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Abstract: Trauma and disease frequently result in fractures or critical sized bone defects and 

their management at times necessitates bone grafting. The process of bone healing or 

regeneration involves intricate network of molecules including bone morphogenetic proteins 

(BMPs). BMPs belong to a larger superfamily of proteins and are very promising and 

intensively studied for in the enhancement of bone healing. More than 20 types of BMPs 

have been identified but only a subset of BMPs can induce de novo bone formation. Many 

research groups have shown that BMPs can induce differentiation of mesenchymal stem cells 

and stem cells into osteogenic cells which are capable of producing bone. This review 

introduces BMPs and discusses current advances in preclinical and clinical application of 

utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration. 

Keywords: bone morphogenetic proteins; BMPs; bone regeneration; biomaterials;  

carrier methods 

 

OPEN ACCESS 



Materials 2015, 8 1779 

 

 

1. Introduction 

Trauma, tumor resection, and disease frequently result in fractures or critical sized bone defects.  

As they do not usually heal spontaneously, their management necessitates bone grafting or major surgical 

reconstruction [1]. About 5%–10% of all these procedures are associated with impaired healing, which 

results in psychological stress and morbidity to patients and incur significant economic cost to society. 

According to the American Academy of Orthopaedic Surgeons more than 6.3 million people suffer from 

bone fractures annually in the U.S alone [2]. The management of around 25% of those requires some 

sort of bone grafting [3,4]. Many of these procedures involve the use of autogenous bone that is 

commonly harvested from the iliac crest [5]. Recent studies have demonstrated that harvesting iliac crest 

bone grafts is associated with increased risk of morbidity [6–8]. It has also been shown that two years 

following the iliac crest bone graft surgery, up to 25% patients may still feel donor site pain [9].  

This potential morbidity together with the limited procurement of autogenous bone has long been the 

driving force for scientists to develop improved bone graft substitutes [10]. 

Bone graft substitutes can be broadly categorized into two major types [9]. The first are the 

osteoconductive materials. These are essentially bone void fillers that allow bone in-growth and are 

usually made of bioresorbable materials. Common examples include collagen composites, sea-coral, and 

various ceramics [4,9,11]. Based on the size of defect, these can be used alone or in conjunction with 

autogenous bone as they are deemed ineffective as a sole treatment for critical sized bone defects [9]. 

The second category of bone graft substitutes are referred to as the osteoinductive materials, which 

comprise substitutes that contain biological factors, such as growth factors. These factors can recruit 

progenitor cells, induce their differentiation into bone forming cells (osteoblasts) and form bone even in 

a non-osseous site [9]. Because of their tremendous potential to heal and regenerate lost tissue, many 

osteoinductive materials are currently being investigated for various tissue engineering applications. 

Over the years the advent of tissue engineering has been seen as a promising alternate to the current 

standard of care and can potentially circumvent many limitations encountered with conventional 

autogenous grafts involving additional surgical procedures [12]. Tissue engineering utilizes the patient’s 

own precursor cells, matrices, and growth factors to regenerate the lost tissues. Since the early promise 

shown by research in this field, bone regeneration has received much more interest, as bone is one of the 

tissues with highest regenerative potential in human body [13]. Bone regeneration can be considered as 

recapitulation of embryonic bone development because bone heals via generation of new bone instead 

of scar tissue formation [14]. This process of bone healing or regeneration involves intricate network of 

molecules including bone morphogenetic proteins (BMPs) [15]. BMPs are the very promising as well as 

the most intensively studied group of growth factors that are involved in the enhancement of bone 

healing [16–18]. Ever since Urist’s discovery of BMPs as bone inducing proteins, interest in tissue 

engineering of bone for orthopaedic, craniofacial and periodontal applications has increased 

exponentially [13,17,19–25]. Many research groups have shown that BMPs can induce differentiation 

of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing  

bone [26–28]. BMPs and their various types are introduced and a discussion of current advances in 

preclinical and clinical application of various biomaterial carriers for local delivery of BMPs to enhance 

bone regeneration is presented in this review. 
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2. Structure of BMPs 

BMPs belong to a larger superfamily of proteins referred to as transforming growth factors beta  

(TGF-β) superfamily [15]. The TGF-β superfamily can be broadly categorized into TGFs, BMPs 

(excluding BMP-I which is a proteinase and a member of tolloid like proteins), growth factors 1–10, 

which are considered a subclass of BMPs, Vg related genes, glial derived neurotropic factor, inhibins, 

activins, nodal related genes, and drosphila genes [29]. BMPs are produced as large precursor proteins 

which undergo disulphide bond dimerization before they are proteolytically cleaved at consensus  

Arg-X-X-Arg site, yielding mature dimers [30]. Studies have revealed that stability of the processed 

mature protein is controlled by N-terminal region and efficiency of cleavage is determined by 

downstream sequence adjacent to cleavage site [26,31]. It has also been suggested that this enzymatic 

cleavage takes place prior to secretion of BMPs [30]. Following secretion, BMPs can bind to two classes 

of transmembrane receptors (type 1 and type 2) that are known to have serine threonine kinase  

activity [30,32,33]. Ligand binding is required for type 1 receptor kinase activation; whereas, activity of 

type 2 receptor kinase is constitutive. However, optimal ligand binding requires presence of both type 1 

and type 2 receptors [30]. Once ligand attaches to type 2 receptor, it transphosphorylates type 1 receptor 

which leads to activation of type 1 kinase. This, in turn, leads to phosphorylation of members of Smad 

(protein) family of transcription factors, which are then translocated to the nucleus where subsequent 

expression of target genes takes place [30,34]. 

To date, more than 20 types of BMPs have been identified (Table 1) [30,35] but it has been shown 

that only a subset of BMPs can induce de novo bone formation [14]. Although the mechanism by which 

BMPs induce osteoblastic differentiation still remains to be elucidated, it is known that these growth 

factors play a pivotal role in regulation of osteoblastic differentiation [36]. A substantial body of evidence 

suggests that BMPs like BMP-2, BMP-7, and BMP-9 can provide primordial signal for differentiation 

of osteoprogenitor cells into osteoblasts which then form the bone extracellular matrix [37–42]. 

Preclinical studies have shown that recombinant human forms of BMPs, especially BMP-2, BMP-4 and 

BMP-7 can regenerate lost tissue when used with an adequate carrier in critical sized bone  

defects [36,43,44]. Promising data from these preclinical studies together with encouraging results from 

clinical trials have found the basis for approval of rhBMP-2 and rhBMP-7 for clinical use by  

FDA [36,45]. These growth factors have been studied extensively during the last two decades and 

different recombinant human BMPs (rhBMPs) are currently being investigated for their potential use in 

several tissue engineered products which may lead to complete regeneration of bone [13,21,46–57]. 

Currently available BMP based applications include BMP loaded synthetic or natural delivery systems 

and BMP induced differentiation of patient’s transplanted stem cells for later body implantation [13,58–60]. 
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Table 1. Types, organs of expression and functions of BMPs. 

