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Abstract

Detection of interacting risk factors for complex traits is challenging. The choice of an appropriate method, sample size, and
allocation of cases and controls are serious concerns. To provide empirical guidelines for planning such studies and data
analyses, we investigated the performance of the multifactor dimensionality reduction (MDR) and generalized MDR (GMDR)
methods under various experimental scenarios. We developed the mathematical expectation of accuracy and used it as an
indicator parameter to perform a gene-gene interaction study. We then examined the statistical power of GMDR and MDR
within the plausible range of accuracy (0.50,0.65) reported in the literature. The GMDR with covariate adjustment had a
power of.80% in a case-control design with a sample size of$2000, with theoretical accuracy ranging from 0.56 to 0.62.
However, when the accuracy was,0.56, a sample size of$4000 was required to have sufficient power. In our simulations,
the GMDR outperformed the MDR under all models with accuracy ranging from 0.56,0.62 for a sample size of 1000–2000.
However, the two methods performed similarly when the accuracy was outside this range or the sample was significantly
larger. We conclude that with adjustment of a covariate, GMDR performs better than MDR and a sample size of 1000,2000
is reasonably large for detecting gene-gene interactions in the range of effect size reported by the current literature;
whereas larger sample size is required for more subtle interactions with accuracy,0.56.
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Introduction

Complex traits are controlled by multiple genetic factors working

in concert and responding to the environment. Although the exact

inheritance mechanisms of such traits are largely unknown, it is

commonly accepted that there are interactions of numerous

biological processes, which contribute, directly or indirectly, to

phenotypes [1,2]. These genetic mechanisms differ from those of

conventional Mendelian traits in several ways: (1) multiple genes are

involved [3,4]; (2) the roles of the genes are defined in the context of

their related genes; and (3) the magnitude of the gene effects depends

on the environment to which they are exposed [5]. A major

achievement in detecting epistasis for complex traits is the

development of constructive induction approaches [6], including

the multifactor dimensionality reduction method (MDR) [7,8,9], the

combinatorial partitioning method (CPM) [10], and the restricted

partition method (RPM) [11]. The MDR is a powerful approach to

detect gene-gene (G6G) interactions and ideally discriminates

between discrete clinical endpoints when using multilocus genotypes

[12]. To circumvent the weaknesses of existing MDR approaches

[13], we previously developed a generalized MDR (GMDR)

statistical framework applicable to both dichotomous and quantita-

tive phenotypes that allows adjustment for covariates in population-

based study designs [14]. We then extended our approach to family-

based designs with pedigree-based GMDR (PGMDR) [15], and

other extensions of it are emerging [16,17,18]. So far, MDR and its

extensions have identified many interacting genetic variants

underlying various complex human diseases, such as Alzheimer

disease [19], asthma [20], atrial fibrillation [21], autism [22],

bladder cancer [23], hypertension [24], nicotine dependency

[14,15,25,26], prostate cancer [27,28], schizophrenia [29], sporadic

breast cancer [7], thrombotic stroke [30], and Type II diabetes

[31,32] (see Table S1 for details).

Statistical power is a key factor to consider when an investigator

designs a trial. Although there is a vast literature on power analysis

for single-factor approaches [33,34,35,36,37,38,39,40,41], fewer

studies have explored the statistical power of MDR and its

extended approaches to detect interactions. A thorough study of

power for interaction detection under various theoretical assump-

tions is thus warranted, as statistical power depends on the specific

experimental scenario defined by factors such as sample size,

significance level, penetrance, population prevalence, allele

frequencies, interaction orders, interaction patterns, and sampling

scheme, all of which are difficult to determine exactly and can be

evaluated only by simulations. To reflect the reality as much as

possible for gene-gene interaction studies, we assessed statistical

power through intensive simulations of hypothetical scenarios with

regard to the information in the literature.
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The primary purpose of this study was to examine the statistical

power for detecting G6G interactions in case-control designs

using GMDR and MDR approaches through simulating various

scenarios with the goal of providing empirical guidelines for

designing such studies. Although it is generally preferred to use the

traditional parameters such as heritability and genotype-relative-

risk (GRR) [42] to characterize experimental scenarios, we

propose using accuracy as an indicator parameter to capture the

characteristics of an ascertained population. We demonstrate that

accuracy is practically estimable and Testing Accuracy (TA)

converges to theoretical accuracy in a large sample. Furthermore,

we establish an empirical link between TA and heritability.

