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Abstract: The presented study deals with the fabrication of highly stable and active nanobiocatalysts
based on Candida antarctica lipase B (CALB) immobilization onto pristine and poly(dimethylsiloxane)
modified MWCNTs. The MWCNTs/PDMS nanocomposites, containing 40 wt.% of the polymer
with two molecular weights, were successfully synthesized via adsorption modification. The effect
of PDMS chains length on the textural/structural properties of produced materials was studied by
means of the nitrogen adsorption–desorption technique, Raman spectroscopy, and attenuated total
reflectance Fourier transform infrared spectroscopy. P-MWCNTs and MWCNTs/PDMS nanocom-
posites were tested as supports for lipase immobilization. Successful deposition of the enzyme
onto the surface of P-MWCNTs and MWCNTs/PDMS nanocomposite materials was confirmed
mainly using ATR-FTIR spectroscopy. The immobilization efficiency, stability, and catalytic activity
of the immobilized enzyme were studied, and the reusability of the produced biocatalytic systems
was examined. The presented results demonstrate that the produced novel biocatalysts might be
considered as promising materials for biocatalytic applications.

Keywords: multi-walled carbon nanotubes; poly(dimethylsiloxane); polymer nanocomposites; Can-
dida antarctica lipase B; lipase immobilization; enzymes stability and reusability

1. Introduction

Carbon occurs in many forms, and the properties of each form with respect to their
special structure make carbon a truly unique building block for nanomaterials [1]. Owing to
their interesting electrical, magnetic, mechanical, and thermal properties, carbon nanotubes
(CNTs) have become the most promising materials in many scientific and technological
fields [2–7]. CNTs are made of one or more graphene sheets rolled-up to form tubes.
Single-walled CNTs (SWCNTs) comprise a single graphene layer seamlessly wrapped
into a cylindrical tube. Multi-walled carbon nanotubes (MWCNTs) comprise an array of
concentric cylinders coaxially arranged around a central hollow core with van der Waals
forces between adjacent layer [8,9]. CNTs exhibit extremely high surface area, large aspect
ratio, low density, remarkably high mechanical strength, and electrical as well thermal
conductivities [8,10]. Functionalization of carbon nanotube surfaces can be proceeded via-
covalent or non-covalent modification. Non-covalent surface modificationof CNTs, which
includes adsorption of surfactants, polymers, or biological macromolecules, is a method
that does not affect their intrinsic structure [11]. Among many methods, non-covalent
attachment (polymer wrapping and absorption) is of key importance when CNTs func-
tionalize with polymer molecules [11–13]. Polymeric materials includingsilicon rubbers,
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in particular poly(dimethylsiloxane) (PDMS), are used in everyday materials. It is related
to their excellent durability and mechanical properties that results from their high cross-
linking density and degree of polymerization. PDMS is hydrophobic, chemically inert, and
electrically resistant, and exhibits dielectric strength, high elasticity, and easy processing
and isenvironmentally-friendly [14–17]. The addition of PDMS to MWCNTs improves
the mechanical, electrical, and thermal properties of the resulting nanocomposites [18–20].
Based on our previous studies [21–25] concerning materials prepared in a similar way
but containing chemically different highly dispersed nano-oxides as well as PDMS modi-
fied MWCNTs, it was proved thatpolymer–filler interactions depend on nanocomposite
compositions and inorganic particle types (oxides). On the other hand, those interactions
are responsible for surface properties of the resulting nanocomposites such as roughness,
textural porosity, or hydrophobicity, which furthermore affect their potential applications
as catalysts supports, adsorbents, fillers, etc.

This current research may be a part of work on preparation of active biocatalyst
composed with the functional support and biomolecules—e.g., enzymes.

Recently, many studies have been devoted to the immobilization of enzymatically ac-
tive substances on inorganic, e.g., silica-based, supports towards heterogeneous biocatalyst
preparation. This is especially related to the nature of such systems—their availability and
relatively low cost as well as high mechanical strength and durability of biocatalyst granules
in the reaction media [26,27]. In particular, lipases are the most widely used biomolecules
in enzyme technology because of their widespecificity for some substrates, low production
cost, wide pH activity profiles, as well as ability to catalyze various different reactions,
such as hydrolysis, esterification, amination, transesterification, alcoholysis, etc. [28–30].
Graphene oxide (GO), having a large surface area (2630 m2/g) and abundant functional
groups (such as epoxide, hydroxyl, and carboxylic groups), provides a great substrate
for enzyme immobilization without any surface modification or any coupling agents [31].
Nevertheless, among the various nanostructured materials that might be used as novel
supports for enzyme immobilization and stabilization, CNTs are of great interest to many
research centers worldwide due to their stability, high adsorption capacity, improvedreten-
tion of catalytic activity, and biocompatibility [32–35]. Both SWCNTs and MWCNTs have
been used to immobilize enzymes [36]. MWCNTs are structurally similar to SWCNTs, but
their diameters can range from a few nanometers to dozens of nanometers [37]. SWCNTs
are attractive due to their larger surface area for protein interaction, excellent biocompat-
ibility, antifouling properties, and high conductivity, but MWNTs are desirable because
they are easier to prepare, exhibit better dispersibility, and are commercially available at a
relative lower price, which makes them more feasible for industrial applications. Therefore,
MWNTs are suitable materials as enzyme supports [38]. Enzymes can be immobilized
on the surface of MWCNTs by adsorption or covalent binding, whichresultsin enhanced
catalytic performance and stability. Moreover, lipases are well-known interfacially active
catalysts and exhibit their catalytic abilities at the interface between the organic phase
containing hydrophobic substrates and aqueous phase, so they can be activated at the
hydrophobic–hydrophilic interface [34,39].