BMP Type Human Chromosome Expression in Human Tissues Functions Performed in Humans 

BMP-1 8p21.3 

Heart, Skeletal Muscle, Kidney, Lung, Liver, 

Pancreas, Prostate, Bone Marrow, Thymus, 

Spleen, Spinal Cord, Brain 

Metalloprotease that cleaves  

COOH–propeptides of procollagens I, 

II, and III/Induces cartilage formation/ 

Cleaves BMP antagonist chordin [61] 

BMP-2 20p12 Pancreas, Spleen, Kidney, Lung 
Skeletal repair and regeneration/ 

Heart formation [62,63] 

BMP-3 (osteogenin) 4q21.21 
Bone Marrow, Spleen, Brain, Heart, Prostate, 

Pancreas, Skeletal Muscle, Thymus, 

Negative regulator of bone 

Morphogenesis [64] 

BMP-3b (GDF10) 10q11.22 
Spinal Cord, Skeletal, Muscle, Prostate,  

Brain, Pancreas 

Cell differentiation regulation/ 

Skeletal morphogenesis[65] 

BMP-4 (BMP-2b) 14q22–q23 

Brain, Spinal Cord, Spleen, Thymus,  

Bone Marrow, Heart, Skeletal Muscle, Kidney, 

Lung, Liver, Prostate, Pancreas 

Skeletal repair and regeneration/ 

Kidney formation [66–68] 

BMP-5 6p12.1 

Prostate, Spleen, Thymus, Bone Marrow, Brain, 

Spinal cord, Pancreas, Lung, Heart,  

Skeletal Muscle, Kidney 

Limb development/ 

Bone and cartilage morphogenesis/ 

Connecting soft tissues [69,70] 

BMP-6 (Vrg1, Dvr6) 6p24–p23 

Bone Marrow, Thymus, Heart, Skeletal Muscle, 

Spleen, Brain, Spinal Cord, Muscle, Kidney, Lung, 

Liver, Prostate, Pancreas 

Cartilage hypertrophy/ 

Bone morphogenesis/ 

Nervous system development [71,72] 

BMP-7 (OP1) 20q13 

Brain, Spinal Cord, Prostate, Thymus,  

Bone Marrow, Spleen, Heart, Skeletal Muscle, 

Kidney, Lung, Liver, Pancreas 

Skeletal repair and regeneration/ 

Kidney and eye formation/ 

Nervous system development [72–75] 

BMP-8a (OP2) 1p34.3 
Pancreas, Heart, Kidney, Thymus, Bone Marrow,  

Spleen, Brain, Spinal Cord, Lung, Prostate 

Bone morphogenesis/ 

Spermatogenesis [76] 

BMP-8b 1p35–p32 
Brain, Spinal Cord, Heart, Bone Marrow, 

Pancreas, Spleen, Skeletal Muscle, Kidney, Liver 
Spermatogenesis [76] 

BMP-9 (GDF2) 10q11.22 Liver 

Bone morphogenesis/Development of 

cholinergic neurons/Glucose 

metabolism/Anti-angiogenesis [77] 

BMP-10 2p13.3 

Thymus, Spleen, Brain, Spinal Cord,  

Heart, Lung, Pancreas, Prostate, Bone Marrow, 

Skeletal Muscle, Liver 

Cardiac morphogenesis [77] 

BMP-11 (GDF11) 12q13.2 
Thymus, Bone Marrow, Pancreas, Spinal Cord, 

Brain, Spleen 

Patterning mesodermal and Neural 

tissues, Dentin Formation [78] 

BMP-12 (GDF7/CDMP2) 2p24.1 Data not available 
Ligament and Tendon development/ 

Sensory neuron development [79] 

BMP-13 (GDF6/CDMP2) 8q22.1 Data not available 

Normal formation of bones and  

joins/Skeletal morphogenesis/ 

Chondrogenesis [80,81] 

BMP-14 (GDF5/CDMP1) 20q11.2 Bone Marrow, Kidney, Liver, Heart Skeletal repair and regeneration [75] 

BMP-15 (GDF9b) Xp11.2 Data not available Oocyte and Follicular development [82] 

BMP-16 Data not available Data not available Skeletal repair and regeneration [83] 

BMP-17 Data not available Data not available Data not found [84] 

BMP-18 Data not available Data not available Data not found [84] 
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Biological function, structure, physiology, signaling pathways and regulation of BMPs expression 

have already been reviewed in detail elsewhere [15,26,29,30,85,86]. In the present review we discuss 

the promising results obtained from the use of BMPs based tissue engineered bone constructs from 

preclinical experiments as well as clinical studies and the significant strides that have been made in 

recent years in the field of BMPs carriers. 

3. Carriers for BMPs 

Although it has been shown that BMPs can initiate bone formation in solution form [87], the dose 

required to induce bone formation can be dramatically reduced if BMPs are implanted with an 

appropriate carrier [87]. The principle role of BMP carrier system is to retain these growth factors at the 

site of injury for prolonged period of time and render an initial support for cells to attach and elaborate 

the extracellular matrix with subsequent regeneration of lost architecture [13]. There are a variety of 

biomaterials that can and have been investigated for BMP delivery for bone tissue engineering 

applications (Table 2). A carrier should ideally induce optimal inflammatory response, should be 

completely biodegradable and present adequate porosity for infiltration and proliferation of cells and 

sprouting blood vessels at the site of new bone formation [13]. Moreover, it should prevent degradation 

of BMPs while maintaining their bioactivity and allow a sustained release in a controlled manner to 

promote new bone formation at the site of defect [13,18,88–90]. Lastly, it should be easily sterilized, 

easy to handle and stable when stored and be commercially feasible allowing scale up production. In this 

section we discuss various carriers that have shown great promise and can potentially be used to 

construct an efficient and effective BMPs based tissue engineered bone construct. 

Table 2. Biomaterial carriers investigated for BMP delivery in bone tissue engineering. 

Carrier BMP Matrix type Model 

Synthetic Polymers    

PGA BMP-2 Membrane Dog periodontal repair [91] 

 BMP-2 Scaffolds Cervical spinal fusion in goats [92] 

 BMP-9 Scaffolds In vitro bone/cartilage formation [93] 

PLGA BMP-2 Scaffolds Orbital floor reconstruction in sheep [94] 

 BMP-2 Scaffolds Rabbit femoral head necrosis [95] 

 BMP-2 Scaffolds In vitro release and rat calvaria [96] 

 BMP-2 Scaffolds Canine mandibular defects [97] 

 BMP-2 Scaffolds Alveolar ridge defects in rats [98] 

 BMP-2 Scaffolds Rabbit radius defects [99] 

 BMP-2 Scaffolds Alveolar cleft repair in dogs [100] 

PLGA-gelatine BMP-2 Composites Rabbit ulnar defects [101] 

 BMP-2 Hydrogel/scaffold Rabbit knee cartilage/bone interface [102] 

 BMP-2 Composites Dog tooth defects [103] 

 BMP-2 Composites Dog tibia defects [101] 

PLGA-fibrin BMP-2 Sealant Rabbit radial bone defect [104] 

PLGA-heparin BMP-2 Composites Ectopic model in rat [105] 

PLA BMP-2 Scaffolds Rabbit ulna [106] 

 BMP-2 Composite Radial defects in rabbit [107] 

 BMP-2 Scaffolds Ectopic bone formation in rats [108] 
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Table 2. Cont. 

