameter
that tunes the regularization terms discussed in the previous
section is chosen so as to maximize the performance in cross-
validation. In particular, force-field corrections are fitted on a
fraction of the available data set and tested on the left-out part
of the data set. We performed three types of cross-validations.

(1) Cross-validation on trajectory segments: We split each
trajectory in 5 segments. Here, the number of segments
is chosen arbitrarily, and only the ground replica is used,
which might contain spurious correlations due to replica
exchanges.70 In principle, one might apply the splitting
on continuous (demuxed) trajectories to minimize
correlations and optimize the number of blocks as it is
usually done in block analysis.71 Then, we minimize the
cost function using trajectories where one of the
segments was removed and finally validate the
parameters by recomputing the cost function using
only the left-out segments.

(2) Cross-validation on observables: We split the data set
into the 7 observables (GACC: NOEs, uNOEs, and
scalar couplings grouped according to the backbone
angles γ (backbone1), β or ϵ (backbone2), and sugar
torsional angles (sugar). GAGA and UUCG: native
population) and then minimize the cost function in
which the contribution of one observable is ignored and
afterward validate against this left-out observable.

(3) Cross-validation on systems: We minimize the cost
function only including two of the three training systems
and then validate the parameters by recomputing the
cost function using only the left-out system.

In all cases, the cross-validation is repeated by rotating the
left-out portion of the data. The first cross-validation strategy
allows one to check if the parameters would be transferable to
a new trajectory simulated for the same set of systems. The
other two strategies instead check the transferability to
different types of observables or to different systems.
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2.7. Implementation. To allow the gHBfix corrections to
be used in generic MD codes that might not support the
required functional form, we added an implementation within
the PLUMED plugin58 that is compatible with a large number
of MD packages. Specifically, a collective variable has been
added that allows the user to provide two groups of atoms and
then automatically compute switching functions ranging from
−1 (small distance) to 0 (large distance) with a smooth
interpolation in the middle. The decision to set this correction
to zero for atoms at a large distance was taken to make this
function compatible to other switching functions implemented
in PLUMED and enable its optimization via neighbor lists.
This definition is identical with that used in the original gHBfix
version40 except for an additive constant. Multiplicative
prefactors for the switching functions can be chosen based
on the atom types. This collective variable can be used to
analyze hydrogen-bond interactions a posteriori or to generate
bias potentials to correct a simulation on-the-fly.
Here, we also updated the code “gHBfix_GenerateIn-

put.cpp” originally published in ref 23 (https://github.com/
bussilab/ghbfix-training), which is printing desired output with
the newly implemented gHBfix function for PLUMED code
with both required external files (typesTable.dat, scalingPar-
ameters.dat). The PLUMED input files used in this code are
available on PLUMED-NEST (https://www.plumed-nest.org),
the public repository of the PLUMED consortium,72 as
plumID:21.051.

3. RESULTS
Here, we train the 12 gHBfix free parameters corresponding to
the 12 types of hydrogen bonds (Figure 2) by minimizing the
discrepancy with respect to the experiment for three systems:
two tetraloop motifs with sequences gcUUCGgc and
gcGAGAgc and an oligomer with sequence GACC (Figure
3a). The two tetraloops, or similar ones, were used as a folding
benchmark in a number of papers.8,9,13,23,25,40,54,73−75 The
GACC tetramer was reported to sample intercalated structures
not compatible with experiment,7,65 although this artifact can
be significantly decreased using modified dihedral poten-
tials76,77 or modified water models.25,67,75,78 A hyperparameter
that controls overfitting is tuned by minimizing the cross-
validation error. Several different forms for the regularization
term are compared. Once an optimal value for the hyper-
parameter has been identified, a new fitting is performed
including all of the training simulations, resulting in a set of
optimal parameters that we refer to as gHBfixopt. We then test
this set of parameters using additional simulations that include
new systems not used during training and a new simulation of
one of the systems used during training (Figure 3b).
Furthermore, in order to identify the side effects of the
gHBfixopt parameters, we perform plain MD simulations on
carefully chosen folded RNAs (kink−turn and L1 stalk rRNA).
These additional simulations allow us to report a final set of
parameters (gHBfix21), where one hydrogen-bond correction
has been manually removed from the gHBfixopt parameters,
that performs well on a wider range of systems.
3.1. Cross-Validation Comparison. We first perform a

