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Accumulating evidence from neuroimaging studies suggests that primary insomnia (PI) 
affects interregional neural coordination of multiple interacting functional brain networks. 
However, a complete understanding of the whole-brain network organization from a 
system-level perspective in PI is still lacking. To this end, we investigated in topological 
organization changes in brain functional networks in PI. 36 PI patients and 38 age-, 
sex-, and education-matched healthy controls were recruited. All participants under-
went a series of neuropsychological assessments and resting-state functional magnetic 
resonance imaging scans. Individual whole-brain functional network were constructed 
and analyzed using graph theory-based network approaches. There were no significant 
differences with respect to age, sex, or education between groups (P > 0.05). Graph-
based analyses revealed that participants with PI had a significantly higher total number 
of edges (P  =  0.022), global efficiency (P  =  0.014), and normalized global efficiency 
(P = 0.002), and a significantly lower normalized local efficiency (P = 0.042) compared 
with controls. Locally, several prefrontal and parietal regions, the superior temporal gyrus, 
and the thalamus exhibited higher nodal efficiency in participants with PI (P < 0.05, false 
discovery rate corrected). In addition, most of these regions showed increased func-
tional connectivity in PI patients (P < 0.05, corrected). Finally, altered network efficiency 
was correlated with neuropsychological variables of the Epworth Sleepiness Scale and 
Insomnia Severity Index in patients with PI. PI is associated with abnormal organization 
of large-scale functional brain networks, which may account for memory and emotional 
dysfunction in people with PI. These findings provide novel implications for neural sub-
strates associated with PI.

Keywords: primary insomnia, brain network, default mode network, small-world efficiency, resting-state magnetic 
resonance imaging

inTrODUcTiOn

Primary insomnia (PI) is one of the most prevalent chronic sleep disorders. PI refers to difficulty 
falling asleep or maintaining sleep for at least 1 month. It is associated with sequelae of daytime 
impairment or clinically significant distress, and it is not attributable to a medical, psychiatric, or 
environmental cause (1, 2). According to epidemiological reports, 10% of the adult population 
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experiences chronic insomnia, and PI is estimated to occur in 25% 
of all people with chronic insomnia worldwide (3). Moreover, the 
rate of PI continues to grow globally with increasing industriali-
zation, urbanization, and work pressures (3). PI results in daytime 
fatigue, mood disruption, and cognitive impairments, which can 
lead to various psychiatric and cognitive disorders (e.g., depres-
sive and anxiety disorders) (4, 5). In addition, PI can negatively 
affect social productivity and life quality, as well as increase acci-
dent risk and health-care utilization (6, 7). However, despite the 
adverse socioeconomic impact of PI, the neurobiological causes 
and consequences of the disorder are not fully understood.

Recent advances of neuroimaging techniques have provided 
powerful tools with which to investigate the neurobiological 
mechanisms of insomnia. To date, many studies have used differ-
ent neuroimaging modalities to examine insomnia-related altera-
tions in brain structure, function, and metabolism. For example, 
using structural magnetic resonance imaging (MRI), brain 
atrophy is consistently observed with PI in a specific set of regions 
such as the hippocampus (8, 9) and frontoparietal cortex (10, 11). 
However, functional studies based on functional MRI (fMRI) 
and positron emission tomography frequently report insomnia-
related increases in multiple regions of spontaneous brain activity 
and metabolism, which may be due to compensatory adaption 
(12–15). In addition to local alterations, given the interconnected 
nature of the human brain, an increasing number of studies have 
begun to examine abnormal interregional functional integration 
in insomnia. Killgore and colleagues tested the sensory–motor 
network in patients with sleep dysfunction and found that dif-
ficulty in falling asleep was associated with increased functional 
connectivity between the primary visual cortex and other sensory 
regions such as the primary auditory cortex, olfactory cortex, 
and supplementary motor area (16). Chen et  al. studied the 
inner relationship between the salience network and emotional 
regions in patients with insomnia and found that these patients 
have increased functional connectivity between the insula and 
salience network (17). Furthermore, elevated functional con-
nectivity between the insula and emotional circuit (cingulate 
cortex, thalamus, and precuneus) has been observed in PI (18). 
Taken together, these studies suggest that PI can be viewed as a 
global rather than focal disorder that affects interregional neural 
coordination of multiple rather than single functional systems.