Carrier BMP Matrix type Model 

PLA-collagen BMP-2 Membrane Ectopic bone formation in rabbits [109] 

 BMP-2 Composite Rat ectopic bone formation [110] 

PLA-DX-PEG BMP-2 Scaffolds Femoral canine model [111] 

 BMP-2 Scaffolds Rat cranial defects [112] 

 BMP-2 Scaffolds Mice ectopic bone formation [113] 

PEG-based BMP-2 Hydrogels Rat cranial defects [114,115] 

 BMP-2 Hydrogels Rat critical sized cranial defects [116] 

 Bmp-2 Hydrogels In vitro release profiling [117] 

PEG-based, heparin BMP-2 Hydrogels Rat critical sized calvarial defects [118] 

Isopropylacrylamide BMP-2 Hydrogels Ectopic bone formation [119] 

Natural Polymers    

Fibrin BMP-2 Gels Rabbits, dogs, rats and cats; various bone defects [120–122] 

 BMP-2 Sealant Ectopic bone formation in mice [123,124] 

 BMP-2 Sealant Human frontal bone defect [125] 

 BMP-2 Sealant Differentiation of rabbit bone marrow cells [126] 

Fibrin-collagen BMP-2 Sealant in sponge Rat spinal model [127] 

Fibrin-heparin-collagen BMP-2 Sponge Mouse calvarial defects [128] 

Fibrin-heparin BMP-2 Sponge Spinal fusion in rabbit [129] 

 BMP-2 Sponge Posterior lumbar fusion in rabbits [130] 

Gelatine BMP-2 Hydrogel Rabbit skull defects [131] 

 BMP-2 Hydrogel Non-human primate skulls [132] 

 BMP-2 Hydrogel Ectopic bone formation in mice [133,134] 

Hyaluronic acid BMP-2 Hydrogel Ectopic bone formation in rats [135] 

 BMP-2 Hydrogel In vitro release model [136] 

 BMP-2 & 4 Sponges Rat mandibular defects [137,138] 

 BMP-2 Sponges Dog alveolar ridge defects [139] 

 BMP-2 Scaffolds Periodontal repair in dogs [91] 

 BMP-2 Gels Osteotomy in non-human primates [140] 

 BMP-2 Gels Non-union tibial defects in rabbits [141] 

Hyaluronic acid -PLA BMP-2 Composite Rat femurs critical sized defects [142] 

Silk fibroin BMP-2 Films Cranial defects in mice [143,144] 

 BMP-2 Nano-fibers (electrospun) Differentiation of human bone marrow cells [145] 

 BMP-2 Scaffolds Critical sized defects in rats [143] 

 BMP-2 Scaffolds Cranial defects in mice [146] 

Alginate BMP-2 Hydrogels Ectopic bone formation in mice [147] 

 BMP-2 Gels Tibial defects in rats and ectopic bone formation [112,148,149] 

 BMP-2 Gels Rabbit radial bone defects [150] 

Chitosan BMP-2 films C2C12 cell line differentiation [151] 

 BMP-2 Membranes Osteoblast cell differentiation [152] 

Chitosan-collagen BMP-7 Scaffold Cell differentiation [153] 

Chitosan-alginate BMP-2 Gel Mice trabecular bone formation [154] 

Chitosan-gelatine BMP-2 Composite Osteoblast differentiation [155] 

Dextran BMP-2 Hydrogel Rat ectopic model [156] 
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Table 2. Cont. 

Carrier BMP Matrix type Model 

Titanium    

Titanium BMP-2 Implant (porous) Dog humerus[157] 

 BMP-2 Implant (porous) Dog mandible [158] 

 BMP-7 Implant (threaded) Rabbit femur [159] 

 BMP-2 Particles In vitro assay [160] 

 BMP-2 Shell capsule composite Alveolar bone reconstruction [161] 

Titanium-HA BMP-2 Cylinder Sheep tibia [162] 

 BMP-2 Implant coating In vitro evaluation [163] 

Titanium-HA-heparin BMP-2 Composite In vitro and in vivo (distal femur of rabbit) [164] 

Titanium-chitosan BMP-2 Composite In vitro model [165] 

Micro and Nanoscale Carriers & Polymer-Ceramic Composites 

PLGA BMP-7 Microparticles Sheep vertebrae [166] 

 BMP-2 Microparticles Rabbit calvarial bone defects [167] 

 BMP-2 Microparticles Osteoblast differentiation in vitro [168] 

 BMP-2 Microparticles Rat femurs [169] 

 BMP-2 Microparticles Rat calvarial bone defects [170] 

PLGA-CaP BMP-2 Microparticles Rat cranial and ectopic model [171,172] 

PLA BMP-2 Microparticles Ectopic bone formation in rats [173] 

PLA-PCL BMP-2 Nanoparticles Radius of rabbits [174] 

Collagen-HA BMP-4 Microparticles Rabbit femoral bone defects [175] 

 BMP-2 Scaffold Implantation in rat hind limb [176] 

 BMP-2 Scaffold In vitro release study [177] 

 BMP-2 Nanocrystals/fibres Spinal fusion, tibial fractures in dogs [178] 

Dextran BMP-2 Nanoparticles In vitro differentiation of rabbit bone marrow cells [179] 

Dextran-PEG BMP-2 Microparticles In vitro differentiation of rabbit bone marrow cells [180] 

Dextran-gelatin BMP-2 Microparticles Periodontal regeneration in dogs [181] 

Chitosan-alginate BMP-2 Microparticles Canine defects [182] 

Hyaluronic acid-HA BMP-2 Composite Osteointegration in sheep cancellous bone [183] 

PLA-collagen-HA BMP-2 Composite Mice ectopic bone formation [184] 

 BMP-2 Composite Radius defects in dogs [185] 

PLA-PEG-HA BMP-2 Composite Rabbit radius model [186] 

PLA-DX-PEG-CaP BMP-2 Composite Femur defects in rabbits [187] 

 BMP-2 Composite Femur defects in rabbits [188] 

  Composite Spinal fusion in rabbits [189] 

Fibrin-CaP BMP-2 Sealant Rat calvarial defects [190] 

CaP BMP-2 Scaffold (porous) Maxillary sinus floor elevation in rabbits [191] 

 BMP-2 Solid free form fabricated scaffold In vitro and in vivo evaluation [192] 

Biphasic CaP BMP-7 Scaffold Ectopic mouse model [193] 

HA-TCP BMP-2 Scaffold Rabbit calvarium [194] 

 BMP-2 Scaffold Ectopic bone formation in rats [195] 

Notes: PGA: Poly-glycolic acid; PLGA: Poly-lactic-glycolic acid; PLA: Poly-lactic-acid; DX: Dioxanone;  

PEG: Poly-ethylene-glycol; HA: Hydroxylapatite; Ca-P: Calcium phosphate; PCL: Polycaprolactone. 
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3.1. Ceramics 

Research has shown that ceramics such as hydroxyapatite and other types of calcium phosphate 

materials can promote formation of bone like mineral surface leading to increased interface between 

bone and the implanted material [196]. Hydroxyapatite (HA), which comprises about 70% of bone, is 

an osteoconductive [197,198] material that can be formulated as blocks, disks, powder or granules [199]. 