cross-validation test on trajectory segments. In short, we split
each trajectory in 5 segments, train the 12 parameters on a
subset of 4 segments, and validate against the left-out segment.
We repeat the procedure five times and report the average
result. We then repeat the procedure scanning the value of the
regularization hyperparameter over 8 orders of magnitude and

including 5 different forms for the regularization term. Figure
4a reports the average error on the training set. By
construction, the error increases with the hyperparameter.

Figure 3. Systems used in training (a). For these three systems, we
performed extensive enhanced sampling simulations. Training was
done using NMR data (for GACC) or the stability of the native
structure (for gcGAGAgc and gcUUCGgc). Systems used in
validation (b). Quantitative validation was done using NMR data
(for CAAU and UUUU) or the stability of the native structure (for
gcUUCGgc), whereas qualitative validation was done running long
simulations of a 14-mer containing a UUCG loop,33 initialized in its
native structure.

Figure 4. Results of the cross-validation tests on trajectory segments
and on observables using all of the tested regularization methods.
Error function is evaluated on the training and validation set using
parameters obtained minimizing the error and a scan over a wide
range of values for the regularization hyperparameter. Cyan and
purple blocks show how data are split and used in cross validation. In
the first case (a and b), the cross-validation is performed keeping out
segments of the whole trajectories and using them as a validation set.
Error is reported both for the training (a) and for the validation (b)
sets. In the second case (c and d) the cross-validation is performed
keeping out a fraction of the observables and using them as a
validation set. Error is reported both for the training (c) and for the
validation (d) set. Error function for the reference force field is
reported as a dashed horizontal line. Ranges of both horizontal and
vertical axes are identical.
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For four forms of the regularization term, in the limit of large
hyperparameters, the error of the original force field is
recovered. When using the Kish size as a regularization term
instead, this is not guaranteed. Indeed, to maximize the Kish
size of the resulting ensemble, thus minimizing the
regularization term, one should have uniform weights across
all of the visited conformations, which is different from using
the weights associated with the reference force field. The limit
of low hyperparameter corresponds to fitting without any

regularization. Figure 4b reports the average error on the
validation set, namely, obtained using the trajectory segment
that was left out during the training phase. In this case, the
error systematically increases over a wide range of values of the
hyperparameter. The minimum error is not appreciably
different from the error obtained in the absence of
regularization. This indicates that for what concerns the
cross-validation on trajectory segments, there is no significant
overfitting, and we should expect the obtained parameters to

Figure 5. Figure representing the two sets of parameters tested in this work. (a) Parameter set referred to as gHBfixopt, which was obtained fitting
on all of the systems in the training set using a relative Kish size regularization with a hyperparameter obtained by minimizing the error function of
the cross-validation on observables. (b) Parameter set referred to as gHBfix21 in which the 2′OH−2′OH penalization is set to 0.0 in order to avoid
undesirable side effects in systems with A-minor interaction and interactions with sugar−sugar H bonding. gHBfix21 parameters are those that we
recommend to be used in future studies. Parameters are reported following the same convention as in Figure 2b.

Figure 6. Results of the cross-validation tests on multiple systems using all of the tested regularization methods. In rows a−c the error function is
evaluated on the training (white background) and validation (hatched) systems using parameters obtained minimizing the error and a scan over a
wide range of values for the regularization hyperparameter. Columns 1−3 correspond to the error contribution for systems GACC, gcGAGAgc, and
gcUUCGgc. Stars mark the optimal hyperparameter for the respective regularization penalty determined by cross-validation on observables
(compare Figure 4). Error functions for the reference force field (gHBfix19), for an unregularized minimization without boundaries, and for an
unregularized minimization with boundaries at ±1 kcal/mol relative to the original force field are reported as horizontal dashed lines. Parameters
associated with each minimization obtained both with and without regularization can be found in SI Tables 3−6. Row d shows the results for the
training error using all available experimental and simulation data during the fitting.
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be transferable to a new simulation performed on the same
system irrespective of regularization.
Figure 4c and 4d report a similar analysis performed by