Materials and Methods

Methods
Although the MDR and GMDR methods, as well as the

underlying terminology, have been presented in the literature

[7,9,14], we offer a brief summary here to enable readers to follow

our presentation easily. In general, these methods share the same

framework [9] (Figure S1). In step one, the dataset is partitioned

randomly into C equal or nearly equal subdivisions. (We use

C~10 throughout this report.) One subdivision is used as the

testing set and the rest as the independent training set. In step two,

a subset of r discrete genetic or environmental factors is selected

from all R factors of interest. We have
R

r

� �
combinations

exhaustively. In step three, the training set stretches into r-

dimensional space, and each genotyped subject is allocated to a

cell accordingly. The values of the score statistic can be summed in

each cell. Here, the GMDR differs from the MDR in which the

numbers of cases and controls are directly employed. Without

adjustment for covariates, the GMDR is reduced to MDR [14].

Each non-empty cell is then labeled as either high-risk, if the

average statistic value is not less than a preset threshold T, or low-

risk otherwise. In step four, an interaction model is created by

pooling high- and low-risk cells into distinct groups. Some fitness

measure is then assessed. Without loss of generality, here we used

accuracy (i.e., classification accuracy in step four and TA in step

six), although other appropriate measure can also be used.

Balanced accuracy may be a better alternative in unbalanced

data sets [43]. In step five, all other possible combinations of r
factors in the training set are examined, and the best r-factor

model with the maximum classification accuracy is recorded. In

step six, the best model from step five is evaluated for TA by the

testing set. There are C pairs of training-testing sets, so the above

procedure is repeated independently C times on the sets, and the

best models are ranked.

As both the MDR and the GMDR use classification accuracy to

identify the best model and TA to evaluate the goodness of fit, we

examine here the property of ‘accuracy’, which is defined as

TPzTN

TPzFPzTNzFN

where TP is true positive having a high-risk value in the high-risk

group, TN is true negative with a low-risk value in the low-risk

group, FP is false positive, and FN is false negative. When other

metrics are used such as sensitivity
TP

TPzFN
, specificity

TN

TNzFP
,

and balanced accuracy
1

2
(

TP

TPzFN
z

TN

TNzFP
), they can be

evaluated similarly. For an ascertained population, accuracy is a

better characteristic parameter than heritability or GRR because

even the same heritability or GRR can result in various genotype

distributions with different allele frequencies, prevalences, pene-

trances, and ascertainment schemes. Further, accuracy is a natural

measure for the contribution rate of genes of interest because we

do not intend to estimate heritability and GRR parameters in the

nonparametric MDR and GMDR approaches. In what follows,

we use the logistical model to elucidate accuracy through

constructing a conditional genotypic distribution and conditional

score distributions and then to calculate the mathematical

expectation of accuracy.

Logistic model for a dichotomous trait
For a complex trait, in addition to a functional genotypic

combination, environmental factors affect penetrance. We con-

struct a general penetrance function by considering genotypic and

covariate effects together. For a dichotomous phenotype, y,

affected subjects are coded y~1 and unaffected y~0. Assume

the dichotomous trait y has a Bernoulli distribution with the

probability p for a subject being affected; this situation can be

modeled with a generalized linear model:

L~azx(g)bzzc ð1Þ

where L is a logit link function, a is the intercept, x(g) is the coding

for genotype g, z is the coding for the covariate, and b and c are

the corresponding parameters, respectively. Given the ith subject,

the probability of being affected is:

pi~
exp(azx(gi)bzzic)

1zexp(azx(gi)bzzic)
ð2Þ

The GMDR is based on the use of the residual score of model

(1), defined as:

si~yi{p̂pi ð3Þ

where p̂pi is estimated from Equation (2) where âa and ĉc are their

maximum likelihood estimates (MLE) in model (1) under the null

hypothesis H0: b~0.