Various research groups have tested HA alone [200] or in combination with other polymers for delivery 

of BMPs [194,201,202]. These studies demonstrate that HA is a very promising carrier for delivery of 

BMPs not only because it is osteoconductive and aids in retention of growth factors but also because it 

enhances the delivery of growth factors [47,203–205]. HA has very low biodegradation and that is a 

major disadvantage [196,206]. This limits the amount of newly formed bone that can replace the 

resorbing graft tissue [206]. To overcome this problem, β-TCP can be added to HA, to create a biphasic 

calcium phosphate composite material [207]. This has higher resorption rate and well described  

bioactivity [208,209]. 

Being osteoconductive and biocompatible, calcium phosphate based ceramics, cements and coatings 

have also been studied extensively. Association of BMP into a bone-like calcium phosphate could 

possibly help to control the release of BMP [210]. A major advantage in using calcium phosphate as 

rhBMPs carrier in comparison to other materials lies in the fact that high doses of rhBMPs are not 

required for bone formation [13,47,211]. Various studies have shown that rhBMP-2 when delivered 

through calcium phosphate based delivery systems results in accelerated bone healing [212,213]. 

Similarly studies on non-human primates have also yielded promising results [214,215]. Calcium 

phosphate based BMPs delivery systems have tremendous potential for tissue engineering based bone 

constructs but clinical trials need to be carried out to determine their effectiveness before they can be 

routinely used as an alternate to autogenous bone grafting procedures. 

3.2. Non-Ceramics 

3.2.1. Synthetic Biodegradable Polymers 

Various synthetic polymers have been used extensively in tissue engineering applications [13,216–218]. 

The possibility of prevention of disease transmission in grafting procedures through use of synthetic 

polymers instigated the scientists to develop synthetic polymer based BMP carriers. Initially  

Polylactic acid (PLA) due to its adsorptive stability was investigated as a potential BMP carrier in the early 

1990s [219], but was soon considered ineffective due to release of acidic degradation by products [220]. 

Further research lead to development of a new generation of PLA-based synthetic poylmers, including 

polylactic acid-p-dioxanone-polyethylene glycol (PLA-DX-PEG) and polylactic acide-polyehylene glycol 

(PLA-PEG) [216,221,222]. Due to its versatile temperature dependent liquid-semi solid transition,  

PLA-PEG allows percutaneous injection after heating [13]. This injectable approach provides a less 

invasive alternative to open surgical procedure [218]. Similarly experiments with PLA-DX-PEG 

showed promising results. It was observed that synchronization existed between new bone formation by 

BMP and polymer biodegradation [223]. PLA-DX-PEG has been tested by different research groups in 

various animal models [59,187,222,224]. Further research has tested composites of PLA-DX-PEG with 

calcium phosphate and demonstrated that combination of calcium phosphate with PLA-DX-PEG 
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reduces the requirement of rhBMP needed to induce new bone formation [13,188,225]. Recently 

developed composites of hydroxyapatite with PLA-PEG, hydroxyapatite with polyamide and 

hydroxyapatite with collagen composites have also shown great promise when used in conjunction with 

rhBMP-2 for tissue repair in different animal models [186,226,227]. 

Polyglycolic acid (PGA) which has superior mechanical strength when combined with PLA results 

in Polylactic-co-glycolic acid (PLGA) which has received much attention for tissue engineering 

applications [228]. Biodegradation of the composite can be controlled by changing the proportion of the 

two materials [229,230]. PLGA has been tested in various studies and the promising results show 

tremendous potential of PLGA as a carrier for BMPs [99–101,103]. Interestingly when rhBMP was used 

in conjunction with PLGA, much higher bone formation was observed in comparison to PLGA alone, 

highlighting the osteoinductive potential of BMPs [94,97,98]. More recently a new approach involving 

conjugation of heparin to PLGA scaffold was tested by Jeon and co-workers [105]. They reported that the 

resultant composite demonstrated a much longer sustained release of rhBMP-2, resulting in significantly 

more new bone formation [105]. 

As hydrogels contain large amounts of water, they have long been considered potential candidates for 

proteins and drug delivery [231–235] and many synthetic polymers have already been formulated as 

hydrogels for BMPs delivery. PEG based hydrogel with extracellular matrix-like characteristics, such as 

integrin binding sites for cellular attachment and substrates for matrix metalloproteinases (MMPs) for 

delivery of rhBMP-2 has been reported [114,115]. These studies showed promising results with initial 

cellular penetration followed by bone tissue formation within the hydrogel [114,115]. In a similar study, 

Pratt and co-workers [118] demonstrated cellular penetration of PEG-based hydrogel, which was 

conjugated with heparin and plasmin for improving rhBMP-2 stability [118]. Similarly Fisher and 

colleagues reported successful use of poly-propylene fumarate-co-ethylene glycol based rhBMP-7 

carrying thermo-reversible hydrogel for tissue engineering of cartilage [236]. The authors concluded that 

these hydrogels could be potentially used for regeneration of cartilage tissue [236]. In another study, 

Gao and Uludag [119] demonstrated that N-isopropylacrylamide and N-acryloxysuccinimide based 

hydrogels could be successfully used for effective and controlled delivery of proteins such as BMPs [119]. 

The main drawback of using synthetic polymers is the risk of potential inflammatory response due to 

acidic by-products because of polymer degradation [228] which may interfere with the stability of 

adsorbed BMPs. This has incited scientists to look for other materials that can serve as BMP delivery 

carriers without such limitations. 

3.2.2. Natural Polymers 

Ideally an implant based on the principles of tissue engineering should mimic natural environment of 

tissues and in this context natural polymers can render the additional benefit of accelerated healing as 

they can send signals to guide cells in various stages of their development [13,176,237]. Various natural 

polymers including collagen, silk, alginate, agarose, chitin and chitosan have been tested as potential 

carriers for delivery of BMPs [238]. Many of these materials are developed from substances naturally 

present in extracellular matrix, cartilage and bone. Therefore, it is no surprise that these materials exhibit 

excellent properties for potential use in regenerative medicine [239,240].  
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In a series of studies, Saito and co-workers developed alginate gels incorporated with peptides 

corresponding to BMP-2 region that binds to cell receptors. Using this gel they demonstrated successful 

repair of bone defects in rat and rabbit models [149,150,241]. Simmion and co-workers [147] also 

reported successful delivery of rhBMP-2 in rats using alginate hydrogels [147]. Chitosan derived from 

alkaline deacetylation of chitin has also been formulated in different forms including fibre meshes [242] 

and hydgrogels [243] which have shown great promise for use in tissue engineering of bone and cartilage 

making it a potential candidate for delivery of BMPs [13,244]. In a study by Park et al. [154], the authors 

demonstrated that a composite gel comprising of chitosan and alginate loaded with rhBMP-2 and 

mesenchymal stem cells could induce new bone formation [154]. In another in vitro study, Liang and 

co-workers observed that when rhBMP-2 was incorporated in a chitosan-gelatin based scaffold, it 

increased the expression of osteocalcin, a biomarker of osteoblast cell lines [155]. It has been shown that 

chitosan and PGA, and chitosan and collagen based composite scaffold for delivery of rhBMP-2 has 

tremendous potential in bone regenerative therapies due to enhanced release amount and sustained 

release of rhBMP-2 [153,245]. 