splitting all of the input data points in 7 groups corresponding
to the observables, training on a subset of 6, and validating on
the left-out observable. In this case, the behavior of the cross-
validation error (Figure 4d) is qualitatively different. In
particular, for each of the tested forms of the regularization
term, we can clearly identify a specific value of the
hyperparameter that minimizes the error on the validation
set. When going to low values of the hyperparameter instead,
we clearly see that the cross-validation error increases. This
indicates that, in the absence of regularization, one would
obtain parameters that would likely be nontransferable to
predict new data points. The specific values of the hyper-
parameter that minimize the cross-validation error are shown
with a star.
We notice that given the different nature of the 5 tested

regularization functions, the specific value of the hyper-
parameter cannot be directly compared. We can however
compare the corresponding values of the cross-validation error,
which suggests that the maximum transferability would be
obtained using a relative Kish size regularization with a
hyperparameter α = 18.68. Using this criterion to choose the
type of regularization function is legitimate and is equivalent to
considering the type of regularization function as an additional
categorical hyperparameter that is optimized using the same
cross-validation procedure. For further tests, we choose the
parameters obtained with relative Kish size regularization at
this optimal regularization strength. These parameters are
reported in Figure 5a and referred to as gHBfixopt.
We also performed a cross-validation on systems where

training is done including two systems and a validation on the
left-out system (Figure 6). This analysis allows one to clearly
identify the contribution of each of the three training systems
to the resulting parameters. In rows a−c, the error on each of
the three analyzed systems is shown, highlighting the one that
was left out during training. The gcUUCGgc system has the
highest error, as expected.9 Interestingly, gcGAGAgc is
significantly improved by the presence of gcUUCGgc in the
training set. However, the opposite is not true: when
gcUUCGgc is excluded from training, the associated validation
error displays a minimum that is almost as large as the error in
the reference force field. This suggests that the gcUUCGgc
native structure is stabilized by types of contact not present in
the other systems. We notice that the GACC tetramer shows a
light overfitting whenever gcUUCGgc is included in the
training set. However, the magnitude of this overfitting is
moderate, and the final χ2 error remains below 0.93.
It is also interesting to compare the sets of parameters

obtained when regularization is present or absent and when
one of the systems is left out or all three systems are used (see
SI Tables 3−6). When the GACC tetramer is included in the
training phase and no regularization is used, some of the
parameters become very large and negative. For all considered
systems, these parameters correspond to hydrogen bonds that
are more abundant in the fraction of the ensemble that is less
compatible with the experimental observables and thus should
be penalized to improve the result. The particular importance
of the concerted effect of these repulsive interactions on the
correct representation of GACC can be seen in SI Figure 1,
which shows that removing all repulsive interactions to the
gHBfix19 parameter significantly increases the χ2 error of

GACC to values > 1. Importantly, as soon as a regularization
term is introduced, the obtained parameters are similar
irrespective of which system has been left out from the
training. The fit performed using all three systems with
regularization also reports a similar result (compare SI Tables
3−6).
The parameters obtained in all of the tested minimizations

are similar but not identical in the choice of which interactions
should be disfavored and which should be supported. In
particular, it emerges that NH−O base−base and 2′-OH N/O
sugar−base hydrogen bonds should be supported whenever
gcUUCGgc is included in training. The former type
corresponds to Watson−Crick hydrogen bonds in the stem
and a GU wobble pair in the loop, whereas the second type
corresponds to the signature interaction of the UUCG
motif.9,79 In SI Figure 2 one can see that all of the attractive
interactions correspond to contacts that are present in the
UUCG native loop. Attractive interactions 2′OH−N/O are
exclusively present in the loop region and thus are particularly
helpful in correctly stabilizing the challenging UUCG motif. In
general, all of the hydrogen bonds formed by acceptors located
in the sugar or phosphate moieties should be disfavored, with
the notable exception of bonds between nonbridging oxygens
and NH groups. This might be a consequence of the limited
set of systems analyzed in this work, where these moieties are
not involved in forming important interactions, as discussed in
section 3.3.