Human whole-brain networks can be mapped from differ-
ent modalities of non-invasive neuroimaging techniques such 
as resting-state fMRI (R-fMRI). R-fMRI is a promising tool for 
mapping intrinsic brain connectivity networks and has been 
widely applied to various brain disorders (19). These networks 
can be further characterized by graph-based approaches by 
mathematically modeling them as graphs composed of nodes 
interconnected by edges. With the graph-based approaches, 
several features are consistently found in healthy brain networks, 
such as small-worldness (20), modularity (21), and hubs (22). 
Moreover, accumulating evidence suggests that abnormalities 
in these configurations are largely responsible for cognitive and 
behavioral dysfunctions in various brain disorders (23, 24), 
However, to date, few studies have examined whether and how 
PI alters whole-brain network organization from a system-level 
perspective of network segregation and integrity.

In this study, we used graph-based approaches to investigate 
topological abnormalities of functional brain networks in 
individuals with PI and to examine clinical correlates of the 
alterations. Among numerous graph theory-based measures, 
we exclusively focused on small-world organization because it 
is one of the most widely used models for human brain network 
studies (20). The small-world model, which was originally 
proposed in terms of parameters of clustering coefficient 
and characteristic path length (25), is an attractive model 
to characterize brain networks because the combination of 
high local clustering and short path length supports the two 
fundamental organizational principles in the brain: functional 
segregation and functional integration. Subsequently, the 
small-world theory is expanded based on two biologically 
more sensible measures: efficiency and cost (26). Compared 
with conventional clustering coefficient and characteristic path 
length measures, the combination of efficiency and cost has a 
number of technical and conceptual advantages since it can 
(i) represent how efficiently a network exchanges information 
at local and global levels with a single measure, (ii) examine 
the economical small-world properties of a network in the 
sense of providing high global and local efficiency of parallel 
information processing at low wiring costs, and (iii) deal with 
disconnected and/or non-sparse graphs (26, 27). To this end, 
we collected R-fMRI data from 36 patients with PI and 38 age-, 
sex-, and education-matched healthy controls (HCs). We then 
constructed individual functional brain networks by calculat-
ing interregional functional connectivity of spontaneous blood 
oxygen level dependent (BOLD) time series signals among 246 
regions of interest (ROIs). Next, graph theory-based approaches 
were used to topologically characterize the resultant networks at 
global and nodal levels. Finally, PI-related network alterations 
were statistically inferred using a nonparametric permutation 
test and correlated with the results of patient neuropsychologi-
cal assessment.

MaTerials anD MeThODs

subjects
Patients with PI were recruited from the Department of Neurology 
at Guangdong No. 2 Provincial People’s Hospital in Guangzhou, 
China from April 2014 to April 2016. The diagnosis of PI was 
made according to the Diagnostic and Statistical Manual of 
Mental Disorders, version 5. The exclusion criteria included  
(i) insomnia secondary to severe mental diseases (e.g., depres-
sion, anxiety, or epilepsy), (ii) other sleep disorders, (iii) history 
of serious organic disease including significant head trauma or 
loss of consciousness >30 min, (iv) history of medication treat-
ment for insomnia, (v) history of alcohol, drug, or tobacco abuse,  
(vi) intense signal on conventional T1- and T2-FLAIR MRI, and 
(vii) female patients who were pregnant, nursing, or menstruat-
ing. We enrolled patients with PI who had all of the following 
symptoms according to the Pittsburgh Sleep Quality Index (PSQI) 
(28) and the Insomnia Severity Index (ISI) (29): early awakening, 
difficulty falling asleep, and difficulty maintaining sleep. In total, 
36 patients with PI (12 men; mean age  =  38.67  ±  9.53  years) 
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were included in this study. By means of advertisements, we also 
recruited 38 age-, sex-, and education-matched HCs from the 
local community (12 men; mean age = 37.79 ± 9.92 years). HCs 
were included in the study according to the following criteria:  
(i) good sleep quality and an ISI score <7, (ii) no brain lesions or 
prior substantial head trauma as verified by conventional T1- or 
T2-FLAIR MRI, and (iii) no history of psychiatric or neurological 
diseases. All participants were right handed as assessed using the 
Edinburgh Handedness Inventory (30). This study was approved 
by the Ethics Committee of Guangdong No. 2 Provincial People’s 
Hospital, and all participants provided informed written consent 
before MR scanning.

neuropsychological assessment
Each participant underwent a series of neuropsychological asses-
sments to evaluate their sleep situation and mental status, 
including the PSQI, the Epworth Sleepiness Scale (ESS) (31), the 
ISI, the Self-rating Anxiety Scale (SAS) (32), and the Self-rating 
Depression Scale (SDS) (32).