Fibrin, which can be formulated in an adhesive glue like delivery system [246] has also been studied 

as a potential carrier for BMPs delivery in different animal models. It has been tested in vivo as a carrier 

for rhBMP-4 [247] and rhBMP-2 [190] in the form of fibrin-fibronectin sealing system and for  

rhBMP-2 [248] in the form of fibrin sealant. These studies demonstrated much higher bone formation in 

test sites where fibrin carrier was loaded with rhBMP as compared to control sites. Other research groups 

have also reported development of fibrin matrices for delivery of rhBMPs [120–122]. These matrices 

were used to treat bone defects in rat, cats and dogs. They reported bridging of the bone defect with 

functional bone healing, demonstrating effectiveness of this delivery system. All in all, fibrin-based 

BMPs carriers are a valuable addition to bone engineering scaffolds considering they promote bone 

formation [249] and allow retention of growth factors [250]. 

Hyaluronans distributed widely throughout the connective tissue can also been formulated into pads, 

sponges and gels for delivery of rhBMPs. In a study by Kim and Valentini [251], the authors demonstrated 

that hyaluronan based rhBMP-2 carrier retained higher concentration of BMP in comparison to collagen 

gels [251]. Since then hyaluronan based carriers have been used in a number of studies to deliver  

rhBMP [139–142,183,252]. More recently hyaluronic acid based carrier was used to deliver BMPs for 

treatment of mandibular defects in rats. The authors found that significantly more bone was formed when 

rhBMP-2 was used in addition to carrier in comparison to carrier alone [137,138]. 

Silk has also been suggested as a possible carrier for BMPs delivery. Derived from silkworm larvae 

cocoons, silk has been extensively investigated by various research groups for use as a BMPs vehicle [13]. 

Following in vitro and in vivo studies, Karageorgiou and colleagues reported that rhBMP-2 retained its 

activity when it was directly immobilized on silk fibroin films [144]. In another study, silk-based scaffold 

was used to deliver rhBMP-2 [145]. The authors reported that this delivery system induced osteogenesis 

in cultures of mesenchymal stem cells with increase in alkaline phosphatase activity and calcium 

deposition [145]. Similar results were obtained when silk fibroin scaffold was used to deliver BMP-2 at 

bone defect sites in mice [143]. Others have also reported promising results when rhBMP-2 in 

combination with human mesenchymal stem cells delivered through silk fibroin scaffold were used in 

treatment of critical sized bone defects in rats [146]. In comparison to other protein-based materials, 

degradation rate of silk is slower which allows sufficient time for bone healing. This particular advantage 
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makes silk a very promising candidate for delivery of BMPs and for development of various bone tissue 

engineering constructs [253]. 

Collagen is the most abundant protein in mammalian connective tissue and is the main non-mineral 

component of bone. It can also positively influence cellular infiltration and wound healing.  

Another advantage lies in its ability to be processed in aqueous form [13]. Furthermore collagen and its 

breakdown products are also physiologically biocompatible [13,153] and, hence, it is no surprise that 

many collagenous formulations including demineralised bone matrix, collagen strips, resorbable 

collagen sponges, collagen gels, and fibril collagen have been prepared for applications in tissue 

engineering [51,153,176,254–257].  

Versatility, wettability and ease of manipulation has led many scientists to test the possibility of use 

of collagen sponges as a carrier for delivery of rhBMPs in various tissue engineering applications 

including fractures and critical sized bone defects [176,258]. Numerous studies have revealed safety and 

effectiveness of collagen sponge and two collagen sponge delivery systems have been approved by FDA 

for delivery of rhBMP-2 and rhBMP-7 as an alternate to bone grafts for spinal fusion and long bone 

fractures [258–260]. However, the collagen used in these carriers is of animal origin and poses a risk of 

immunological reaction and possibility of transmission of infectious agents and diseases [261,262] and 

hence scientists are constantly striving to develop a superior delivery system for BMPs. 

3.2.3. Titanium 

BMPs were first tested in 1994 for surgical reconstructions in craniomaxillofacial surgery using 

titanium implants [263]. Titanium implants treated with BMP-2 [264] have also been tested along with 

bioactive titanium dioxide/hydroxyapatite surfaces functionalized with BMP-2 in vitro [163,265]. In 

vivo testing of bone response to titanium implants with BMP has also been evaluated [266]. In a sheep 

model, the osteointegration of hydroxyapatite-titanium implants coated with non-glycosylated BMP-2 

was evaluated and showed promising bone response [162]. Osteoblast differentiation and mineralization 

promoted by a globular fibrinogen layer through cell autonomous BMP signaling on titanium carrier 

surfaces has been studied [54]. Greater bone formation was demonstrated on apatite-coated titanium 

with incorporated BMP-2/heparin in vivo [267]. The effect of immobilization of heparin and BMP-2 to 

titanium surfaces has been studied for improving osteoblast function and osteointegration [169,268–271]. 

Surface modification of titanium with hydroxyapatite-heparin-BMP-2 has been shown to enhance the 

efficacy of bone formation and osseointegration in vitro and in vivo [164]. Fabrication of printed titanium 

shells for containment of BMP-2 composite graft materials for alveolar bone reconstruction has also 

been researched upon [161]. 

3.3. Microspheres, Nanoparticles and Ceramic/Polymeric Composite Microspheres 

Over the years great deals of resources have been invested in the area of micro and nanoparticles in 

search of simple, efficient and cheap drug delivery systems. Researchers have also tested microspheres 

and nanoparticles for delivery of BMPs [13]. Following promising results of PLGA based BMPs delivery 

systems, microshperes of PLGA have been studied in various animal models including calvarial bone 

defects in rats [170], rat femur [272] and rabbit calvarial defects [167]. These studies demonstrated that 

presence of rhBMP within PLGA microspheres was necessary for bone formation [272] and resulted in 
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restoration of normal contouring and radiopacity of defects whereas only soft tissue formation was 

observed when PLGA microshperes were used alone [170].  

Wang and colleagues have also evaluated collagen-hydroxyapatite composite microspheres for 

delivery of BMPs. They observed that when BMP-4 based particles were implanted in rabbit femoral 

defects, significant bone formation took place in comparison to influx of inflammatory cells and fibrous 

tissue formation at sites, which were treated with carrier particles alone [175]. Recently Chen and  

co-workers carried out a series of interesting studies where they used dextran based microshperes and 

nanoparticles for delivery of BMPs [273,274]. They reported that by varying proportion of the 

constituent components, the release of rhBMP could be increased to more than 28 days [275].  

Novel approaches that use nanoparticles of sulphated chitosan, hydroxylapatite, silica, metallofulerene 

have also been explored to deliver BMPs for bone tissue engineering applications [53,57,276–283]. 

Although there are some unresolved issues in use of microspheres or nanoparticles for delivery of BMPs 

like inadequate mechanical strength of scaffold or loss of bioactivity of growth factor [284] but nanoparticle 

technology is one of the most promising approaches for future of tissue engineering of bone. 