3.2. Tests Using New Simulations and Additional
Tetramers. The gHBfixopt parameters obtained in the previous
section were thus tested on new simulations. The first test
simulations were performed on three systems (Table 1). In
particular, we tested two other tetramers (CAAU and UUUU)
for which NMR data are available. CAAU is one of the most
challenging tetramers23−25,65,67,75,77,80,81 and shows a large χ2 >
5 with gHBfix19.24 The test simulation with gHBfixopt reduces
the χ2 value to 3.6, which is an improvement. The UUUU

Table 1. χ2 Errors and Native Populations for the Training
and Testing Simulationsa

system (observable) gHBfix19 gHBfixopt

training simulation
GACC (χ2-NMR) 0.24b,c 0.33e

gcGAGAgc (native population) 24 ± 1%d 66 ± 3%e

gcUUCGgc (native population) 0.02 ± 0.002%d 27 ± 4%e

validation simulation
gcUUCGgc (native population) 0.003 ± 0.004%e 21 ± 2%d,f

CAAU (χ2-NMR) 5.00e (5.37g) 3.64c,f

UUUU (χ2-NMR) 1.73e (1.63g) 1.48c,f

aFor the training simulations, we report both the direct results of the
simulations (gHBfix19 column) and the results predicted by
reweighting those simulations to the gHBfixopt parameters displayed
in Figure 5a (gHBfixopt column). Notice that for GACC the results are
obtained combining simulations performed with multiple parameter
sets (see text for details). For the validation simulations, we report
both the direct results of the simulations (gHBfixopt column) and the
results predicted by reweighting those simulations to the gHBfix
parameters with reweighting (gHBfix19 column; values in parentheses
are also reporting direct results for the comparison). bResults are
obtained combining simulations performed with multiple parameter
sets (see Methods for details). cREST2 simulation. dST-metady-
namics simulation. eReweighted results. fSimulations with gHBfixopt
parameters. gSimulations with gHBfix19 parameters.24
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system is relevant since it is known to be highly dynamic in
NMR experiments65 and was suggested to be too helical with
DESRES parameters.25 The UUUU simulation with optimized
parameters reveals a χ2 error of 1.48, which is also in better
agreement with the experiments than the simulation performed
with the gHBfix19 potential24 (χ2 of 1.63, see Table 1). These
results are remarkable in that these two systems were not
included in the training set. In addition, we performed new
simulations to validate our improvement on the UUCG
tetraloop. Specifically, a new ST-MetaD folding simulation of
the gcUUCGgc system using gHBfixopt corrections but
otherwise identical settings as those used in the training
phase resulted in a native state population of 21 ± 2%. This
number is comparable with the native state population of 27 ±
4% estimated when reweighting the training simulation.
Whereas this system was used during training, it is interesting
that the parameters were transferable to a direct (non
reweighted) simulation, consistent with what we observed in
the cross-validation test on trajectory segments (see Figure
4b). In addition, we performed a qualitative test on the stability
of the UUCG tetraloop by performing 10 independent 20 μs
plain MD simulations of a 14-mer initialized in an NMR
structure.33 From SI Figure 3 it can be seen that in 9 out of 10
simulations the native tetraloop structure with all of the
signature interactions9 is stable. We prolonged the single
simulation where the native state was partly lost after ∼19 μs,
and we observed successful recovery of all contacts at ∼20.4
μs. The native state was then maintained until the end of this
30 μs long simulation. This is in contrast with the instability
observed with other variants of the AMBER force field (see,
e.g., refs 9 and 82) and with the local conformational dynamics
observed with the DESRES parameters25 (see refs 83 and 84).
3.3. Tests Using Plain MD Simulations of Folded