Herein, in the present work, for the first time, the methodology to design and charac-
terize an alternative, highly stable, and active nanobiocatalyst based on Candida antarctica
lipase B (CALB) immobilized onto pristine and poly(dimethylsiloxane)modified MWC-
NTsis presented and discussed. The idea was to combine the textural properties as well
as functionality of PDMS modified with lipase activity, and to obtain a novel type of bio-
catalyst dedicated to biotechnological applications. As a result, high enzyme loading, its
improved stability and reusability, as well as activity of the biocatalyst produced, were
expected. The innovative nature of the presented study is based not only on application of
a novel, previously undescribed support material for lipase immobilization, but also on
the possibility to use MWCNT surface modifying agents at various molecular weights to
examine their effects on enzyme loading and catalytic activity.
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2. Materials and Methods
2.1. Chemicals and Materials

Commercial poly(dimethylsiloxane) fluids of two molecular weights (Wacker Chemie
AG, linear, –CH3 terminated, code names: PDMS-100 and PDMS-12500 with MW ≈ 3410
and 39,500 g/mol, respectively) and multi-walled carbon nanotubes (MWCNTs, obtained
by catalytic chemical vapor deposition (CCVD) [40] using pyrolysis of propylene on
complex metal oxide catalysts) [41] were used as initialmaterials forpolymer nanocompos-
itepreparation.

Candida antarctica lipase B (CALB) (EC 3.1.1.3, ~200 U/g), para-nitrophenyl palmitate
(p-NPP), para-nitrophenol (p-NP), gum arabic and Triton X-100 (laboratory grade), sodium
hydroxide, sodium chloride, 50 mM acetate buffer (pH 3–5), 50 mM phosphate buffer (pH
6–8), and 50 mM Tris-HCl (pH 8 and 9) were supplied from Sigma-Aldrich (St. Louis, MO,
USA). All of the reagents were of analytical grade and were used directly without any
further purification.

2.2. Preparation of MWCNTs/PDMS Nanocomposites

PDMS-100 and PDMS-12500 fluids were physically adsorbed onto pristine multi-
walled carbon nanotubes (P-MWCNTs) in the amount of 40 wt.%. Before adsorption, the
samples were dried at 110 ◦C for 2 h. A hexane solution of PDMS (1 wt.% PDMS) was
prepared, and its estimated amount wasadded to a fixed amount of dry carbon powder
material. The suspension was mechanically stirred and finally dried at room temperature
for 48 h and then at 80 ◦C for 3 h. All samples modified with PDMS in the amount
of 40 wt.% were in the form of powder similar to P-MWCNTs, while neat PDMS-100
and PDMS-12500 were liquids. The prepared polymer nanocomposites were marked as
MWCNTs/PDMS-100(40) and MWCNTs/PDMS-12500(40), respectively.

2.3. Lipase Immobilization

The pristine MWCNTs and MWCNTs/PDMS nanocomposites were used as supports
for the immobilization of Candida antarctica lipase B (CALB). In all experiments, 100 mg
of P-MWCNTs or modified MWCNTs (MWCNTs/PDMS-100(40) and MWCNTs/PDMS-
12500(40)) were added to 5 mL of lipase solution at concentration of 5 mg/mL in 50 mM
phosphate buffer solution at pH 7. The samples were then shaken for 24 h using a KS
4000i Control incubator (IKA Werke GmbH, Staufen im Breisgau, Germany) at ambient
temperature. Next, samples were centrifuged (4000 rpm at 4 ◦C) using an Eppendorf 5810
R centrifuge (Hamburg, Germany) and furthermore washed several times with 50 mM
phosphate buffer in order to remove unbounded lipase. The samples were labelled as
CALB@P-MWCNTs, CALB@MWCNTs/PDMS-100(40), and CALB@MWCNTs/PDMS-
12500(40), respectively.