Data acquisition
All participants were scanned using a 3.0-T Ingenia MRI scan-
ner (Philips Healthcare, The Netherlands) at the Department of 
Medical Imaging of Guangdong No. 2 Provincial People’s Hospital. 
During R-fMRI data acquisition, participants were asked to lie 
quietly with their eyes closed and not think of anything specific 
or fall asleep while inside the scanner. The detailed acquisition 
parameters were as follows: repetition time (TR)  =  2,000  ms, 
echo time (TE)  =  35  ms, flip angle (FA)  =  90°, slice thick-
ness = 3.6 mm with a 0.7-mm gap, matrix = 64 × 64, field of view 
(FOV) = 230 mm × 230 mm, and 35 transverse planes parallel to 
the AC–PC line. The R-fMRI scan lasted for 8 min, and a total of 
240 volumes were obtained for each participant. In addition, indi-
vidual high-resolution anatomical images were acquired using 
a T1-weighted three-dimensional volumetric magnetization- 
prepared rapid acquisition gradient-echo sequence: 185 axial 
slices, TR = 8.4 ms, TE = 3.9 ms, FA = 8°, slice thickness = 1.0 mm, 
no gap, matrix = 256 × 256, and FOV = 256 mm × 256 mm.

Data Preprocessing
Data preprocessing was performed using the GRETNA toolbox 
based on the SPM12 package (http://www.fil.ion.ucl.ac.uk/
spm/software/spm12/) and included (i) removal of the first 10 
volumes to allow for T1 equilibration effects, (ii) realignment to 
correct for spatial displacements due to head motion, (iii) spatial 
normalization into the Montreal Neurological Institute space via 
segmentation of structural images, (iv) removal of linear trend, 
(v) temporal band-pass filtering (0.01–0.08 Hz), and (vi) nuisance 
regression of white matter signals, cerebrospinal fluid signals, and 
24-parameter head-motion profiles (33). Participants with head 
motion >2 mm or >2° in any direction were excluded. There were 
no significant differences in the maximum, root mean square, and 
mean framewise displacement of head motion profiles between 
groups (all P > 0.05). The white matter and cerebrospinal fluid 
signals were derived by averaging signals within white matter 
and cerebrospinal fluid masks, respectively, in terms of prior 

probability maps in SPM12 (threshold = 0.8). We did not regress 
out global signals because this is a controversial preprocessing 
step for R-fMRI studies (34).

network construction
We constructed individual functional brain networks in a man-
ner similar to previous studies (35–38). Briefly, we first parceled 
the cerebrum into 246 ROIs based on a prior brain atlas (39). 
We then calculated the mean BOLD signal time series for each 
ROI by averaging the signals across all voxels in that region. Next, 
the resultant mean time series were correlated with each other 
to generate a 246 × 246 correlation matrix for each participant. 
To denoise spurious interregional correlations in the results 
correlation matrices, we retained only those correlations whose 
corresponding P-values passed through a statistical threshold 
(P < 0.05, Bonferroni-corrected over connections). Such a sig-
nificance level-based thresholding procedure effectively avoids 
erroneous evaluations of network topology (40). Finally, negative 
correlations were excluded due to their ambiguous interpretation 
(41–43) and detrimental effects on test–retest reliability (44).

network analysis
For the brain networks constructed above, we calculated several 
graph-based metrics to characterize their topological organiza-
tion at different levels, including global small-world network 
efficiency (global efficiency, local efficiency, normalized global 
efficiency, and normalized local efficiency) and local nodal cen-
trality (nodal efficiency). We briefly explain these metrics below 
in the context of a weighted network G with N nodes and K edges.

Small-World Efficiency
Efficiency is a biologically relevant metric to describe brain net-
works from the perspective of parallel information propagation 
and exchange (26, 27) and can be calculated at both global and 
local levels. Mathematically, global efficiency is defined as:

 
E G

N N diji j G
glob( )

( )
=

− ≠ ∈
∑1

1
1

 
(1)

where dij is the shortest path length between node i and node 
j in G and is calculated as the smallest sum of edge lengths 
throughout all possible paths from node i and node j. The length 
of an edge was designated as the reciprocal of the edge weight  
(i.e., correlation coefficient), which can be interpreted as a func-
tional distance that a high correlation coefficient corresponds to 
a short functional distance. Global efficiency measures the ability 
of parallel information transmission over the network. The local 
efficiency of G is measured as:
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N
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where Eglob(Gi) is the global efficiency of Gi, the subgraph com-
posed of the neighbors of node i (i.e., nodes linked directly to 
node i). Local efficiency measures the fault tolerance of the 
network, indicating the capability of information exchange for 
each subgraph when the index node is eliminated.
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TaBle 1 | Demographic, neuropsychological, and clinical characteristics of the 
participants.

