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Abstract: The significance of DNA is no longer limited to its role as a biological information car-
rier; as a natural polymer, it also become in the field of materials. Single-stranded DNA (ssDNA)
molecules with specific sequences can form a G-quadruplex or hairpin-shaped conformation with
specific heavy metal ions through coordination bonds. In this study, ssDNA molecules of the four
sequences were prepared into hybrid assemblies with one of the famous display materials, the
tris-(8-hydroxyquinoline)aluminum (Alq3) semiconductor. Based on these hybrid assemblies, heavy
metal ions, namely Pb2+, Hg2+, Cd2+ and As3+, were detected individually at the ppb level. Apart
from this, in practical application, many samples containing heavy metal ions are digested with acid.
By introducing MES buffer solution, the influence of acidity on the fluorescent signal of Alq3 was
excluded. This strategy showed promising results in the practical application of detecting heavy
metal ions in shrub branches and leaves.

Keywords: DNA; heavy metal ions; tris-(8-hydroxyquinoline)aluminum

1. Introduction

With industrialization, urbanization and the frequent use of chemical fertilizers, the
situation of soil pollution by heavy metals has become serious. Through food chain ac-
cumulation, plants or crops contaminated with heavy metals could have negative effects
on human health. The ionic form of these heavy metals can destroy the endocrine and
nervous systems, causing motion and cognitive disorders, kidney failure and even DNA
damage [1,2]. Hence, quick and sensitive detection methods are of considerable importance
for environmental protection and human health. In order to make up for various short-
comings of conventional analytical techniques, such as requiring expensive equipment,
time-consuming procedures and highly-trained technicians, numerous methods have been
developed to detect these metal ions, including electrochemical techniques [3–12], spec-
troscopy [13–18] and colorimetry [19–24]. Among these, aptamer-based assays for detection
of the heavy metal ions have received significant attention owing to their appropriate se-
lectivity, great sensitivity, low cost, facile operation and wide response range [25–30]. In
general, sequence-designed aptamers and heavy metal ions can form a G-quadruplex or
hairpin conformation, and this provides the premise for detection [31,32]. In the previous
research of our group, we developed hybrid assemblies consisting of aptamers and organic
semiconducting small molecules and applied them to the detection of mercury ions [33,34].
This detection approach was based on a significant “on–off” phenomenon of the fluorescent
hybrid assemblies, and their selectivity was also evaluated using other metal ions, such as
potassium, sodium, zinc, chromium, cadmium and copper. However, the approach was
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found to have a fatal shortcoming, a lack of acid resistance which induces the fluorescent
quenching of these organic molecules in an acidic environment. Typically, actual samples
in which heavy metal ions need to be detected are processed by acid digestion. Therefore,
in the detection of heavy metal ions based on organic fluorescent probes, solving the lack
of acid resistance is an unavoidable task.

In this research, four single-stranded DNA (ssDNA) sequences corresponding to Pb2+,
Hg2+, Cd2+ and As3+ were designed and prepared in hybrid assemblies together with an
organic semiconducting molecule, tris-(8-hydroxyquinoline)aluminum (Alq3). In order
to solve the problem of acid resistance, we optimized the detection approach and finally
achieved acid resistance using MES buffer solution. After that, multiplex detection of the
above four heavy metal ions was completed. As a practical application, this optimized
approach was also used for the detection of heavy metal ions in shrub branches and
leaves. These results will broaden the detection approaches for heavy metal ions based on
DNA molecules and provide a meaningful solution to the weak acid resistance of organic
fluorescent probes in actual application.

2. Materials and Methods
2.1. Materials

Tris-(8-hydroxyquinoline)aluminum (Alq3, 99.995%), 2-morpholinoethanesulfonic
acid (MES, 99%) and 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES, 99%)
were purchased from Sigma-Aldrich. Tetrahydrofuran (THF, 99%) was purchased from
Aladdin. ssDNA and Tris-HCl buffer solution were purchased from Shanghai Shenggong
Biological, China. Sequences of ssDNA which can specifically bind with four heavy metal
ions are as follows:

Pb2+: 5′-GGTTGGTGTGGTTGG-3′;
Hg2+: 5′-TTCTTTCTTCCCCTTGTTTGTT-3′;
Cd2+: 5′-GGGTTCACAGTCCGTT-3′;
As3+: 5′-ATGCAAACCCTTAAGAAAGTGGTCGTCCAAAAAACCATTG-3′.

Nitric acid (HNO3, 65.0~68.0%) was purchased from Sinopharm Chemical Reagent.
Shrub branches and leaves were obtained from the Institute of Geophysical and Geophysical
Exploration, Chinese Academy of Geological Sciences.

2.2. Preparation of Hybrid Assemblies

Commercially available Alq3 powders were dissolved in THF at a concentration of
1 mg/mL to form a stock solution. On the other hand, ssDNA was dissolved in deionized
water (DI water) at a concentration of 500 nM. Then, the stock solution (2 mL) was injected
into 20 mL of ssDNA solution under vigorous stirring (800 rpm) for 2 min. Subsequently, the
mixture was kept at room temperature for 10 h to allow the formation of a visible precipitate.