2.4. Analysis of Nanocomposites before Lipase Immobilization
2.4.1. Textural Characterization

To analyze the textural characteristics of P-MWCNTs and MWCNTs/PDMS nanocom-
posites, low-temperature (77.4 K) nitrogen adsorption–desorption isotherms were recorded
using an automatic gas adsorption analyzer ASAP 2420 (Micromeritics Instrument Corp.,
Norcross, GA, USA). Beforehand, the measurement samples were degassed at 110 ◦C for
2 h in a vacuum chamber. The values of surface area (SBET) were calculated according to
the standard BET method (using Micromeritics software). The total pore volume, Vp, was
evaluated from the nitrogen adsorption at p/p0 = 0.98–0.99 (p and p0 denote the equilibrium
and saturation pressure of nitrogen at 77.4 K, respectively). The nitrogen desorption data
were used to compute the pore size distributions (PSD, differential f V(R)~dVp/dR and
f S(R) ~ dS/dR)), using a model with slit-shaped and cylindrical pores and voids between
spherical nanoparticles (SCV) with a self-consistent regularization (SCR) procedure for
MWCNTs/PDMS samples and slit-shaped pores for P-MWCNTs [42,43]. The differential
PSD with respect to pore volume f V ~ dV/dR,

∫
f VdR ~ Vp were re-calculated to incre-
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mental PSD (IPSD) at φV(Ri) = (f V(Ri+1) + f V(Ri))(Ri+1 − Ri)/2 at ∑φV(Ri) = Vp). The f V
and f S functions were also used to calculate contributions of micropores (Vmicro and Smicro
at radius R ≤ 1 nm), mesopores (Vmeso and Smeso at 1 nm < R < 25 nm), and macropores
(Vmacro and Smacro at 25 nm < R < 100 nm) to the total pore volume and surface area.

2.4.2. Spectral Analysis

The Raman spectra were recorded over the 3200–500 cm−1 range using the in Via
Reflex Microscope DMLM Leica Research Grade, Reflex (Renishaw, Wotton-under-Edge,
UK) with Ar+ ion laser excitation at λ0 = 514.5 nm. For each sample, the spectra were
recorded at several points in order to ascertain the homogeneity of the sample, and the
average results were plotted. The surface functional groups of the pristine MWCNTs and
MWCNTs/PDMS nanocomposites, before and after lipase immobilization, were investi-
gated using Fourier transform infrared spectroscopy (FTIR) in attenuated total reflectance
(ATR) mode (Vertex 70 spectrometer, Bruker, Germany). The FTIR spectra were recordedat
a wavenumber range of 4000–500 cm−1, and at a resolution of 1 cm−1.

2.5. Characterization of Free and Immobilized Lipase

The activity of free and immobilized lipase was estimated based on the model reaction
of p-nitrophenyl palmitate hydrolysis to p-nitrophenol. The spectrophotometric measure-
ments at 410 nm, using a Jasco V-750 UV–Vis spectrophotometer (Jasco, Tokyo, Japan), were
used for this purpose. In the reaction, 10 mg of free lipase and a corresponding amount
of the biocatalytic system produced (CALB@MWCNTs, CALB@MWCNTs/PDMS-100(40)
and CALB@MWCNTs/PDMS-12500(40)), containing 10 mg of the enzyme, were used.
Reactions were carried out for 2 min under continuous stirring (800 rpm). After the as-
sumedtime, the reaction was terminated, and absorbance was measured. The activity of the
free and immobilized lipase was calculated using a standard calibration curve for p-NP. The
amount of biocatalyst that hydrolyzed 1 µmol of p-NPP per minute was defined as the one
unit of lipase activity. The highest measured activity was defined as 100% relative activity.
The effect of pH on the activity of the free and immobilized lipase was determined based
on the above-mentioned reaction at a temperature of 30 ◦C, in the pH range 3–11, using
buffer solution at the desired pH. The effect of temperature on the activity of the free and
immobilized lipase was determined according to the above-presented methodology at pH 7
(50 mM phosphate buffer), over a temperature rangefrom 10 to 80 ◦C. All measurements
were made in triplicate; error bars are presented as means ± standard deviation.

2.6. Stability and Reusability of Free and Immobilized Lipase

Thermal stability over time was determined during incubation of free and immobi-
lized enzyme for 180 min under optimal process conditions (30 ◦C and pH 7). The relative
activity of free and immobilized lipase was further determined based on the model hy-
drolysis reaction of p-nitrophenyl palmitateat every specified period of time, applying
spectrophotometric measurements at 410 nm. The initial lipase activity was defined as 100%
relative activity. The inactivation constant (kD) and enzyme half-life (t1/2) were determined
based on the linear regression slope.