Pi (n = 36) hcs (n = 38) P value

Age (years) 38.67 ± 9.53 37.79 ± 9.92 0.699
Gender (M/F) 12/24 12/26 0.872
Education (years) 10.06 ± 3.81 11.66 ± 3.20 0.054
PSQI 11.75 ± 3.78 1.68 ± 1.90 <0.001
ISI 17.28 ± 6.70 1.39 ± 2.40 <0.001
SAS 53.97 ± 10.12 42.45 ± 6.39 <0.001
SDS 52.92 ± 9.25 39.55 ± 10.58 <0.001
ESS 11.00 ± 4.63 – –
Duration (months) 28.61 ± 43.58 – –

PI, primary insomnia; HCs, healthy controls; M, male; F, female; PSQI, Pittsburgh Sleep 
Quality Index; ISI, Insomnia Severity Index; SAS, Self-rating Anxiety Scale; SDS, Self-
rating Depression Scale; ESS, Epworth Sleepiness Scale.
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To determine whether brain networks had a small-world 
organization, local efficiency and global efficiency were normal-
ized via dividing them by the corresponding mean derived from 
100 random networks that preserved the same number of nodes, 
edges, and degree distributions as the real brain networks (45–47). 
Typically, a network with approximately equal global efficiency 
and larger local efficiency than matched random networks  
(i.e., normalized global efficiency ~1 and normalized local effi-
ciency >1) is said to be a small-world network (25).

Nodal Centrality
We calculated nodal efficiency to capture the centrality of indi-
vidual nodes in a network. The nodal efficiency of a given node i 
is calculated as (27):

 
e

N di
ijj i G

=
− ≠ ∈
∑1

1
1 .

 
(3)

Nodal efficiency measures the ability of information propaga-
tion between a node and the remaining nodes in the network. 
A node with high nodal efficiency indicates high capability of 
information transmission with other nodes and can therefore be 
categorized as a hub.

statistical analysis
Between-Group Differences in Demographic and 
Neuropsychological Data
For demographic and clinical variables, between-group differ-
ences were examined using two-sample, two-tailed t-tests. These  
variables included age, education, and neuropsychological meas-
urement scores (PSQI, ESS, ISI, SAS, and SDS). In addition, we 
used a two-tailed chi-square test to determine between-group 
differences in sex data.

Between-Group Differences in Network Organization
Between-group differences in network properties (global effi-
ciency, local efficiency, normalized global efficiency, normal-
ized local efficiency, and nodal efficiency) were determined 
by nonparametric permutation tests. Briefly, for each network 
metric, we first calculated the between-group difference in the 
mean values. An empirical distribution of the difference was 
then obtained by randomly reallocating all values into two 
groups and recalculating the mean differences between the two 
randomized groups (10,000 permutations). The 95th percentile 
points of the empirical distribution were used as critical values 
in a one-tailed test of whether the observed group differences 
could occur by chance. For comparisons of nodal efficiency, 
the false discovery rate (FDR) procedure was used to correct 
for multiple comparisons. Given the marginally significant 
between-group difference in education, we reanalyzed the 
above comparisons and obtained largely comparable results 
(data not shown).

Between-Group Differences in Functional 
Connectivity
To examine between-group differences in interregional func-
tional connectivity, a network-based statistic (NBS) method 

(48) was followed. Briefly, a primary threshold (P <  0.05) was 
applied to the t-values (246 × 246 matrix) derived from an edge-
by-edge between-group comparison of interregional functional 
connectivity (two-sample t-test). Among the resultant suprath-
reshold connections, we identified all connected components 
and recorded their size (i.e., number of links). To estimate the 
significance of each identified component, a null distribution of 
the connected component size was empirically derived using a 
permutation approach (10,000 permutations). For each permu-
tation, all participants were randomly divided into two groups, 
and the same primary threshold (i.e., P < 0.05) was used to filter 
suprathreshold links in the comparison between the two rand-
omized groups. The size of the maximal connected component 
among these links was recorded to form the null distribution. 
Finally, for any connected component of size M that was observed 
in the comparison of the right grouping, the corrected P value was 
determined by calculating the proportion of the 10,000 permuta-
tions for which the maximal connected component was larger 
than M. Notably, only connections that were positive in >85% of 
all participants were included in NBS analysis.