4. Bone Regeneration Using BMPs 

4.1. Preclinical Studies 

Research has revealed that BMPs play a critical role in growth and differentiation of various cell lines 

including osteoblasts [15]. A number of preclinical experiments including animal studies have demonstrated 

the effectiveness of recombinant human BMPs in regeneration of bone [27,285–294]. Many of these 

preclinical studies used critical sized bone defect model. In bone, “critical sized defects” are defined as 

defects that do not heal without intervention [295]. For instance healing of critical sized bone defects by 

BMP-2 was shown in different species including rabbits, sheep, dogs and non-human primates [17,85]. 

Healing of bone defects using genetic approach where an implant comprising of a bioresorbable polymer 

mixed with mesenchymal stem cells transfected with adenovirus BMP-2 has also been reported [85]. It 

has also been shown that systemic administration of rhBMP-2 results in increased activity of 

mesenchymal stem cells and reversal of age related and ovariectomy induced bone loss [296]. Recently 

different research groups have also shown that rhBMP-2 when delivered on a calcium phosphate carrier 

or with liposome carrier, results in accelerated bone healing in rat and rabbit models [85]. In another study 

complete bone regeneration was observed when rhBMP-2 soaked collagen was grafted in critical sized 

calvarial defects in rats [297]. Similar results were observed by Yasko and co-workers following grafting 

of rhBMP-2 in rat femoral defects [298]. In another study, femoral defects in sheep showed evidence of 

new bone formation four weeks post rhBMP-2 grafting. Eight weeks later complete bone union was 

verified by radiographical analysis. Histological evaluation after 52 weeks of implantation revealed 

presence of woven and lamellar bone [299]. A study in dogs evaluating the role of rhBMP-2 in bone 

defects revealed complete healing of mandibular defects within three months. The authors then assessed 

the bone quality by degree of mineralization, bone thickness and biomechanical strength over the three 

months. They observed significant improvement in all three parameters [300]. In a series of recent 

studies, Cook and colleagues demonstrated that grafting of collagen based rhBMP-7 particles resulted 

in restoration of critical sized bone defects in rabbits and dogs. Radiographical evidence of complete 
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union was observed at the end of two months. Biomechanical experiments showed that mean torsional 

strength of the unions was comparable to that observed in intact bone [285,301]. In a study in non-human 

primates by Ripamonti and co-workers, evidence of new bone formation was observed as early as  

15 days post-surgery and complete bone formation was achieved in three months [302]. Similar results 

were obtained when rhBMP-7 was grafted in sinuses and dental extraction sites in chimpanzees [303]. 

All these studies suggest that BMPs can lead to complete healing of critical sized bone defects in short 

period of time in various species. 

4.2. Clinical Studies 

It is surprising that despite the positive role BMPs play in accelerating fracture repair and bone  

healing [18,22,304–308], they have been studied only to a limited extent in human clinical trials. 

However, in the last decade many clinical studies were conducted which yielded promising and 

encouraging as summarized in (Table 3). 

Table 3. Clinical studies carried out using BMPs for bone tissue engineering. 

Clinical Studies Using BMP-2 

Authors Type of Fracture Methods Findings 

Herford, A.S. and Boyne, P.J. [309] 
Mandibular Continuity 

Defect 

Patients were treated with 

rhBMP-2 alone or in conjunction 

with collagen carrier without 

concomitant bone material. 

Successful osseous restoration of critical 

sized edentulous area was observed 

which was then followed by prosthetic 

treatment.  

Sweeny, L., Lancaster, W.P.,  

Dean, N.R., Magnuson, J.S.,  

Carroll, W.R., Louis, P.J.,  

Rosenthal, E.L.[310] 

Mandible 

Test Group: Standard treatment 

plus rhBMP-2. 
There was no significant difference in 

the measured outcomes between the two 

groups. 
Control Group: Standard treatment 

without use of rhBMP-7. 

Govender, S., et al [311] 
Open Tibial Shaft 

Fractures 

Control Group: Received 

standard of care. 

The implant containing 1.5 mg/mL 

rhBMP-2 was significantly superior to 

standard of care in accelerating fracture 

and wound healing, reducing of rate of 

infections and frequency of secondary 

interventions. It also reduced the overall 

invasiveness of the procedure. 

Test Group: Received standard of 

care with implant containing 

rhBMP-2 in concentration of  

0.75 mg/mL or 1.5 mg/mL. 

Tressler, M.A., Richards, J.E.,  

Sofianos, D., Comrie, F.K.,  

Kregor, P.J., Obremskey, W.T.[312] 

Long Bone Non-unions 

Patients were given standard 

treatment with iliac crest bone 

graft or rhBMP-2. 

No statistically significant difference 

was observed in rate of healing and 

postoperative infection. Iliac bone graft 

resulted in significantly more 

intraoperative blood loss and longer 

operative procedures. 

Bibbo, C., Patel, D.V.,  

Haskell, M.D. [313] 

High risk ankle  

and hind foot fusion 

Patients were treated with standard 

of care in conjunction with 

rhBMP-2. 

Successful union was achieved in 96% 

fracture sites. The authors concluded 

that rhBMP-2 is an effective adjunct for 

treatment of high risk ankle and hind  

foot fusions. 

  

http://www.ncbi.nlm.nih.gov/pubmed?term=Sweeny%20L%5BAuthor%5D&cauthor=true&cauthor_uid=22177824
http://www.ncbi.nlm.nih.gov/pubmed?term=Lancaster%20WP%5BAuthor%5D&cauthor=true&cauthor_uid=22177824
http://www.ncbi.nlm.nih.gov/pubmed?term=Dean%20NR%5BAuthor%5D&cauthor=true&cauthor_uid=22177824
http://www.ncbi.nlm.nih.gov/pubmed?term=Magnuson%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=22177824
http://www.ncbi.nlm.nih.gov/pubmed?term=Carroll%20WR%5BAuthor%5D&cauthor=true&cauthor_uid=22177824
http://www.ncbi.nlm.nih.gov/pubmed?term=Louis%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=22177824
http://www.ncbi.nlm.nih.gov/pubmed?term=Rosenthal%20EL%5BAuthor%5D&cauthor=true&cauthor_uid=22177824
http://www.ncbi.nlm.nih.gov/pubmed?term=Tressler%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=22146205
http://www.ncbi.nlm.nih.gov/pubmed?term=Richards%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=22146205
http://www.ncbi.nlm.nih.gov/pubmed?term=Sofianos%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22146205
http://www.ncbi.nlm.nih.gov/pubmed?term=Comrie%20FK%5BAuthor%5D&cauthor=true&cauthor_uid=22146205
http://www.ncbi.nlm.nih.gov/pubmed?term=Kregor%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=22146205
http://www.ncbi.nlm.nih.gov/pubmed?term=Obremskey%20WT%5BAuthor%5D&cauthor=true&cauthor_uid=22146205
http://www.ncbi.nlm.nih.gov/pubmed?term=Bibbo%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19589304
http://www.ncbi.nlm.nih.gov/pubmed?term=Patel%20DV%5BAuthor%5D&cauthor=true&cauthor_uid=19589304
http://www.ncbi.nlm.nih.gov/pubmed?term=Haskell%20MD%5BAuthor%5D&cauthor=true&cauthor_uid=19589304
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Table 3. Cont. 