Storage stability of free lipase and products after immobilization were examined based
on the above-mentioned model reaction of p-NPP hydrolysis over 30 days of storage at
4 ◦C in 50 mM phosphate buffer at pH 7. The relative activity was measured every 2 days.

The reusability of the produced biocatalytic systems was also determined using
the same model hydrolysis reaction carried out under optimal process conditions, over
10 repeated catalytic cycles. Immobilized lipase was separated from the reaction mixture
by centrifugation, washed several timeswith 50 mM phosphate buffer at pH 7, and placed
in the fresh substrate solution.

The effect of 5% Triton X-100 and 0.5 M NaCl on relative activity of the immobilized
enzyme was examined over 24 h of incubation in a proper solution. After a specified period
of time, the relative activity of the immobilized lipase was determined based on the model
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reaction of p-NPP hydrolysis. All measurements were made in triplicate; error bars are
presented as means ± standard deviation.

3. Results
3.1. Analysis of Nanocomposites before Lipase Immobilization
3.1.1. Parameters of the Porous Structure

The structural characteristic of P-MWCNTs and MWCNTs/PDMS nanocomposites
wasstudied using low-temperature nitrogen adsorption–desorption isotherms (Figure 1a
and Table 1). All of the materials were characterized withthe nitrogen adsorption isotherms
of type II (H3 type of hysteresis loops) according to the IUPAC classification [44,45]. Capil-
lary condensation occurred at pressure p/p0 > 0.85 (due to adsorption in broad mesopores
and macropores).
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Table 1. Textural characteristics of P-MWCNTs and MWCNTs/PDMS nanocomposites.

Sample SBET
(m2/g)

Smicro
(m2/g)

Smeso
(m2/g)

Smacro
(m2/g)

Vmicro
(cm3/g)

Vmeso
(cm3/g)

Vmacro
(cm3/g)

Vp

(cm3/g)
Rp,V
(nm)

P-MWCNTs 222 74 134 14 0.039 0.418 0.357 0.814 23
MWCNTs/PDMS-

100(40) 76 0 56 20 0 0.056 0.203 0.259 62

MWCNTs/PDMS-
12500(40) 77 0 51 26 0 0.054 0.283 0.337 65

Surface area values (Table 1, SBET) demonstrated a significant reduction after adsorp-
tion of both types of PDMS onto carbon nanotube surfaces. Moreover, the total pore volume
(Vp) decreased for the MWCNTs/PDMS-100 and MWCNTs/PDMS-12500 nanocomposites
by 68 and 59%, respectively, as compared to the P-MWCNTs. Moreover, it was observed
that the pore average radii in MWCNTs/PDMS (−100, −12,500) samples was three times
greater than that of P-MWCNTs.

The incremental pore size distribution IPSD functions (Figure 1b) show that the textu-
ral characteristics ofMWCNTschanged after the modification with polymer. The textural
porosity of the pristine MWCNT resulted from mesopores and secondly due to microp-
ore presence. MWCNTs/PDMS nanocomposites were characterized by bimodal porous
structures (Figure 1b). In addition, MWCNTs/PDMS samples were characterized with a
significant decrease in mesopore contributions to the total porosity with a simultaneous
increase in contributions of macropores as compared to P-MWCNTs.



Materials 2021, 14, 2874 6 of 17

3.1.2. Raman Spectroscopy

Raman spectroscopy is a very valuable tool for the characterization of carbon-based
nanostructures. This technique is used to analyze the presence of amorphous and crystalline
phases corresponding to differences in graphitization. The spectra were collected in the
most informative range for carbon materials of 3200–500 cm−1 (Figure 2). Three major
peaks at 1341 cm−1 as the D-band (sp3 carbons in non-graphitic structures), at 1570 cm−1

as the G-band (sp2 carbons in graphitic structures), and its second-order harmonic at
2672 cm−1 as the G’-band, were noted [46]. The ratio between the integral intensities of
the G and D bands (AG/AD ratio as a measure of the graphitization degree) is an indicator
of the crystallinity degree [47]. The value of AG/AD was calculated by deconvolution of
the spectra using the Lorentzian function. After adsorption of polymer, relative intensity
ratio AG/AD tended to decrease from 1.1 for P-MWCNTs to 0.95 for MWCNTs/PDMS
nanocomposites, respectively.
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3.1.3. ATR-FTIR Spectroscopy

Fourier transform infrared spectroscopy was used to determine the nature of chem-
ical groups present on the surface of analyzed materials as well as to indirectly confirm
nanotube modification and enzyme immobilization (Figure 3).
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nanocomposites, before and after lipase immobilization.