RNAs. In addition to these systems, we also choose two
additional folded RNAs for which 2′OH−2′OH hydrogen
bonds, which were penalized in our fitted parameters, were
present in the native structure, namely, kink−turn and L1 stalk
rRNA segments. The results are reported in SI Figures 4 and 5
and strongly suggest that the disfavoring of the 2′OH−2′OH
contact in gHBfixopt produces undesirable side effects. We thus
tested a new variant where the 2′OH−2′OH term was
manually set to 0.0 kcal/mol (i.e., removed). We refer to this
set of parameters as gHBfix21 (see Figure 5b). This correction
is critical in simulations of any systems with A-minor,
phosphate-in-pocket and similar interactions with sugar−
sugar H bonding. Importantly, setting to zero the 2′OH−
2′OH correction does not visibly compromise the results for
the systems that we used in training or validation (see SI
Figure 6). Our results on the kink−turn and L1 stalk rRNA
segments confirm that after removing this 2′OH−2′OH
penalty no side effects are observed on their native structures.
Remarkably, the test simulations also revealed that the
stabilization of the 2′OH−N H bonds suggested by the fitting
done on our training set further stabilizes the native kink−turn

structure with respect to the uncorrected OL3 force field.
Namely, the 2′OH−N term eliminates dynamical bifurcation
of the most important kink−turn signature interaction between
the 2′OH group of the first bulge nucleotide and N1 of the first
adenine from the noncanonical stem.85

3.4. Overhead Associated to gHBfix Corrections.
Simulations including gHBfix corrections suffer from a
performance penalty associated with the calculation of the
additional switching functions. The impact depends on the
precise implementation used and, importantly, on the size of
the system. Indeed, if one does not take advantage of neighbor
lists, the number of pairs of atoms participating in these
corrections scale with the square of the number of nucleotides.
In addition, it is important to note that the relative overhead
depends on other factors possibly slowing down the
simulation, such as the use of metadynamics. In Table 2 we
report the performance for two typical systems included in our
validation set, namely, CAAU, simulated with AMBER18, and
gcUUCGgc, simulated with GROMACS 2018.8 + PLUMED
2.5. For the GROMACS simulations, the reported perform-
ances were obtained using a specific implementation of gHBfix
for PLUMED that is described in section 2.7 and is virtually
identical with that included in PLUMED 2.8. Performances are
reported for both gHBfix19 and for gHBfixopt as well as for a
reference calculation where no gHBfix was applied but an
identical enhanced sampling protocol was used.

4. DISCUSSION

In this work, we apply a force-field fitting strategy that was
introduced in a previous work13 to the tuning of gHBfix
hydrogen-bond interaction terms that were introduced in ref
23, obtaining parameters that we call gHBfixopt here.
Specifically, experimental data for two tetraloops and one
tetramer are used to fit corrections that are then tested on
newer simulations of one of the two tetraloops and on two
tetramers not seen during fitting. The obtained parameters
result in a significant stabilization of the difficult UUCG
tetraloop. Since none of the RNA structures considered in the
training set contain 2′OH−2′OH H bonds, we performed
additional plain MD simulations of folded RNAs (kink−turn
and L1 stalk rRNA) where these bonds are essential for
stabilization. These additional simulations allow one to design
an improved set of parameters (gHBfix21) that we suggest are
applicable on a wider range of RNA systems. Using gHBfix21
instead of gHBfixopt does not compromise the performance for
any of the training and validation systems, while it eliminates
all side effects on the native structures of kink−turn and L1
stalk rRNA. Scripts that can be used to repeat the fits and
reproduce the figures of this article can be found at https://
github.com/bussilab/ghbfix-training. Importantly, an imple-
mentation of the gHBfix correction for PLUMED is included
in this work and has been added to PLUMED 2.8. Its impact
on performance is limited, at least for short oligomers.

Table 2. Performance of MD Simulations Including gHBfix Termsa

system software no gHBfix gHBfix19 gHBfixopt

CAAU (REST2) AMBER18 712 ns/day 682 ns/day 682 ns/day
gcUUCGgc (ST-MetaD) GROMACS + PLUMED 358 ns/day 355 ns/day 325 ns/day