2.3. Reaction with Heavy Metal Ions

One milliliter of hybrid assembly solution was mixed with various concentrations
(50–400 ppb) of heavy metal ions at a volume ratio of 1:1 and kept for at least 30 min.

2.4. Exploration of the Conditions for the Detection of Heavy Metal Ions

One milliliter of hybrid assembly solution was thoroughly mixed with buffer solution
(HEPES, Tris-HCl and MES) at a volume ratio of 1:1 and then mixed with 2 mL of Pb2+

(100–400 ppb) with various concentrations and incubated for 30 min.

2.5. Reaction with HNO3

One milliliter of hybrid assembly solution was mixed with various concentrations
(0.03–3%) of HNO3 in a volume ratio of 1:1 and incubated for 30 min.
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The hybrid assembly solution was thoroughly mixed with MES buffer solution at a
volume ratio of 1:1 and then mixed with various concentrations (0.5–4%) of HNO3 at a
volume ratio of 1:1 and incubated for 30 min.

2.6. Detection of Heavy Metal Ions in Actual Samples

In the preparation of actual sample, 0.5 g of shrub branches and leaves were weighed
and placed in a microwave digestion tank. Then, 5 mL of HNO3, 1 mL of H2O2, 1 mL of
HCl and 1 mL of HF were poured into the tank, which was then sealed and placed in a
microwave digestion apparatus (Multiwave3000, Anton Paar, Graz, Austria). Digestion
was performed at room temperature, 120 ◦C and 160 ◦C, for 5 min at each temperature, and
then at 200 ◦C for 30 min. When the temperature dropped below 40 ◦C, the digestion tank
was taken out, and the mixture solution was dried to 1 mL under heating at 130 ◦C. After
cooling to room temperature, the solution was transferred to a volumetric flask and made
up to volume using DI water.

For the detection of heavy metal ions, before each test of the actual sample, the
standard curve was redrawn. Two milliliters of hybrid assembly solution was thoroughly
mixed with MES buffer and then mixed with actual sample solution at a volume ratio of
1:1 and incubated for 30 min. Then, the mixtures were characterized using a fluorescence
spectrophotometer with an excitation wavelength of 370 nm.

2.7. Characterization

A scanning electron microscope (Hitachi, SU8010, Tokyo, Japan) was used to observe
the morphology of the sample, and a fluorescence spectrophotometer (Jasco, FP-8200,
Tokyo, Japan) was used to observe the photoluminescence spectra of the samples.

3. Results

Figure 1 shows the scanning electron microscopy (SEM) images of the hybrid as-
semblies prepared by a facile re-precipitation method [35]. The ssDNA sequence was
5′-GGTTGGTGTGGTTGG-3′, which could specifically bind with Pb2+. The as-prepared
hybrid assemblies showed a hexagonal prism shape with a smooth surface, as shown in
Figure 1a. After exposure to the Pb2+ ion solution, cracks began to appear on the smooth
surface of the hybrid assemblies. As the concentration of the Pb2+ ion solution increased,
the cracks became more obvious.

Meanwhile, the photoluminescence (PL) spectra of the hybrid assemblies before and
after the interaction with the Pb2+ ion solution were observed, as shown in Figure 2a.
At first, a broad PL peak of hybrid assemblies was observed at ~510 nm. The intensity
of the PL peak was observed to decrease drastically upon the interaction with different
concentrations of the Pb2+ ion solution. Phenomena such as the appearance of cracks and
the decrease in PL peak intensity were also observed in previous studies. The reason for
the PL quenching is attributed to electron transfer from Alq3 molecules to the mercury
ions due to the bridge role of the hairpin conformation of ssDNA [33]. Based on these
phenomena, the detection of Pb2+ was realized. It is worth noting that these heavy metal
ions were prepared in DI water. However, in practical application, we need to consider the
effect of an acidic environment on the PL signal of hybrid assemblies, since many samples
are digested by acid. Figure 2b shows the influence of the acidic environment on the PL
signal of hybrid assemblies. Obviously, when these hybrid assemblies were exposed to an
acidic environment, the PL intensity decreased with increasing acid concentration.
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Figure 1. SEM images of (a) as-prepared hybrid assemblies and hybrid assemblies exposed to (b) 
0.1 ug/mL, (c) 1 ug/mL and (d) 10 ug/mL of Pb2+ solution. 

 
Figure 2. PL spectra of hybrid assemblies exposed to various concentrations of (a) Pb2+ solution and 
(b) HNO3 solution, with excitation at 370 nm. 