The FTIR spectrum of the P-MWCNTs showeda broad peak with a maximum at
1060 cm−1 that corresponded to the stretching vibrations of C–O bonds in carboxylic
groups present onto the surface of MWCNTs. Upon modification by PDMS, irrespectively
of the molecular mass of the modifying agent used, additional signals could be observed.
The small signal at 2950 cm−1 was related to the presence of C–H stretching vibrations,
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peaks at 1250 and 780 cm−1 corresponded to the stretching and bending vibrations of
Si-CH3 groups, whereas peaks at 1010 and 1055 cm−1 were characteristic for the stretching
vibrations of Si–O–Si bonds [48]. After enzyme immobilization onto both materials, the
presence of additional signals, characteristic for the enzyme structure, was clearly seen.
Among them, the most important was a peak at 3400 cm−1, assigned to the stretching
vibrations of –OH groups, and two signals at 1655 and 1545 cm−1, ascribed to the stretching
vibrations of amide I and amide II bands, respectively. Further, it could be seen that the
intensity of signals characteristic for enzyme was higher in the CALB@MWCNTs/PDMS-
100(40) spectrum, as compared to the CALB@MWCNTs/PDMS-12500(40) spectrum.

3.2. Characterization of Free and Immobilized Lipase

The next stage included tests of obtained materials (MWCNTs modified with 40 wt.%
of PDMS-100 and PDMS-12500) as supports for enzyme immobilization. Lipase was
selected as a model enzyme, as itexhibitsimproved catalytic activity in a hydrophobic
microenvironment. The effect of various process conditions on thestability and activity of
the immobilized enzyme was determined, and the reusability of the produced biocatalytic
systems was examined.

3.2.1. pH Profiles of Free and Immobilized Lipase

Free lipase and biocatalytic systems produced showed maximum activity at pH 7
(Figure 4). Further, their pH profiles weresimilar. In the tested pH range (beside pH 7),
free enzyme exhibited relative activity not higher than 60% and even less than 30% at pH
ranges from 3 to 5 and from 9 to 11. By contrast, enzyme immobilized on both pristine and
modified MWCNTs showed about 10–30% higher relative activity over whole analyzed pH
range. Further, lipase deposited onto MWCNTs/PDMS nanocomposites retained over 80%
of its relative activity over a wide pH rangefrom 6 to 9 and more than 30% relative activity
at pH 3 to 10. It should also be highlighted that lipase immobilized onto MWCNTs/PDMS-
100(40) material exhibited around 5–10% higher activity than enzyme immobilized onto
carbon nanotubes functionalized by PDMS withhigher molecular weight.
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Figure 4. pH profiles of free lipase and enzymeimmobilized onto P-MWCNTs and MWCNTs/
PDMS nanocomposites.

3.2.2. Temperature Profiles of Free and Immobilized Lipase

Temperature profiles of free and immobilized lipase were determined over a tem-
perature range of 10–80 ◦C (Figure 5). The optimal temperature for all analyzed samples
was found to be 30 ◦C. Even a slight change in temperature conditions resulted in a sharp
decrease of catalytic activity of free enzyme. Only at temperatures ranging from 20 to
40 ◦C did free lipase show over 60% of relative activity. Although temperature profiles
of immobilized biomolecules exhibited similarity in shape to those of free enzyme, sig-
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nificantly higher relative activityof those systems was observed over the whole analyzed
temperature range. At temperatures ranging from 20 to 70 ◦C, over 60% of relative activ-
ity was noticed for all analyzed biocatalytic systems. Finally, similarly as analyzing pH
effect on relative activity of immobilized lipase, slightly higher activity was noticed when
MWCNTs/PDMS-100(40) material was used as support for enzyme immobilization.
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3.2.3. Thermal Stability of Free and Immobilized Lipase

Thermal stability of free and immobilized lipase was determined via samples incuba-
tion for 3 h at a temperature of 30 ◦C and atpH 7 (Figure 6). A relative activity decrease
over incubation time for free and immobilized lipase was observed. However, the drop
of catalytic properties was more pronounced for free enzyme, which retained less than
20% of its relative activity after 3 h of incubation. Significantly higher values of relative
activity were noticed for biocatalytic systems produced. The decrease of catalytic activity of
immobilized lipase was much slower as compared to the free counterpart; after 1 h and 3 h
of incubation, immobilized enzyme showed around 40% and 50% higher values of relative
activity, respectively. Finally, both biocatalytic systems obtained using MWCNTs/PDMS
nanocomposites showed relative activity exceeding 80% after specific incubation periods.
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In order to clearly present improvement of lipase stability and activity upon immobi-
lization, enzyme inactivation constant (kD) and enzyme half-life (t1/2) were determined
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(Table 2). These parameters were calculated based on the linear regression slope from
the above-presented Figure 6. Free lipase was characterized by kD = 0.01075 min−1 and
a half-life of 64.74 min. Inactivation constant and enzyme half-life of immobilized lipase
were improved. The most predominant increase of enzyme stability was noticed for lipase
immobilized onto MWCNT/PDMS-100(40) material. Over a seven-fold lower inactiva-
tion constant (0.00126 min−1) and consequently over a seven-fold higher enzyme half-life
(446.15 min) were observed for this particular biocatalytic system.