Brain–Behavior Relationships
For network metrics that showed significant PI-related alterations, 
partial correlation analyses were used to assess their relationships 
with neuropsychological measurements (PSQI, ESS, ISI, SAS, and 
SDS) and disease duration in the PI group. Effects of age, sex, and 
education were controlled during the correlation analysis. For the 
correlation analyses, we did not perform multiple correlation cor-
rection given the exploratory nature of this pilot study.

resUlTs

Demographic and clinical characteristics
Demographic, neuropsychological, and clinical characteristics of 
participants are shown in Table 1. The HC and PI groups showed 
no significant between-group differences in age (P  =  0.699), 
sex (P = 0.872), or education (P = 0.054). The average disease 
duration for participants in the PI group was 28.61 months. As 
expected, patients with PI had higher PSQI, ISI, SAS, and SDS 
scores than the controls (P < 0.001) (Table 1).
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FigUre 1 | Between-group differences in total number of connections and network efficiency of functional brain networks. Patients with PI had significantly higher 
total connections (P = 0.022), global efficiency (P = 0.014), and normalized global efficiency (P = 0.002), and lower normalized local efficiency (P = 0.042) compared 
with controls. Error bars denote mean and SD. PI, primary insomnia; HCs, healthy controls.
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altered small-World efficiency in Pi
The mean correlation matrices of the PI and HC groups are 
shown in Figure 1. We first examined the largest component 
size of each individual network. We found that networks of 30 
HCs and 29 PI patients had no isolated nodes, and networks of 
all the other participants had one isolated node. Patients with 
PI had significantly more connections in their whole-brain net-
works compared with HCs (network density = 0.192 ± 0.056 
and 0.222  ±  0.071 for the HC and PI groups, respectively; 
P = 0.022). Network efficiency analysis indicated that the func-
tional brain networks of both groups exhibited small-world 
organization, as characterized by normalized local efficiency 
>1 (HC group: 1.270  ±  0.125; PI group: 1.221  ±  0.117) and 
normalized global efficiency approximately equal to 1 (HC 
group: 0.940 ± 0.019; PI group: 0.954 ± 0.022). Nevertheless, 
further statistical comparisons revealed that patients with 
PI had significantly higher global efficiency (P  =  0.014) and 
normalized global efficiency (P = 0.002) as well as lower nor-
malized local efficiency (P = 0.042) in comparison with HCs 
(Figure 1).

altered nodal centrality in Pi
The PI group had significantly increased nodal efficiency for 21 
regions (P < 0.05, FDR corrected) compared with the HC group 
(Figure 2). These regions predominately encompassed the supe-
rior frontal gyrus, middle frontal gyrus, superior temporal gyrus, 
cingulate gyrus/precuneus, thalamus, superior parietal lobule, 
and supramarginal gyrus.

altered Functional connectivity in Pi
We identified one connected component that exhibited increased 
functional connectivity among participants with PI as compared 
with HCs (P = 0.044, corrected) (Table 2; Figure 3). The com-
ponent included 22 nodes and 27 edges and mainly involved 
the parietal and prefrontal regions and the insula. It is worth 
mentioning that most of the regions showing increased nodal 
efficiency, as described earlier, were included in this component. 

No components showed significantly decreased functional con-
nectivity in a comparison between PI patients and HCs.

Brain–Behavior relationship
Among patients with PI, ESS scores exhibited significant 
negative correlations with the total number of edges (r = −0.358; 
P = 0.041) and global efficiency (r = −0.375; P = 0.031) and a 
significant positive correlation with normalized local efficiency 
(r = 0.430; P = 0.013) (Figure 4). In addition, a significant nega-
tive correlation was found between ISI scores and normalized 
local efficiency (r = −0.354; P = 0.044) (Figure 4). No significant 
correlations were found between other network measures and 
neuropsychological variables (all P > 0.05).

DiscUssiOn

In this study, we examined the topology of functional brain 
networks in patients with PI by graph theory-based analysis of 
R-fMRI. Our results suggest that patients with PI had overly con-
nected functional brain networks as characterized by increased 
global network efficiency and increased nodal centrality as well as 
elevated interregional functional connectivity of regions, mainly 
in the default mode network (DMN) and emotional circuit. 
Moreover, altered network architecture was related to patient 
neuropsychological performance. These findings may contribute 
to a better understanding of the neurobiological mechanisms 
underlying PI.