Conditional genotype and score distributions
To derive the theoretical accuracy, we first focus on the

genotype distribution for a case-control sample. Consider the case

sample by repeated application of Bayes’ theorem; for genotype k,

we have:

P(kjA)~
P(Ajk)P(k)P
i

P(Aji)P(i)
ð4Þ

where P(Ajk) is the probability of being affected for a given

genotype k, P(k) is the prior probability of genotype k in the

population from which the sample comes, and the denominator is

the sum of the numerator over all genotypes. By applying

Equation (4) to the control sample, for a given genotype k, we

obtain P(kjU)~
P(Ujk)P(k)P
i

P(Uji)P(i)
, whereP(Ujk) is the probability of

an unaffected subject and P(Ujk)~1{P(Ajk). Under the null

hypothesis, the penetrances are the same for all genotypes, and

Power of MDR and GMDR for Interaction Detection

PLoS ONE | www.plosone.org 2 February 2011 | Volume 6 | Issue 2 | e16981



thus Equation (4) can be simplified to P(kjA)~P(k) for both case

and control samples. In contrast, under the alternative hypothesis,

the value of P(Ajk) depends on genotype k. For complex traits, it

is likely that covariate(s) are involved in their etiologies, and thus

P(Ajk) is further determined by the environmental factor, say, z,

so that: P(Ajk,z)~
exp(azx(gi)bzzic)

1zexp(azx(gi)bzzic)
, as presented in

Equation (2). P(Ajk)~E(P(Ajk,z)), which is obtained by the

integral of the expression over variable z given its probability

density function f (z):

E(P(Ajk,z))~

ð
z

P(Ajk,z)f (z)dz: ð5Þ

To demonstrate the method, we offer the theoretical genotype

distribution for a checkerboard model scenario, as commonly

employed in this type of interaction study [14,44,45]. In the

following sections, we consider a penetrance function containing

only one covariate, but when necessary, it can easily be extended

by incorporating more covariates and other effects; e.g., gene 6
environment factors. We assume a balanced case-control design

with 2000 unrelated subjects, MAF = 0.5, a~{5:30, b~2:5,

c~1, and a covariate Z*N(0,10). Under such assumptions, the

trait is expected to have a heritability of 0.043 (according to the

definition of Culverhouse et al. [44]), and there are two

differential risk genotypic groups with their expected penetrances

of 0.073 and 0.221 (0.005 and 0.057 if the covariate is excluded),

which can be calculated from Equation (5) through numerical

solution. After applying these equations, we obtain the expected

genotype distribution for the case-control sample, as presented in

Figure 1A (see Text S1 for details on calculating this distribution).

Such an approach of generating the conditional genotype

distribution is flexible and can be applied easily to other

scenarios. When no covariate is considered, as assumed in the

MDR approach [46], the genotype distribution becomes a

simpler form.

The sums of the affected and unaffected scores in genotypic cell

k can be calculated as:

sA
k ~P(kjA)|E(s)A

k |Ncase

sU
k ~P(kjU)|E(s)U

k |Ncontrol

(
ð6Þ

respectively, where N: is the number of the cases or the controls

and E(s)k denotes the expectations of the score of an affected or an

unaffected subject given genotype k. E(s)k can be computed,

respectively:

E(s)A
k ~Ð

z

(1{ exp(azzc)
1zexp(azzc)

)P(Ajk,z)f (z)dzÐ
z

P(Ajk,z)f (z)dz

c~0
E(s)A

k ~1{p,

and

E(s)U
k ~Ð

z

(0{ exp(azzc)
1zexp(azzc)

)P(Ujk,z)f (z)dzÐ
z

P(Ujk,z)f (z)dz

c~0
E(s)U

k ~0{p:

In the case without adjustment by the covariate (c~0), these

two equations can be simplified, where p is the prevalence of the

disease in the sample with its expectation
exp(a)

1zexp(a)
. Figures 1B

and 1C show the score distributions without and with covariant

adjustment, respectively (see Text S2 for details on calculating the

distributions illustrated in Figure 1C). Although only one covariate

was adjusted in the derivation of the score distribution, such

adjustment of the covariate is necessary and can be applied to

cases with more than one covariate.