Table 2. Inactivation constant and half-life of free lipase and enzyme immobilized onto P-MWCNTs and MWCNTs/
PDMS nanocomposites.

Parameter Free CALB CALB@P-MWCNTs CALB@MWCNTs/
PDMS-100(40)

CALB@MWCNTs/
PDMS-12500(40)

kD (min−1) 0.01075 0.00268 0.00156 0.00208
t1/2 (min) 64.74 259.70 446.15 334.61

3.2.4. Storage Stability and Reusability of Free and Immobilized Lipase

From apractical application point of view, storage stability and reusability are the
crucial properties determining possible large-scale use of the immobilized enzymes. In
this study storage stability of free and immobilized lipase was followed over 30 days, and
reusability potential was examined over ten repeated reaction cycles (Figure 7).
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It can be seen (Figure 7a) that storage stability of the lipase gradually decreased from
the first day of storage; after 30 days it reached less than 20%. By contrast, storage stability
of all tested biocatalytic systems with immobilized enzyme was improved significantly.
Obtained biocatalytic systems showed over 90% relative activity after 6 days of storage and
over 80% after 30 days. Further, lipase immobilized onto MWCNTs/PDMS nanocomposites
showed over 90% activity retention at the end of the test.

Results of the reusability study (Figure 7b) showed that relative activity of the lipase
immobilized onto MWCNTs/PDMS nanocomposites and P-MWCNTs remained almost
unaltered for the first three reaction steps. Over the next experimental steps, catalytic
activity decreased slightly. After ten cycles, relative activity of lipase immobilized onto
P-MWCNTs reached 85%, whereas activity of lipase immobilized onto MWCNTs/PDMS
nanocompositesattained over 90%.
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3.2.5. Effect of Solvents on the Immobilized Lipase

The effects of surfactant (Triton X-100) and salt solution (0.5 M NaCl) on catalytic
activity of immobilized enzymes and stability of enzyme binding were determined by
incubation of produced biocatalytic systems in the presence of the mentioned solutions over
time. In Figure 8, it can be seen that relative activity of immobilized enzymes decreased
gradually over first 6 h of incubation. After that time, all biocatalytic systems showed less
than 50% and less than 30% of relative activity in the presence of Triton X-100 and NaCl,
respectively. Further treatment of the biocatalysts withthe solvents did not result in such a
pronounced drop in relative activity. After 24 h of incubation of lipase immobilized onto
MWCNTs/PDMS nanocompositesin Triton X-100 and NaCl solution, analyzed samples
retained over 40% and over 20% of relative activity, respectively.
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4. Discussion
4.1. Analysis of Nanocomposites before Lipase Immobilization

The presented results demonstrate the changes in the textural/structural properties
of MWCNTs after modification with polymer. The obtained data can be discussed also
in terms of the absolute values of the surface area, SBET, which sharply decreased from
222 m2/g to 76–77 m2/g after PDMS (−100, −12,500) grafting (in the amount of 40 wt.%)
onto carbon nanotube surfaces. That can be explained by two factors: reducing the content
of MWCNTs in the resulting polymer composites after PDMS modification, as carbon
nanotubes are responsible forsurface area, as well as increasing the size (diameter) of
MWCNTs due to the polymer grafting onto carbon nanotubes. It is known that surface area
is inversely proportional to the particle size of the dispersed phase. In general, the polymer
adsorption leads to suppression of the values of Vp, Vmeso, and Vmacro because each long
PDMS macromolecule can bind carbon nanotubes and aggregate themin more compacted
structures, whichleads to adecrease in the volume of voids between MWCNTs [49].

It was found that the prepared nanocomposites are characterized by different graphi-
tization degrees according to the data of Raman spectroscopy. A relatively lower AG/AD
ratio (about 0.9) for polymer nanocomposites indicates a low graphitization degree and
shows that graphitic layers are semi-crystalline and possess many defects related to the D
band due to introduction of new functional groups to carbon nanotube surfaces. The G’
peak appears at 2672 cm−1 as an overtone of the D band and is believed to originate from
finite-size disordered structures of graphite (i.e., with the sp2C atoms) in the surface layers
of the nanocomposites [50]. It would be interesting to check in futurework the results
obtained here with respect to other polymers and other carbon-based fillers.