Clinical Studies Using BMP-7 

Authors Type of Fracture Methods Findings 

Moghaddam, A., Elleser, C.,  

Biglari, B., Wentzensen, A., 

Zimmermann, G. [314] 

Long Bone Non-unions 

Patients who had atrophic  

non-union of long bones were 

treated with rhBMP-7 in a Type 1 

Collagen carrier without 

concomitant bone graft material, 

with bone graft and bone graft 

and osteosynthesis revision. 

Successful union was observed in 82% 

fractures. Healing was confirmed 

clinically as well as radiographically. 

Dohin, B., Dahan-Oliel, N.,  

Fassier, F., Hamdy, R. [315] 

Persistent non-union 

involving different bones 

OP-1 (BMP-7) with Type 1 

Collagen carrier was used in 

conjunction with standard of care. 

Clinical and radiographical evidence of 

bone healing was observed in 74% 

patients. The authors concluded that OP-1 

stimulates healing of persistent non-union 

without serious adverse effects. 

Moghaddam-Alvandi, A., 

Zimmermann, G., Büchler, A.,  

Elleser, C., Biglari, B.,  

Grützner, P.A., Wölfl, C.G. [316] 

Non-union in Long Bones 

rhBMP-7 was applied in  

non-union fracture of long bones. 

Before application of rhBMP-7 

patients had already underwent 

surgical treatment an average of 

3.3 times. 

Proper bone healing was observed in 

92% fracture sites. The authors 

concluded that although rhBMP-7 may 

not be used in all non-union cases,  

it appears to be effective in treatment of 

complex cases. 

Nicodemo, A., Capella, M.,  

Deregibus, M., Massè, A. [317] 
Non-union Sacral Fracture 

Patients who had previously 

failed to respond to standard of 

care were treated with rhBMP-7 

as an adjunct to standard of care. 

The use of rhBMP-7 resulted in 

successful healing of fractures which 

had previously failed to heal with 

traditional surgical techniques. 

A study by Govender and co-workers [311] showed that when rhBMP-2 was delivered using an 

absorbable collagen sponge for treatment of open tibial fractures, there was a 44% reduction in risk of 

failure of healing. The authors also reported significantly less secondary invasive interventions and 

overall shorter healing time in comparison to control group [311]. This combination of rhBMP-2 and 

absorbable collagen has been approved by Food and Drug Administration (FDA) and regulation authorities 

in Europe and is being commercialized under the name of InFuse in the US and InductOs in Europe. In a 

similar study, rhBMP-7 bound to bovine type 1 collagen was compared to autogenous bone graft for 

treatment of non-union tibial fractures. Although there was no improved healing with rhBMP-7 but the 

study showed that results with rhBMP-7 and bovine type 1 collagen were comparable to autogenous 

bone graft, which is considered the gold standard in treatment of critical sized bone defects [318].  

In another study by Canadian Orthopaedic Trauma Society, the use of rhBMP-7 for treatment of open 

tibial shaft fractures was evaluated. Patients were randomly divided into test groups which received  

rhBMP-7 and control groups where rhBMP-7 was not part of the treatment modality. Clinical, 

radiological and serological testing revealed that a significantly larger number of patients in the test 

group were able to fully bear weight without pain at the 12 month follow up period in comparison to the 

control group. Secondary intervention for delayed union and non-union was also significantly lower in 

the rhBMP-7 group as compared to the control group. Furthermore, no rhBMP-7 related adverse effects 

were encountered [319]. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Moghaddam%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19885667
http://www.ncbi.nlm.nih.gov/pubmed?term=Elleser%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19885667
http://www.ncbi.nlm.nih.gov/pubmed?term=Biglari%20B%5BAuthor%5D&cauthor=true&cauthor_uid=19885667
http://www.ncbi.nlm.nih.gov/pubmed?term=Wentzensen%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19885667
http://www.ncbi.nlm.nih.gov/pubmed?term=Zimmermann%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19885667
http://www.ncbi.nlm.nih.gov/pubmed?term=Dohin%20B%5BAuthor%5D&cauthor=true&cauthor_uid=19588211
http://www.ncbi.nlm.nih.gov/pubmed?term=Dahan-Oliel%20N%5BAuthor%5D&cauthor=true&cauthor_uid=19588211
http://www.ncbi.nlm.nih.gov/pubmed?term=Fassier%20F%5BAuthor%5D&cauthor=true&cauthor_uid=19588211
http://www.ncbi.nlm.nih.gov/pubmed?term=Hamdy%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19588211
http://www.ncbi.nlm.nih.gov/pubmed?term=Moghaddam-Alvandi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22476375
http://www.ncbi.nlm.nih.gov/pubmed?term=Zimmermann%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22476375
http://www.ncbi.nlm.nih.gov/pubmed?term=B%C3%BCchler%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22476375
http://www.ncbi.nlm.nih.gov/pubmed?term=Elleser%20C%5BAuthor%5D&cauthor=true&cauthor_uid=22476375
http://www.ncbi.nlm.nih.gov/pubmed?term=Biglari%20B%5BAuthor%5D&cauthor=true&cauthor_uid=22476375
http://www.ncbi.nlm.nih.gov/pubmed?term=Gr%C3%BCtzner%20PA%5BAuthor%5D&cauthor=true&cauthor_uid=22476375
http://www.ncbi.nlm.nih.gov/pubmed?term=W%C3%B6lfl%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=22476375
http://www.ncbi.nlm.nih.gov/pubmed?term=Nicodemo%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21614598
http://www.ncbi.nlm.nih.gov/pubmed?term=Capella%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21614598
http://www.ncbi.nlm.nih.gov/pubmed?term=Deregibus%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21614598
http://www.ncbi.nlm.nih.gov/pubmed?term=Mass%C3%A8%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21614598
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In a similar study, use of rhBMP-7 was evaluated for treatment of distal tibial fractures [320]. Patients 

treated with hybrid external fixation and BMP-7 was compared with patients who received similar 

treatment without the use of rhBMP-7. Authors reported that the mean time for removal of external 

fixator, mean time to achieve union and mean time off work were significantly lower in the rhBMP-7 

treated group compared to the control group [320]. BMP-7 has also been evaluated in a prospective 

randomized controlled trial for treatment of proximal pole scaphoid non-unions [321]. The patients were 

divided into three groups: Group 1 received autografts alone, Group 2 received autografts with  

rhBMP-7, and Group 3 received allograft with rhBMP-7. Clinical, radiological and scintigraphic 

assessment revealed that rhBMP-7 improved performance of both autografts and allografts. Radiological 

evidence of healing in patients treated with autografts and rhBMP-7 was four weeks in comparison to 

nine weeks for patients treated with autografts alone. Furthermore clinical outcome of patients treated 

with allograft and rhBMP-7 was equal to Group 1 where patients were treated with autografts alone [321]. 

In a prospective study, twenty-three consecutive patients with atrophic humeral diaphyseal non-unions 

were treated with compression plates or intramedullary nails in conjunction with rhBMP-7. The authors 

reported that union was achieved in all patients without any serious complications or adverse effects. 

They concluded that rhBMP-7 was safe and effective for treatment of humeral diaphyseal non-unions [322]. 