Accuracy and Testing Accuracy
As defined, the TA always ranges from 0.5 to 1.0. For the

GMDR method with and without covariate adjustment, the

accuracies for the case shown in Figures 1B and 1C are 0.648 and

0.743, respectively. Indeed, as discussed previously [14], without

adjustment of covariates, the accuracy can be estimated directly

Figure 1. Conditional genotype and score distributions. (A): Conditional genotype distribution; (B): Conditional score distribution without
covariate adjustment; and (C): Conditional score distribution with covariate adjustment. The parameters used in our simulations under the balanced
case-control design are: N = 2000, MAF = 0.5, a = -5.30, b = 2.5, c = 1, and Z*N(0,10).
doi:10.1371/journal.pone.0016981.g001
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from the conditional genotype distribution. This has been

confirmed by the identical values of other statistics calculated

from the distribution in Figures 1A and 1B.

TA is commonly used in GMDR and MDR. Because it is

context-dependent, its mathematical expectation is difficult to

derive straightforwardly. Empirically, we show in Figure 2 that

when the sample size increases to infinity under a checkerboard

model, TA approaches accuracy, which is the theoretical upper

bound of TA. For the cases illustrated, TA closely converges to

accuracy with a sample size of 1000,2000. The upper limit of TA

can be attained when, in the testing set, each genotypic cell is

recognized correctly as high or low risk after the cell has been

classified correctly in the training set.

Simulations
As approximately 85% of detected interactions involved more

than one, but less than four genetic loci (Table S1), in this report,

we present only the results from three interaction models on the

basis of 10 diallelic loci: one digenic (i.e., two functional gene loci

involved), one trigenic (i.e., there functional loci involved), and one

tetragenic (i.e., four functional loci involved). For convenience of

notation, loci are denoted by different letters and the two alleles at

each locus by uppercase and lowercase; e.g., A and a for locus 1, B

and b for locus 2, etc. For the digenic model, the checkerboard,

which was commonly used in epistatic studies because of its weak

marginal effects, was employed [14,44,45]. As elucidated previ-

ously, accuracy can serve as an indicator statistic to guide

experimental design, so we relaxed the definition of the detailed

genetic architecture of high-order interaction and focused on the

TA a model can reach. For simplicity, we used models called the 3

uppercase letter model (3ULM), in which genotypes with 3

uppercase letters were set as high risk (e.g., AaBbCc, AABbcc,

AAbbCc), and the 4 uppercase-letter model (4ULM), in which

genotypes containing 4 uppercase letters were set as high risk for

tetragenic interaction.

We employed a balanced experimental design with three

moderate sample sizes (500, 1000, and 2000) and two large

samples (4000 and 10,000) because large samples have been more

prevalent in many recent reports [47,48,49]. To cover a broad

spectrum, we set three levels (0.10, 0.25, and 0.50) of minor allele

frequency (MAF) for interacting loci. Hardy-Weinberg and linkage

equilibria were assumed throughout the simulations.

Our simulated populations followed the penetrance function

defined in Equation (2) where a is the intercept with a value of -

5.30, xi is the predictor variable coding for G6G interaction, and

zi is the covariate with a normal distribution N(0,10). Our

simulated genotypic effects were b = 1.0, 1.5, 2.0, and 2.5,

respectively, and c~1. We investigated three interaction models,

four levels of b, three levels of MAF, and five sample sizes. There

were 180 scenarios in total for our simulation study. For each

scenario, we simulated 200 replications in order to produce a

precise evaluation of statistical power.

To calculate statistical power, we needed to determine the

threshold for each scenario under GMDR and MDR, respectively.

For GMDR, we shuffled the residual scores to generate pseudo-

samples under the null hypothesis of no association with

interaction, and TA was evaluated for each set of pseudo-samples.