The human brain is a complex, interconnected network that 
continuously integrates information across multiple sensory sys-
tems. Numerous studies suggest that its powerful performance 
originates mainly from a nontrivial topological wiring diagram 
such as efficient small-world architecture (19, 49, 50). In this 
study, we found that patients with PI exhibited the increased 
overall connectivity in their functional brain networks is con-
sistent with previous studies reporting increased functional 
connectivity and structural connectivity in PI (18, 51, 52). 
Increased overall connectivity could also explain why increased 
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FigUre 2 | Between-group differences in regional nodal efficiency. Warm color regions show significantly increased nodal efficiency of several prefrontal and parietal 
regions, the superior temporal gyrus, and the thalamus in patients with PI (P < 0.05, corrected). PI, primary insomnia.
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global efficiency was observed in patients with PI because more 
connections (i.e., larger network density) might result in more 
routing paths and therefore more efficient information propaga-
tion and exchanges. However, after normalization by matched 
random networks, global efficiency was still larger in patients 
with PI than in the controls. This suggests that increased global 
efficiency of functional brain networks in patients with PI is 
not entirely due to more connections but instead may reflect an 
intrinsic alteration in brain wiring patterns. Global efficiency is 
mainly reflects integrative information processing across brain 
remote regions that constitutes the basis of cognitive processing 
(53). Thus, the observed increase of global efficiency implies 
a hyperactive functional integration of patient brains. This is 
supported by our findings of increased nodal efficiency and 
functional connectivity for numerous regions in patients with 
PI. We discuss the PI-related increases in detail below.

In addition to increased global efficiency, participants with 
PI had decreased normalized local efficiency which may be 
explained by impaired functional segregation of patient brains 
(26). As normal brain function requires an optimal balance 
between local specialization and global integration, the combi-
nation of increased global efficiency and decreased normalized 
local efficiency indicates a disruption in the normal balance and 

suggests a tendency toward random network configuration of 
functional brain networks in patients with PI.

Interestingly, we found that increased overall connectivity 
and altered network efficiency were related to behavioral distur-
bances, as indicated by the ESS and ISI scores of patients with 
PI. ESS is a validated questionnaire that is widely used to assess 
subjective sleepiness and sleep propensity. Existing evidence 
suggests that different levels of complaints of daytime sleepiness 
are broadly experienced by people with insomnia (54). The ISI 
is a brief instrument that was designed to assess severity of both 
nighttime and daytime components of insomnia (31). Thus, our 
results suggest that topological alterations of functional brain 
networks may account for excessive daytime sleepiness and sleep 
dysfunction among people with PI.

After examining PI-related network alterations globally, we 
also investigated PI-related alterations in regional nodal central-
ity and interregional functional connectivity. At the nodal level, 
multiple regions that showed increased nodal efficiency were 
mainly in the DMN (e.g., precuneus, prefrontal cortex, and supe-
rior parietal lobule) and emotional circuit (e.g., cingulate cortex, 
thalamus, and frontal gyrus) in participants with PI. Nodal 
efficiency measures the extent of information exchange between 
a given node and all other nodes in a network and therefore 
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FigUre 3 | Between-group differences in functional connectivity. Patients with PI showed significantly increased functional connectivity that mainly involved the 
parietal and prefrontal regions and the insula. Line width is proportional to the significance level of the between-group difference. PI, primary insomnia.

TaBle 2 | Connections showing increased functional connectivity in the PI patients.