In a recent prospective single arm study [323], McKee and colleagues examined the effectiveness of 

rhBMP-7 for treatment of atrophic long bone non-unions. Participating patients on an average had 2.1 

previous operations and autogenous iliac crest bone grafting had already failed in 28 of them. All the 

patients underwent revision fixation with application of rhBMP-7 at the non-union site. The authors 

reported that 54 of the original 61 non-union cases had healed at the conclusion of the study and that 

there were no anaphylactic reactions or adverse effects associated with the use of rhBMP-7 [323].  

In another study, a case review was made of 14 patients who underwent treatment for lesions of the body 

and angle of the mandible resulting from neoplasms or osteomyelitis. The patients were treated with 

rhBMP-2 on a collagen carrier without concomitant use of bone materials. The study revealed that all 

the cases had successful osseous restoration of the edentulous area, which was subsequently followed 

by prosthetic treatment. The authors concluded that use of rhBMP-2 in treatment of critical sized 

mandibular defects without concomitant use of bone grafts resulted in excellent regeneration of affected 

area allowing the restoration of prosthodontic function [309]. 

5. Controversy with rhBMPs 

Although BMPs are being studied extensively for bone tissue engineering and repair applications, 

controversy exists. This is regarding the success and failure of rhBMP-2 in conflicting reports.  

The muddled reporting of its clinical superiority to autografts from iliac crests and the failure to report 

or underreporting of adverse side effects from its use exist [15,16,324,325]. Since 2006, independent 

research studies started demonstrating 20%–70% failure rates with the use of rhBMP-2 [326]. Seroma 

formation, bone over growth, retrograde ejaculation and increased risk of neoplastic changes are the 

most common complications associated with their use. The FDA placed a warning on BMP use in June 

1998 in cervical spine applications due to extreme postoperative dysphagia [325,327]. The Wall Street 

Journal reported that Medtronic was under investigation for off label use of INFUSE (rhBMP-2) [327]. 

Allegations came forward of cherry picked research results and fraud by the author in a study showing 



Materials 2015, 8 1793 

 

 

the effective use of rhBMP-2 [328]. It was revealed that the author had a conflict of interest and financial 

ties to the manufacturer of rhBMP-2 [327]. This led to the reputation of rhBMP-2 being tarnished and it 

clinical usefulness questioned. The question that was being raised was that is the advantage gained by 

the use of BMP worth the risks it poses. In order to clear some of the confusion, systemic reviews and 

meta-analysis of results were conducted independently by Yale. The reports found that the current data 

in whole does not show a significant improvement in fusion rates with the use of rhBMP-2 as compared 

to autograft iliac crest bone graft used alone [325–327]. Both BMP-2 and iliac crest bone graft were 

shown to be associated with similar rates of neurological and retrograde ejaculation and complications 

when used in posterolateral or anterior interbody lumbar fusion [325,327]. It was concluded that BMP-2 

use results higher rates of ectopic bone formation in posterior lumbar interbody procedures and high 

rates of complication in anterior cervical procedures [326,327]. Although there is a slight risk of cancer with 

the use of BMP-2, the absolute risk remains extremely small and, therefore, clinically insignificant [18,327]. 

6. Future Challenges 

The discovery of BMPs ushered a new era not only in understanding of bone physiology but also in 

development of new methods for treatment of defects that require orthopaedic and maxillofacial  

surgery [13,24]. During the last decade, many successful preclinical and clinical studies have been 

carried out which are a testament to the tremendous potential of BMPs for use in tissue engineering 

applications for treatment of bone defects. These cytokines have the unique capacity to initiates bone 

formation not only in osseous tissues but also in extra-skeletal sites [14,45]. It has taken more than 40 

years of time and great deal of painstaking research from the initial discovery of these cytokines by 

American Orthopaedic Surgeon Marshall Urist [14,26,329] to their approval for clinical use by FDA.  

A lot of work still needs to be done if more BMPs based tissue engineering constructs are to become 

available for routine clinical use. It would require elucidation of optimal therapeutic dosage, 

development of more efficient carriers and better understanding of local bone repair environment [14]. 

Further research will also be required to better define the variables such as route of administration and 

ideal scaffold material. 

The use of BMPs based delivery systems is still in its early days, but recent clinical studies in humans 

suggest that a promising future will unravel in development of BMPs based products for orthopaedics, 

periodontics, maxillofacial surgery and other clinical situations. Up until this point most studies and 

clinical trials have focused on rhBMP-2 and rhBMP-7 but given that bone regeneration involves intricate 

interplay of network of molecules, it is likely that use of cocktail of molecules comprising of different 

BMPs may be more suitable approach than a single molecule [13,28,29,330] and hence there is a great 

need for research to evaluate this potential approach. Similarly advances in the field of biomaterials will 

also increase the potential approaches for delivery of BMPs for treatment of bone defects. Novel strategies 

such as nanoparticles and injectable systems will allow restricted and site specific delivery of BMPs. 

Systems which could potentially deliver BMPs with angiogenic factors and cells could potentially 

enhance rate, volume and quality of newly formed bone [13,25].  

Although there have been limited clinical trials in comparison to a large pool of preclinical studies 

for evaluation of BMPs for routine clinical application in humans but their results have demonstrated 

that BMPs are effective and there is evidence to suggest that in some situations their efficacy is 
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comparable to or even better than autografts [45]. Although controversy exists regarding their use due 

to side effects observed in spinal applications [327]. BMP-7 has been compared to autogenous bone graft 

harvested from iliac crest, currently considered the gold standard in bone grafting materials. Preclinical, 

clinical and long-term follow up studies have demonstrated safety and effectiveness of BMP-7 [25,331]. 

Furthermore, prospective clinical trials evaluating the effectiveness of rhBMP-2 and rhBMP-7 for 

treatment of bone fractures and non-unions have also shown very encouraging results. It is only pertinent 

that more research is done to expound the relative effectiveness of BMPs, interaction among different 

types of BMPs and characteristics of the cells responding to BMP signaling. Additionally, there is a 

great need to distinguish if there is a single pathway to efficient bone regeneration or different clinical 

scenarios that require more specific tissue engineering approaches. This would enable us to better 

understand the physiological process involved in bone healing allowing us to develop more efficient and 

effective tissue-engineered bone constructs. 

The principles of inter-species BMP dose extrapolation are not completely understood currently and 

are applied with varying success in clinical scenarios. Simple scaling of drug doses used in preclinical 

experimental animal models to humans can be erroneous and misleading. The physicochemical properties 

of the BMPs used and/or the knowledge of interspecies differences in physiology can be used to improve 

drug dosing. However, differences in BMP transport via carrier scaffolds, the dose–response relationship 

and metabolism makes the assessment of accurate BMP dosing for clinical applications very difficult. 

The reported adverse effects of BMP clinical use give rise to several imperative questions that remain to 

be addressed. One challenge is that BMP therapeutics use microgram amounts while endogenous BMPs 

act within the nanogram level. Development of smarter biomaterial carrier for delivery of BMPs and 

other growth factors in a better-controlled fashion is required. The ever increasing applications for use 

of BMPs reaffirms that future of regenerative medicine, particularly of BMPs for bone tissue engineering 

is a bright one [13,18] and possibility of a tissue engineered bone construct as an alternate to autogenous 

bone graft may be a reality in not so distant future. 
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