After repeating this procedure 1000 times and ranking the 1000

TAs obtained, the threshold for TA at a 5% significance level can

be determined for the scenario under investigation. The power

was calculated by the proportion of the true models identified in

200 simulations with a TA larger than the threshold evaluated for

this scenario. The best model was identified on the maximization

of average TA and cross-validation consistency (CVC) according

to the principle of parsimony that the simplest model is preferred,

and the simpler interaction model was chosen if the two statistics

suggested different models. The permutation procedure was

similar for MDR to calculate the statistical power, except for

shuffling the phenotypic values instead of the residual scores

obtained with adjustment of the covariate in GMDR. Such a

protocol was commonly used in other reported power studies on

the MDR method [45,46].

The GMDR software was used to detect gene-gene interactions

under various scenarios. The default setting of parameters was

adopted in this study, and the GMDR software was also used to

conduct MDR algorithm by converting the status of each

individual to the corresponding score without covariate adjust-

ment.

Results

For comparison of the three models, their accuracies were

calculated by the aforementioned method (Table 1). The

heritability under each scenario was calculated, and the relations

between accuracy and heritability are plotted in Figure 3. Because

each interaction underlying a complex trait often contributes only

a small fraction to the overall heritability, the estimated heritability

for any single interaction is,0.05. In addition, there appears to be

a linear correlation between accuracy and heritability, with an r

Figure 2. Asymptotic trends of testing accuracy with different
sample sizes. The result was based on a checkerboard model whose
parameters were the same as shown in Figure 1. The solid lines are the
analytical accuracy and represent the upper bound of the testing
accuracy. The three lines downward are the means of the testing
accuracies from 200 simulations with a sample size of 2000, 1000, and
500. Because the lines for a sample size of.2000 are coincident with
the analytical accuracy lines, they are not shown.
doi:10.1371/journal.pone.0016981.g002
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(coefficient of correlation) ranging from 0.89 to 0.98 for the three

models (Figure 3). If we excluded accuracies below 0.52, where

MAF = 0.1, r increased for both 3ULM and 4ULM, especially for

the 3ULM model, with r increasing from 0.89 to 0.95 (Figure 3).

There were many G6G interactions detected underlying human

diseases (Figure S2, and Table S1), in which mostly the strength of

the interactions was measured by TA, rather than heritability.

When applying the linear correlation obtained from simulations to

the interactions detected by MDR and its extended methods, we

predict that the corresponding heritability for most detected gene-

gene interactions is between 0.01 and 0.05.

Generally speaking, for the three interaction models simulated,

the proportion of wrong models that were significant at the 5%

level was close to 0.05, as expected (data not shown). Furthermore,

most wrong models contained one or more functional loci, and

therefore, the wrong models could be treated as partially detected.

Figure 4 presents the powers of GMDR and MDR for the

checkerboard model. As shown, the GMDR had at least 80% for a

sample size of$1000, when the theoretical accuracy is around

0.56,0.62. This appears to be true for a sample of 500 when the

accuracy is.0.60. It is clear that the GMDR outperformed MDR

in most scenarios. This was attributed mainly to adjustment of the

covariate in the GMDR. However, such an advantage diminished

when the accuracy was.0.62, as both the GMDR and the MDR

methods showed almost full power. This was also true for a larger

sample (i.e., N.2000; data not shown).

Figures 5 and 6 show the powers for the 3ULM and 4ULM. As

shown in Table 1, because the accuracy is,0.52 when MAF = 0.1,

the power results for those scenarios are less meaningful and thus

will not be presented. Similar to the results in the digenic model,

the GMDR outperformed MDR when the accuracy was between

0.56,0.62, and it was more apparent for 3ULM at sample sizes of

500 and 1000. For the GMDR, in order to yield a power greater

than 80% efficiently with accuracy at 0.56, a reasonable sample

size should be at least 2000 for trigenic and 4000 for tetragenic

models.

Discussion

Widespread but elusive multifactor interactions usually result in

a weak marginal correlation between a factor and the phenotype,

posing a significant challenge in identification of the risk factors for

complex diseases. Increasing effort is being expended to design

powerful detection methods. Although several promising methods

are available, the relevant issues of study design and data analysis

Figure 3. Linear correlation between accuracy and heritability. The solid line in each panel is fitted with the method of least squares, and its
r is shown in bold font. The dashed lines in 3ULM and 4ULM panels were fitted alike while excluding dots below 0.52, and their r values are shown
above the reference lines indicating accuracy of 0.52. For the six regression models, the p value for F test was,0.001.
doi:10.1371/journal.pone.0016981.g003

Table 1. Theoretical accuracies for the three simulated
modelsa.