region a region B

abbr name Mni abbr name Mni P value

SFG_R_7_5 Superior frontal gyrus [7, −4, 60] STG_L_6_3 Superior temporal gyrus [−50, −11, 1] 0.0445
SPL_L_5_1 Superior parietal lobule [−16, −60, 63] SPL_R_5_1 Superior parietal lobule [19, −57, 65] 0.0408
SPL_L_5_1 Superior parietal lobule [−16, −60, 63] SPL_L_5_2 Superior parietal lobule [−15, −71, 52] 0.0087
SPL_L_5_2 Superior parietal lobule [−15, −71, 52] SPL_R_5_2 Superior parietal lobule [19, −69, 54] 0.0059
PrG_L_6_5 Precentral gyrus [−52, 0, 8] IPL_L_6_6 Supramarginal gyrus [−53, −31, 23] 0.0438
IPL_L_6_3 Supramarginal gyrus [−51, −33, 42] IPL_L_6_6 Supramarginal gyrus [−53, −31, 23] 0.0060
SPL_L_5_2 Superior parietal lobule [−15, −71, 52] Pcun_L_4_1 Precuneus [−5, −63, 51] 0.0023
SPL_R_5_2 Superior parietal lobule [19, −69, 54] Pcun_R_4_1 Precuneus [6, −65, 51] 0.0207
PCL_R_2_1 Paracentral lobule [10, −34, 54] Pcun_L_4_2 Precuneus [−8, −47, 57] 0.0151
PCL_R_2_1 Paracentral lobule [10, −34, 54] Pcun_R_4_2 Precuneus [7, −47, 58] 0.0417
SPL_R_5_2 Superior parietal lobule [19, −69, 54] Pcun_R_4_2 Precuneus [7, −47, 58] 0.0282
Pcun_L_4_2 Precuneus [−8, −47, 57] Pcun_R_4_2 Precuneus [7, −47, 58] 0.0442
PrG_L_6_5 Precentral gyrus [−52, 0, 8] INS_L_6_5 Rostrodorsal posterior insula [−38, −8, 8] 0.0242
PoG_L_4_2 Postcentral gyrus [−56, −14, 16] INS_L_6_6 Caudoventral anterior insula [−38, 5, 5] 0.0334
INS_L_6_1 Caudodorsal posterior insula [−36, −20, 10] INS_L_6_6 Caudoventral anterior insula [−38, 5, 5] 0.0021
INS_L_6_5 Rostrodorsal posterior insula [−38, −8, 8] INS_L_6_6 Caudoventral anterior insula [−38, 5, 5] 0.0002
STG_L_6_3 Superior temporal gyrus [−50, −11, 1] CG_L_7_5 Cingulate gyrus [−5, 7, 37] 0.0252
IPL_L_6_6 Supramarginal gyrus [−53, −31, 23] CG_L_7_5 Cingulate gyrus [−5, 7, 37] 0.0154
PCL_R_2_1 Paracentral lobule [10, −34, 54] CG_L_7_6 Cingulate gyrus [−7, −23, 41] 0.0049
Pcun_L_4_2 Precuneus [−8, −47, 57] CG_L_7_6 Cingulate gyrus [−7, −23, 41] 0.0014
Pcun_R_4_2 Precuneus [7, −47, 58] CG_L_7_6 Cingulate gyrus [−7, −23, 41] 0.0046
CG_L_7_5 Cingulate gyrus [−5, 7, 37] CG_L_7_6 Cingulate gyrus [−7, −23, 41] 0.0420
CG_R_7_5 Cingulate gyrus [4, 6, 38] CG_L_7_6 Cingulate gyrus [−7, −23, 41] 0.0170
PCL_R_2_1 Paracentral lobule [10, −34, 54] CG_R_7_6 Cingulate gyrus [6, −20, 40] 0.0062
Pcun_L_4_2 Precuneus [−8, −47, 57] CG_R_7_6 Cingulate gyrus [6, −20, 40] 0.0089
Pcun_R_4_2 Precuneus [7, −47, 58] CG_R_7_6 Cingulate gyrus [6, −20, 40] 0.0048
CG_L_7_6 Cingulate gyrus [−7, −23, 41] CG_R_7_6 Cingulate gyrus [6, −20, 40] 0.0197
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reflects the importance or information load of the node (27). 
Thus, increased nodal efficiency indicates higher information 
flow of these regions in patient brains. This is consistent with our 
findings that most of these regions exhibited increased functional 
connectivity in patients with PI. Interestingly, these regions are 
largely comparable to those reported to show hypermetabolism 
in patients with insomnia (12), which is also in agreement with 

recent findings that functional connectivity is closely coupled 
with metabolism (55, 56). Future studies are warranted to exa-
mine to what extent increased functional connectivity reflects 
hypermetabolism in PI.

The DMN includes a set of anatomically and functionally 
interconnected regions that are involved in a wide spectrum of 
cognitive processing. It is active when individuals are engaged 
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FigUre 4 | Scatter plots showing significant correlations between network measures and neuropsychological variables in patients with PI. Effects of age, 
sex, and education were controlled during the correlation analyses. Thus, the fitted values (i.e., the observed network measures and neuropsychological 
variables minus the estimated effects of age, sex, and education) that are plotted reflect the “true” relationships. ISI, Insomnia Severity Index; ESS, Epworth 
Sleepiness Scale.
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in internally focused tasks such as memory or self-relevant 
mental processing (57, 58). Using independent component 
analysis, a previous study found that people with insomnia 
had increased connectivity of the DMN (59), which is consist-
ent with our findings. Intriguingly, we found that the DMN 
components affected by PI largely overlapped with the core 
regions of the mentalizing network (e.g., the medial prefrontal 
cortex and posterior cingulate cortex/precuneus), which is 
a subnetwork of the DMN that is typically activated when 
individuals are engaged in a working memory task (60–62). 
Clinically, working memory deterioration is the most common 
symptom of daytime dysfunction in PI (63, 64) and is one of 
the most apparent and arguably easiest to detect neural mark-
ers of PI (65, 66). Based on these findings, we hypothesize that 
increased nodal efficiency and functional connectivity of DMN 
regions in PI, particularly the mentalizing network, may reflect 
a compensatory mechanism of the brain to maintain normal 
working memory-related processing by adding or establishing 
new connections.