aAMBER18 simulations were performed using a single core of an Intel(R) Xeon(R) E5-2620 2.10 GHz processor and a NVidia GeForce RTX
2080 Ti card per replica. GROMACS + PLUMED simulations were performed using 8 cores of an Intel(R) Xeon(R) Gold 6130 2.10 GHz
processor and a NVidia GeForce GTX1080ti card per replica.
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When compared with ref 13, we report a number of
methodological improvements. First, we test five different
regularization strategies. Two of them (L1 and L2) are
standard in the machine learning community and can be
directly interpreted as prior distributions on the parameters
aimed at keeping them small (L2) or sparse (L1). We also test
two additional strategies that are aimed at keeping the resulting
reweighted ensemble as close as possible to the original one
(relative entropy and relative Kish size). Interestingly, there is
an analogy between using the relative entropy as a
regularization term and the Bayesian experimental restraints
introduced in ref 19. Indeed, in both cases, among the multiple
possible ensembles that are equally in agreement with
experiment, the method will pick the one that is as close as
possible to the original ensemble. At variance with ref 19,
however, the approach introduced here is aimed at deriving
transferable corrections. Finally, we test the possibility to
regularize using the inverse of the Kish size, which allows one
to keep the resulting reweighted ensemble as statistically rich
as possible. A similar idea was proposed in ref 14, though using
a different functional form. We notice that in some cases the
initial trajectories are generated using algorithms that provide
conformations associated with a weight. This happens, for
instance, when using enhanced sampling methods where a bias
is applied or when combining trajectories obtained with
different force fields using binless weighted histograms.60−62 In
these cases, using a Kish size regularization makes the
ensembles as uniform as possible, and thus, the result might
depend significantly on which ensembles were sampled
originally and which enhanced sampling strategy was used.
In the last three discussed strategies (relative entropy, relative
Kish size, and Kish size), the penalty introduced by the
regularization term does not depend only on the parameters
but also on the data and thus can be interpreted as a form of
representational regularization.86,87

The interpretation of the prefactors associated with the
gHBfix corrections23 is straightforward, as they directly report
on how much each hydrogen-bond type is to be supported
(positive coefficient) or penalized (negative coefficient). When
one of the trained coefficients diverges, the frames where one
interaction of that type is either present (for a negative
coefficient) or absent (for a positive coefficient) are effectively
removed from the ensemble. The result is thus mild depending
on the exact value of the coefficients. This means that for
selected training sets, one or more of the parameters might
diverge with some of the regularization strategies mentioned
above. This might lead to forces of infinite magnitude if these
corrections were applied to a new simulation. To avoid this
type of issue, we added a L-infinite-like regularization term that
forces all of the parameters to be within preassigned
boundaries, namely, we favor or disfavor any of the corrected
pairs by at most 1 kcal/mol. The possibility to automatically
repeat the training using different subsets of systems allows one
to judge the contribution of each system in the overall fitting.
Similarly, it is easy to repeat the training by manually removing
some of the corrections, so as to identify the role of each term.
Another concept that is introduced here is that of

performing a cross-validation over trajectory segments. This
allows one to assess how much the parameters would be
generalizable to a new trajectory for the same systems. This is a
useful criterion to decrease the impact of errors due to finite
sampling. In our data set, even in the absence of regularization,
no significant overfitting on the trajectory segments emerges,

indicating that our trajectories are long enough to be used in
this training procedure. However, for more complex systems or
for shorter trajectories, this might not be true.
The optimized parameters, which we refer to as gHBfixopt

parameters, perform well both in a new simulation of the
difficult UUCG tetraloop and in the simulation of two
tetramers not seen during training, confirming that the
parameters are transferable. For the UUCG tetraloop, we
remark that the native state population reported here is higher
than that reported with DESRES parameters.25 Importantly,
the GL4 bulge-out structure, which has been described both for
the DESRES parameters (see refs 64, 83, 84) and for previous
variants of the AMBER force field,7,13,74 is not compatible with
experimental solution data33,84,88 and is not populated in our
plain MD simulations of the UUCG 14-mer. The capability of
the flexible functional form of the gHBfix correction to directly
stabilize the signature interactions present in the native
structures with no or minimal side effects, coupled with the
explicit inclusion of a UUCG tetraloop in our training set,
allows for the required corrections to be automatically
detected. We speculate that this result can be only achieved
with such a flexible functional form. A folding simulation of the
UUCG 14-mer system using the proposed parameters are left
as a subject for a future work.
It is additionally important to notice that some interaction

types were not present in the native structures of the systems
used in our training set. These interactions were thus
maximally penalized by the training procedure. Particularly
relevant is the case of interactions between a pair of 2′OH
groups. Sugar−sugar H bonding is an important component of
A-minor and all other types of ribose zipper interactions.3,89−92