The results of FTIR analysis confirmed the carbon structure of the P-MWCNTs and
indicatedthe presence of carboxylic groups on their surface that facilitate further MWC-
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NTs modification. Upon PDMS adsorption onto MWCNTs, new signals are observed in
the FTIR spectra of both modified samples, whichsuggests effective modification using
poly(dimethylsiloxane) at various molecular weights. Nevertheless, the most important
findings were made based on analysis of FTIR spectra of samples after lipase immobi-
lization. The presence of signals characteristic for vibrations of amide I, amide II, and
hydroxyl groups clearly indicate effective deposition of the enzyme onto the surface of
both modified materials [51]. Moreover, the higher intensity of the signals ascribed for
lipase structure, observed in FTIR spectrum of the system formed using MWCNTs modi-
fied with PDMS-100, indicate that a greater amount of the enzyme was immobilized, and
immobilized biocatalysts retained higher catalytic properties [52].

4.2. Immobilized Lipase Characterization

Obtained data clearly showed that although pH and temperature profiles of free and
immobilized lipase are similar, enzymes attached to P-MWCNTs and MWCNTs/PDMS
nanocompositesshowed significantly higher relative activity over wider pH and temper-
ature ranges as compared to free counterparts. Moreover, significant improvement of
thermal stability and enzyme half-life of the lipase after immobilization was observed.
A drop of the catalytic properties of the lipase in conditions different than optimal is
related to the electrostatic repulsion of positively and negatively charged ionic groups in
the enzyme structure and is also caused by thermal denaturation of the enzyme at harsh
temperature conditions [53,54]. By contrast, immobilized lipase showed over 80% relative
activity over wide pH (6–9) and temperature (30–60 ◦C) ranges. This might be explained
by the fact that upon immobilization, an external backbone for the enzyme structure is
provided due the formation of stable enzyme–support interactions, which stabilize enzyme
structure and protect against biocatalyst denaturation at harsh reaction conditions [55].
Nevertheless, similarity in the pH and temperature profiles, and the presence of optima
at the same conditions for free and immobilized lipases, as well asretention of high cat-
alytic activity by produced systems indicate that immobilization did not significantly
interfere with enzyme structure and its active site. It should be highlighted that among
tested samples, the highest activity and tolerance to reaction conditions are ascribed to
the lipase immobilized onto MWCNTs/PDMS-100(40) material. This is directly related
to the fact that PDMS provides the hydrophobic nature of the surface and consequently
the hydrophobic microenvironment for the immobilized lipase. In these conditions, lipase
might undergo a phenomenon called interfacial activation, whichis based on opening
of the polypeptide lid of the enzyme active site, leading to improvement of the activity
of the immobilized enzyme [56,57]. Finally, significant enhancement of enzyme thermal
stability (up to 50% higher relative activity, as compared to free enzyme) and reduction
ofinactivation constant of immobilized enzymes are related to the fact that immobilization
providesa protective environment for the enzyme molecules, whichreduces conformational
changes of the enzyme structure in the presence of long-heat exposure. The advancement of
using PDMS modified support for lipase immobilization was recently proved. Li et al. [58]
modified silk fabric by amino-functional poly(dimethylsiloxane) (PDMS) and used it as
a support for lipase from Candida sp. immobilization. It was shown that lipase activity
and stability increased upon immobilization onto the hydrophobic surface. However, it
was emphasized that the amount of the PDMS used affected catalytic properties of the
immobilized enzyme. In another study, macroporous ZIF-8 was modified with PDMS in
order to builda hydrophobic pore space for lipase from Aspergillus niger immobilization.
Immobilized lipase showed improved stability and was found as an effective biocatalyst in
the transesterification process in biodiesel production [59].

Determination of the storage stability and reusability of immobilized lipases is of
crucial importance, as these parameters are key, determining possible practical application
of the biocatalytic systemsproduced. All produced biocatalysts showed over 80% relative
activity, even after 30 days of storage and 10 repeated uses, clearly indicating possible
large-scale application. Such improvement of long-term stability and reusability is mainly
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related to the stabilization of the enzyme structure upon immobilization as well as the
protective effects of both the MWCNTs support and the PDMS layer on the enzyme
structure against inactivation over storage and reuse [60]. In the next part of the study, in
order to determine the stability of the formed enzyme–support interactionsand the effects
of various solvents on relative activity of immobilized enzymes, produced systems were
incubated for 24 h in Triton X-100 and NaCl solutions. A significant drop in relative activity
of immobilized lipase in the presence of both solvents might be explained mainly by two
factors. Firstly, enzyme support interactions are based mainly on hydrogen and van der
Waals interactions, which in the presence of Triton X-100 and NaCl lead to the partial
elution of the enzyme from the support and decreased catalytic properties. Further, ionic
strength might also affect catalytic properties of the immobilized enzyme by disturbing
ionic interactions in the structure of the enzyme [61]. Partial elution of the enzyme and its
inhibition by the reaction products are also explained by a slight decrease in the relative
activity of the enzyme under repeated use. All of the above-mentioned facts negatively
affect storage stability and reusability of the biocatalytic systems produced. Nevertheless,
retention of over 80% activity after 30 days of storage, and 10 repeated catalytic cycles
by the designed system, suggest that further study ofapplication of MWCNTs and PDMS
modified MWCNTs as supportsfor enzyme immobilization are still required. In another
study, Jamie et al. [62] immobilized lipase by covalent binding onto MWCNTs modified by
n-2-hydroxysuccinimide/(1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) (NHS/EDC)
approach. Significant improvement of enzyme activity and operational stability was
noticed, which is in agreement with the findings presented in this manuscript. Further,
Khan et al. [63] immobilized lipase by adsorption onto MWCNTs treated with NHO3 and
H2SO4. In this study, a protective effect of the support material was confirmed; however, it
was highlighted that the initial concentration of the enzyme solution plays an important
role in the final activity of immobilized lipase.