Model b MAF

0.1 0.25 0.5

Checkerboard 1.0 0.560 0.567 0.566

1.5 0.591 0.597 0.595

2.0 0.621 0.623 0.622

2.5 0.649 0.651 0.648

3ULM 1.0 0.505 0.536 0.562

1.5 0.508 0.557 0.593

2.0 0.511 0.578 0.623

2.5 0.515 0.602 0.652

4ULM 1.0 0.502 0.526 0.558

1.5 0.503 0.541 0.588

2.0 0.504 0.557 0.617

2.5 0.505 0.575 0.646

aAccuracies were calculated on the basis of the conditional genotypic
distribution or of the score distribution without adjustment. For each model,
three levels of MAFs and four genotype effects were employed. Hardy-
Weinberg and linkage equilibria were assumed.

doi:10.1371/journal.pone.0016981.t001
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for detecting interactions including sample size for a desirable

power and the efficiency of statistical methods have not been well

explored. Here, we compared the statistical power and the

accuracy of two commonly used methods, MDR and GMDR

through theoretical computation and simulation studies under a

broad range of sample sizes and hypothetical parameter settings in

which the real parameters would potentially fall. The results

provide an empirical guideline for investigators to plan appropri-

ate studies.

In previous power studies of MDR [43,46,50], heritability was

commonly employed as an indicator parameter. As heritability

depends not only on genotypic penetrance and disease prevalence

but also on genotypic frequencies in a studied population, it is a

measure both of the population and of the gene effects — in other

words, heritability is a population-specific parameter even for the

same phenotype. Often, if not always, the original reference and

an ascertained population show differences in allele frequencies,

and heritability measured from the original population is not

sensitive in reflecting the property of an ascertained population

and vice versa. In case-control designs, thus, heritability is an

indicator parameter of less theoretical and practical value.

We believe that accuracy is a better metric to characterize the

connection between sample size and power in an interaction study.

First, in both GMDR and MDR, the classification accuracy and

TA are computed directly from the sample. Second, classification

accuracy and TA converge asymptotically to the theoretical

Figure 4. Power comparison of GMDR and MDR for sample sizes of 500, 1000, and 2000 under the checkerboard (digenic) model at
alpha = 0.05. For each panel, 12 combinations, as defined in Table 1, were simulated, forming three levels of MAF (0.1, 0.25, and 0.5) and four levels
of interactive effects (1.0, 1.5, 2.0, and 2.5). Simulation results from sample sizes of 4000 and 10,000 are not shown because no difference in power
estimates were detected by the GMDR and MDR methods.
doi:10.1371/journal.pone.0016981.g004

Figure 5. Power comparison of GMDR and MDR for sample sizes of 500, 1000, 2000, and 4000 under the 3ULM (trigenic model) at
alpha = 0.05. For each panel, 12 combinations, as defined in Table 1 were simulated, as shown here, which were formed of three levels of MAFs (0.1,
0.25, and 0.5) and four levels of interaction effects (1.0, 1.5, 2.0, and 2.5).
doi:10.1371/journal.pone.0016981.g005

Power of MDR and GMDR for Interaction Detection
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accuracy and can offer an estimate of accuracy with a reasonably

large sample. Third, accuracy is a straightforward and compre-

hensive measure of the strength of causality and the goodness of fit

of the model, through which other factors such as gene

frequencies, gene effects, heritability, and ascertainment conditions

influence statistical power. To gain a better understanding of

accuracy, we developed a general analytical method to compute

the mathematical expectation of accuracy, previously investigated

in silico, for a case-control sample. As an indicator statistic,

accuracy worked well in our simulations. It should be noticed that

balanced accuracy suggested by Velez et al [43] may be a better

metric to measure the fitness when the numbers of cases and

controls are unequal for the MDR method.