Sugar−sugar interactions are omnipresent in folded RNAs, and
the A-minor interaction is actually the most abundant RNA
tertiary interaction used by evolution.3,93 These interactions
are indeed crucial for maintaining, for example, the native fold
for a kink−turn motif and for the L1 stalk rRNA, which in turn
includes two kink−turn motifs. To simulate systems where
these interactions play an important role, the optimized
parameters should be manually modified. In theory, one could
directly include kink−turns in the training set. However,
trajectories where the native structure is folded and unfolded at
equilibrium would be required to estimate the effect of a
correction on the stability of the native structure using a
reweighting procedure. Whereas this might be possible at least
for the kink−turn studied here, it would be extremely
expensive and is left as a subject for a future work. Here, we
decided to manually remove a single parameter and to validate
it on the kink−turn motif using standard MD simulations. The
resulting gHBfix21 parameter set is proposed to be applicable
on a wider range of systems. This special case handling for the
2′OH−2′OH contact puts emphasis on a general problem of
any fitting procedure: if a certain observation is not among
those on which the method is trained, one will have to rely on
extrapolation. The 2′OH−2′OH type of interaction is not
formed in a significant population for any of the training
systems native ensembles. Therefore, our algorithm has no way
to identify undesirable effects. Only by adding extra sample
systems where these interactions are crucial could we identify
the problem.
We notice that with the present gHBfixopt version the kink−

turn and L1 stalk rRNA were significantly destabilized,
however not to the same extent as with the DESRES
reparametrization of the RNA force field,25 as shown in ref
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23. This might be related to the fact that the DESRES
parameters were optimized to correctly fold helices and
structural motifs similar to the tetraloops used in our training
set. This observation corroborates the fact that the training set
should be as heterogeneous as possible to avoid overfitting.16

However, the flexibility of the method allows parameters to be
adjusted so as to manually remove some of the terms and, if
necessary, train again the remaining ones. With the adjusted
gHBfix21 parameter set all side effects on the kink−turn and
L1 stalk rRNA were eliminated.
An important advantage of the gHBfix functional form is its

modularity, namely, the fact that it is possible to act on specific
hydrogen-bond types while minimizing the indirect effects on
others. In fact, it is separated from all of the other force-field
terms. In order to illustrate the flexibility of the gHBfixopt
parameters based on some detailed system knowledge, in the
SI we provide fitted force fields which are omitting specific
interactions or reduce the upper and lower bounds of the
parameters during fitting. In addition, the SI provides a fitting
script which allows users to specify interactions to remain
unchanged or within a certain magnitude and find a new force
field matching these requirements (SI 8.5). In case one is
concerned about too large changes of the relative stability of
AU and GC pairs with the gHBfixopt parameters, in SI Figure 6
we offer a gHBfixopt version with a reduced magnitude of the
NH−O interaction and also show its expected effects on the
training set. In other words, the users could modify the gHBfix
in specific projects in a system-specific manner in case the
proposed gHBfix21 parameters are found to generate
ensembles incompatible with some experimental information
not used here. We recall that the present gHBfix21 version was
derived to be applied on top of the basic AMBER OL3 RNA
force field27−29 with phosphate oxygen corrections30,31 and
combined with the OPC water model.32

Future studies should investigate whether nonlinear
functions can additionally improve force fields by allowing
more functional flexibility, e.g., in the form of artificial neural
networks, when one attempts to find correction potentials for
more extensive databases of RNA dynamics.
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Cheatham, T. E.; Jurecǩa, P. Refinement of the Cornell et al. Nucleic
Acids Force Field Based on Reference Quantum Chemical
Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput.
2011, 7, 2886−2902.
(30) Steinbrecher, T.; Latzer, J.; Case, D. A. Revised AMBER
Parameters for Bioorganic Phosphates. J. Chem. Theory Comput. 2012,
8, 4405−4412.
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