Recently, lipases of various origin were immobilized using a wide range of support
materials, including sol–gel derived silica, zeolites, as well as synthetic polymers and
biopolymers [64–68] (Table 3). In the presented studies, usually adsorption immobilization
was applied resulting in production of biocatalytic systems characterized by retention of
high catalytic activity and significant long-term stability and reusability. Further, applica-
tion of obtained systems in hydrolysis reactions results in the attaining of over 90% process
efficiency. In this context, lipase immobilized using biopolymers (modified chitin, spongin
scaffolds), the application of which results in 100% transesterification efficiency, seems to
be of particular importance [30,68]. Presented in this study approach, where MWCNTs
modified with PDMS were used, results in production of a highly active biocatalytic system
that retained 94% of its catalytic activity and over 90% of activity after 20 days of storage
and 10 repeated catalytic cycles. High long-term stability and recycle potential of the
obtained systems facilitates their potential in real condition applications, for instance in
biodiesel production or in the pharmaceutical industry.
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Table 3. Comparison of the most important parameters of lipase immobilized using various support materials. n.a.—not available.

Enzyme Support Type of
Immobilization Reusability Storage Stability Activity Retention Process Efficiency Ref.

Lipase from
Rhizomucor miehei Pure silica zeolites Adsorption 60% after 4 catalytic cycles n.a. 68% 93% of methyl

myristate conversion [64]

Fusarium solanipisi
recombinant cutinase with

high lipolytic activity
Zeolite Adsorption n.a. 89% after 45 days 74% 91% of trycaprylin

transformation [65]

Commercial lipases from
Rhizomucor miehei Polypropylene Adsorption 85% after 8 catalytic cycles n.a. over 70% 90% of sunflower oil

methanolysis [66]

Lipase from
Rhizornucor rniehei Sol–gel silica Entrapment n.a. 75% after 20 days 86% n.a. [67]

Lipase B from
Candida antarctica

Hippospongiacommunis
spongin scaffolds Adsorption 82% after 20 catalytic cycles 85% after 20 days 91% 100% of rapeseed oil

methanolysis [30]

Lipase B from
Candida antarctica

Chitin modified by
POSS * compounds Adsorption 87% after 15 catalytic cycles 90% after 20 days 87% 100% of rapeseed oil

methanolysis [68]

Lipase B from
Candida antarctica

MWCNTs modified
by PDMS Adsorption 91% after 10 catalytic cycles 90% after 20 days 94% n.a. this study

* POSS—polyoctahedralsilsesquioxanes.
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5. Conclusions

In the presented study, the fabrication of highly stable and active biocatalysts based
on Candida antarctica lipase B (CALB) immobilized onto pristine and modified MWCNTs
by poly(dimethylsiloxane) was reported. During material characterization, it was proved
that the textural characteristics ofMWCNTs change after the modification with polymer,
and that the prepared nanocomposites are characterized by a different graphitization de-
gree, which results from, e.g., surface modification of carbon nanotubes with polymer—a
lower graphitization degree; graphitic layers are semi-crystalline and possess many defects
related to the introduction of new functional groups to carbon nanotube surfaces. Effective
MWCNTs with poly(dimethylsiloxane) as well as enzyme loading were confirmed by
bands present on FTIR spectra, characteristic for both modifier and biomolecule struc-
tures, which all together confirmed relative high potential of synthesized MWCNTs-based
materials as a support for lipase immobilization. Enzyme loaded onto P-MWCNTs and
MWCNTs/PDMS nanocomposites showed significantly higher relative activity over wider
pH and temperature ranges as compared to free counterparts. Moreover, significant im-
provement of thermal stability and enzyme half-life of the lipase after immobilization was
observed. It was confirmed that after immobilization, the external backbone for the enzyme
structure was provided due the formation of stable enzyme–support interactions, which
stabilize the enzyme structure and protect against biocatalyst denaturation under harsh
reaction conditions. This fact suggests wide application potential of designed novel types
of biocatalytic systems in various technological/biotechnological applications.
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