In addition to the DMN, increases in PI-related nodal 
efficiency occur in the emotional circuit. The emotional circuit 
mainly includes the amygdala, prefrontal lobe, thalamus, insular 
lobe, and cingulate cortex (67). Specifically, the prefrontal lobe 
and thalamus are central to the perception system and form a 
channel of prefrontal cortex–thalamus–corpus striatum that 
cumulatively allows for effective integration and handling of 
emotional regulation (68). Psychometric studies have demon-
strated that emotional hyperarousal may be a primary neural 
mechanism underlying emotional regulation dysfunction  
(e.g., anxiety or depression) in patients with PI (69, 70). Similarly, 
numerous neuroimaging studies have reported overactivity of 
emotional processing-related brain regions (e.g., prefrontal 
lobe, thalamus, and insula) in PI (13, 15, 18). Furthermore, 
electrophysiological studies have found decreased levels of 
γ-aminobutyric acid in emotion-related regions of PI patients 
(71). The present findings are consistent with those of previous 
studies and provide further evidence for the emotional hypera-
rousal hypothesis from the perspective of functional integration. 
We hypothesize that increased efficiency in emotional regions 
may underlie emotional dysfunction frequently observed in PI. 

Currently, the relationship between insomnia and emotional 
dysfunction is not fully understood. Previous studies indicate 
that sleep disturbances have detrimental effects on physical 
health and are thought to be a risk factor for development and 
maintenance of mood and anxiety disorders (72–75). Thus, 
high levels of anxiety and depression are frequently evident 
in patients with insomnia (76), and high rates of sleep dis-
turbances are observed in patients with anxiety or depressive 
disorders (77). There are several possible explanations for the 
interrelationship between anxiety/depression and insomnia. 
One possibility is that they are simply comorbid, which may be 
explained by common maintenance mechanisms. Indeed, when 
we examined relationships between PSQI and ISI scores and 
scores from SAS and SDS, high positive correlations were found 
(all r > 0.5, P < 0.001). A second possibility is that insomnia is 
epiphenomenal to anxiety and depression or that anxiety and 
depression are epiphenomenal to insomnia. A third possibil-
ity is that anxiety and depression are risk factors for insomnia 
(78–81). In summary, insomnia and emotional dysfunction 
are tightly coupled and require further study. Notably, we did 
not observe significant correlations between increased nodal 
efficiency and SAS and SDS scores of PI patients, possibly due 
to the relatively small sample size.

Together, we determined that PI is associated with a hyper-
active functional brain connectome as characterized by 
increased network efficiency and elevated functional con-
nectivity. Currently, the biological mechanism underlying 
this hyperconnectivity is not fully understood, although it is 
a common phenomenon in brain disorders (82). Given the 
high plasticity and compensatory mechanisms of the human 
brain, one possible interpretation is that the brains of people 
with PI require ongoing recruitment of available detour paths 
to maintain normal function by adaptively adjusting regional 
connectivity profiles in response to pathological attacks and 
damage caused by the disease (83). More recently, a review indi-
cated that this hyperconnectivity may be optimally expressed 
by increasing connections through the most central and 
metabolically efficient regions (84). This is consistent with our 
findings that increased PI-related efficiency and connectivity 
were mainly located in the DMN and emotional circuit, which 
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are frequently reported to serve as highly connected hubs in 
the brain (22). Future studies may provide deeper insights into 
such hyperconnectivity by combining fMRI with other imag-
ing techniques (e.g., structural and metabolic imaging) and 
biochemical techniques.

There are several further considerations that merit mention 
for this pilot study. First, the sample size was relatively small. 
Therefore, reproducibility of the current findings should be 
examined in a large cohort of patients. Second, the SDS and SAS 
scores of patients with PI were still higher than those of par-
ticipants in the control group. In addition, we found increased 
functional connectivity of the emotional circle in the PI group. 
Thus, altered connectivity patterns among participants with 
PI may not be due to insomnia alone but may also result from 
secondary mood changes. Further studies are needed to clarify 
this point. Third, because of the cross-sectional design of this 
study, we cannot address the temporal relationship between 
functional brain networks reorganization and progression of 
PI. Longitudinal studies are needed to illuminate this important 
issue. Finally, functional brain networks arise from underlying 
structural pathways (85, 86). Although a recent diffusion tensor 
imaging study demonstrated abnormalities in several specific 
neural tracts in PI (87), whole-brain structural networks in PI 
remain largely unknown.

In summary, from the viewpoint of system-level network 
separation and integration, this study provides the first evi-
dence for an aberrant functional connectome in PI, which is 
characterized by increased nodal centrality and interregional 
functional connectivity in the DMN and emotional circuit. 

These findings provide novel implications for neural substrates 
associated with PI.
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