Furthermore, we found an empirical linear correlation between

accuracy and heritability in a wide range of circumstances given

different MAFs and penetrances under balanced case-control

designs. This will help find a connection between the previous

reports [7,11] and the present study. For the cases simulated and

under the sampling scheme investigated, accuracy ranging from

0.55,0.65 can be converted to a heritability of 0.01,0.05. This

implies that most of the interactions in the literature, the TAs of

which fell in this range (Figure S2), have a heritability of

0.01,0.05 with a sample size of 1000 to 2000. This correlation

provides an interpretation of genetic meaning for interactions

detected by GMDR and MDR, and probably is applicable to

interactions detected by other nonparametric statistics, such as

balanced testing accuracy [43].

In this study, we evaluated the statistical power of GMDR and

MDR using accuracy as an indicator to determine the sample sizes

required to provide sufficient testing power in a case-control

design. The GMDR with covariate adjustment could have a

power of.80% for an unrelated case-control design with a sample

size$2000, whereas the theoretical accuracy is around 0.56,0.62;

when the accuracy is,0.56 (heritability close to 0.01), a sample

size of at least 4000 would be required to provide sufficient power.

Generally speaking, when the sample size was 1000,2000,

GMDR appeared to outperform MDR for all simulated models

within the accuracy range, from 0.56 to 0.62, which was close to

the densely distributed region of TA in the published data (Figure

S2). As the sample size became larger, their difference became less

obvious. Large samples will become more common in the near

future, although most studies have a sample size of,2000. The

benefit of large samples in improving statistical power and

detecting interactions of much smaller effect sizes may be validated

in the future. As argued recently, however, tiny effects are

increasingly discovered in genome-wide association studies with

the help of enlarged samples, but whether tiny effects are of great

interest remains unclear [51,52]. Balancing the sample size and

the significance of the interaction detected deserves consideration,

such as in Figure S3, yet more data are needed to confirm that the

strength of interactions decreases in tandem with the sample size.

Although the above results were obtained entirely on the basis

of a case-control design, it can be introduced into the discordant

sib pair design because of their similarity in population structure.

For quantitative traits, as the process of gaining the mathematical

expectation of accuracy should be derived differently, it requires

an additional endeavor to reach similar conclusions and

consequently mandates further work. It seems difficult, although

probable, that in the future, interaction studies will move to the

genome-wide scale [53], and consequently the choice of

genotyping chips [41] and imputation approaches [54] should

be considered.

The GMDR software which was initially released in 2007 [14]

and now is available at http://www.ssg.uab.edu/gmdr.

Supporting Information

Figure S1 Six steps involved in data reduction algorithm.

(TIF)

Figure S2 A distribution of testing accuracy from the recently

reported literature on gene-gene interactions detected by the

MDR or GMDR approaches, with a mean of 0.606, SD of 0.047,

and range of 0.50 to 0.70 (Shapiro-Wilk test: p = 0.8033). The

width of each bin is 0.02. A detailed list of these studies yielding

the values used in this study is provided in Table S1.

(TIF)

Figure S3 Scatter plot of reported gene-gene interactions with

respect to their testing accuracy and sample sizes. The vertical

lines partition the literature into four intervals with respect to their

Figure 6. Power comparison of GMDR and MDR for sample sizes of 500, 1000, 2000, and 4000 under the 4ULM (tetragenic model)
at alpha = 0.05. For each panel, 12 combinations, as defined in Table 1, were simulated, as shown here, which were formed of three levels of MAFs
(0.1, 0.25, and 0.5) and four levels of interaction effects (1.0, 1.5, 2.0, and 2.5). Simulation results from the sample of 10,000 are not shown because no
difference in power estimates was detected for the GMDR and MDR methods.
doi:10.1371/journal.pone.0016981.g006
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sample sizes: (0, 500), (500, 1000), (1000, 2000), and (2000, 4000).

The location of each black circle is determined by the means of

testing accuracy and sample size over the open spots within each

interval flanked by two neighboring vertical lines. Because of the

limited information available, the open circle for the sample size

of$4000 is not shown.

(TIF)

Table S1 Testing accuracy of human diseases detected with

GMDR/MDR methods in the recent literature.

(DOC)

Text S1 Conditional genotype distribution of the checkerboard

model.

(DOC)

Text S2 The expectation of the residual score for a subject.

(DOC)
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