Therefore, in order to exclude the interference of acidity in the detection of heavy 
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the PL spectra of the hybrid assemblies treated with HEPES, Tris-HCl and MES buffer 
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Interestingly, the cases of treatment with HEPES and Tris-HCl maintained the original PL 
intensities after exposure to various concentrations of Pb2+ ion solutions. This may be due 
to the fact that Pb2+ ions first form complexes with the anionic groups in HEPES or Tris-
HCl buffer solution, thus failing to specifically bind to ssDNA molecules of the hybrid 
assemblies. The PL intensity of the hybrid assemblies decreased only in the case of MES 
buffer solution. In addition, an acid resistance test of the hybrid assemblies treated with 
MES buffer was performed, as shown in Figure 3d. It can be seen that the hybrid assem-
blies treated with MES buffer exhibited resistance to an acidic environment. Hence, we 
can infer that the PL quenching of the hybrid assemblies shown in Figure 3c is caused by 
the recognition of lead ions. 
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Figure 1. SEM images of (a) as-prepared hybrid assemblies and hybrid assemblies exposed to
(b) 0.1 ug/mL, (c) 1 ug/mL and (d) 10 ug/mL of Pb2+ solution.
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Figure 2. PL spectra of hybrid assemblies exposed to various concentrations of (a) Pb2+ solution and
(b) HNO3 solution, with excitation at 370 nm.

Therefore, in order to exclude the interference of acidity in the detection of heavy
metal ions, strategies for using buffer solutions have been introduced. Figure 3a–c show the
PL spectra of the hybrid assemblies treated with HEPES, Tris-HCl and MES buffer solution,
respectively, and then exposed to various concentrations of Pb2+ ion solutions. Interestingly,
the cases of treatment with HEPES and Tris-HCl maintained the original PL intensities
after exposure to various concentrations of Pb2+ ion solutions. This may be due to the fact
that Pb2+ ions first form complexes with the anionic groups in HEPES or Tris-HCl buffer
solution, thus failing to specifically bind to ssDNA molecules of the hybrid assemblies. The
PL intensity of the hybrid assemblies decreased only in the case of MES buffer solution.
In addition, an acid resistance test of the hybrid assemblies treated with MES buffer was
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performed, as shown in Figure 3d. It can be seen that the hybrid assemblies treated with
MES buffer exhibited resistance to an acidic environment. Hence, we can infer that the
PL quenching of the hybrid assemblies shown in Figure 3c is caused by the recognition of
lead ions.
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Figure 3. PL spectra of hybrid assemblies treated with (a) HEPES, (b) Tris-HCl and (c) MES buffer
solution and exposed to various concentrations of Pb2+ solution, with excitation at 370 nm. (d) PL
spectra of hybrid assemblies treated with MES buffer solution treated and exposed to HNO3 solution,
with excitation at 370 nm.

Similarly, the other three heavy metal ions, Hg2+, Cd2+ and As3+, were detected
by using the hybrid assemblies containing the corresponding ssDNA sequences. As the
concentration of heavy metal ions increases, the PL intensities of the hybrid assemblies also
decrease sharply, as shown in Figure 4.
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Figure 4. PL spectra of hybrid assemblies treated with MES buffer solution and exposed to various
concentrations of (a) Hg2+, (b) Cd2+ and (c) As2+ solution, with excitation at 370 nm.

Under the optimized conditions, the relationship between the PL intensities of different
hybrid assemblies and the concentration of corresponding target ions was investigated.
The PL intensities showed a linear relationship with the level of the heavy metal ions in
the range from 50 ppb to 350 ppb, as shown in Figure 5. Correlation coefficients (R2) are
0.9945, 0.991, 0.9957 and 0.9917 for Pb2+, Hg2+, Cd2+ and As3+, respectively. The limit of
quantification (LOQ) is defined as 10S0/S, where S0 is the standard deviation and S is the
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slope of the calibration curve [36]. According to this formula, the LOQs of Pb2+, Hg2+, Cd2+

and As3+ were calculated to be 22.92 ppb, 21.74 ppb, 12.68 ppb and 49.29 ppb, respectively.
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Figure 5. The relationships between PL intensities of MES-treated hybrid assemblies and various
concentrations of (a) Pb2+, (b) Hg2+, (c) Cd2+ and (d) As3+.

In order to verify the feasibility of the detection method in actual samples, shrub
branches and leaves were selected. Their heavy metal ion content was determined using
inductively coupled plasma mass spectrometry (ICP-MS). Figure 6 shows the estimated
results for the content of heavy metal ions in the sample: 72.21 ppb, 2.00 ppb and 10.27 ppb
for Pb2+, Cd2+ and As3+, respectively. The results were all within the reference concentration
range. The result that Hg2+ was not detected in the sample was also consistent with the
results provided by ICP-MS.
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4. Conclusions

In this study, we developed a heavy metal ion probe based on hybrid assemblies of ss-
DNA molecules and organic semiconducting molecules, and we achieved low-concentration
detection of four heavy metal ions, namely Pb2+, Hg2+, Cd2+ and As3+. In addition, by intro-
ducing MES buffer solution, the problem of the detection signal of these probes being affected
in an acidic environment was solved. Based on this, the practical application purpose of eval-
uating the content of heavy metal ions in shrub branches and leaves was also achieved. These
findings provide meaningful guidance for detection probes based on ssDNA or aptamers,
especially for the interference of fluorescent probes in acidic environments.
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