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Identification of the immune 
subtype of ovarian cancer 
patients by integrated analyses 
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sequencing data
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Ovarian cancer (OC) is one the most life‑threatening cancers affecting women’s health worldwide. 
Immunotherapy has become a promising treatment for a variety of cancers, but the therapeutic 
effects in OC remain limited. In this study, we constructed a macrophage risk score (MRS) based on M1 
and M2 macrophages and a gene risk score (GRS) based on the prognostic genes associated with MRS. 
Next, cell–cell communication analysis was performed using single‑cell RNA (scRNA) sequencing data. 
Survival status and immune characteristics were compared between the high‑ and low‑score groups 
separated by MRS or GRS. Our results suggested that MRS and GRS can identify the immune subtypes 
of OC patients with better overall survival (OS) and inflammatory immune microenvironment. 
Moreover, M1 and M2 macrophages may affect the prognosis of OC patients through signal 
communication with CD8 T cells. Finally, functional differences between the two groups separated by 
GRS were elucidated. Taken together, this study constructed two useful models for the identification 
of immune subtypes in OC, which has a better prognosis and may have a sensitive response to immune 
checkpoint inhibitors (ICIs). The hub genes for the construction of GRS may be potential synergetic 
targets for immunotherapy in OC patients.

Ovarian cancer (OC) is one the most life-threatening cancers affecting women’s health  worldwide1,2. Many 
patients suffering from OC lose the opportunity for optimal surgery because of occult onset and no obvious 
early  symptoms3,4. Moreover, benefits of platinum-based chemotherapy and maintenance therapy for patients 
with advanced OC patients remain  unsatisfactory5–7. Therefore, it is urgent to clarify the mechanisms of ovar-
ian carcinogenesis to find more sensitive diagnostic markers, as well as more effective therapeutic targets or 
synergetic targets combined with classical therapeutic methods.

Immunotherapy has become a promising therapeutic method in recent  years8–10. Monotherapy with immune 
checkpoint inhibitors (ICIs) or chimeric antigen receptor-T (CAR-T) cells has shown good efficacy in hemato-
logical tumors and non-small-cell lung cancer (NSCLC)11–13. In addition, immunotherapeutic drugs combined 
with other classical drugs have also shown good efficacy in a variety of tumors, such as ICIs combined with 
angiogenesis inhibitors for liver cancer or combined with BRAF inhibitors for advanced melanoma with BRAF 
V600  mutation14,15. Moreover, the proportion of M1/M2 macrophages has also been preliminarily studied in the 
prognosis evaluation of ovarian  cancer16,17. At present, there are also some studies related to immunotherapy for 
OC, such as programmed cell death-ligand 1 (PD-L1) or programmed cell death-1 (PD-1) combined chemo-
therapy or angiogenesis inhibitors for recurrent OC, which are in different stages of clinical  trials18–21. However, 
the response of OC to immunotherapy is still very limited. Under these conditions, it is urgent to elucidate the 
immune characteristics of OC patients for the identification of immune subtypes and to search for synergetic 
targets of immunotherapy.

In this study, immune characteristics were systematically investigated in OC patients, and risk scores based on 
M1 and M2 macrophages (macrophage risk score, MRS) or significant MRS-related prognostic genes (gene risk 
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score, GRS) were subsequently constructed. Both the MRS and GRS could identify the immune subtype of OC 
patients who had a better prognosis and an inflammatory immune microenvironment. Moreover, M1 and M2 
macrophages may play roles in OC by affecting the function of CD8 T cells. Taken together, this study constructed 
a useful model for the identification of immune subtypes in OC patients who may be sensitive to immunotherapy, 
and potential synergetic targets for the immunotherapy of OC patients were preliminarily identified.

Methods
Data acquisition and processing. Bulk-sequencing data in fragments per kilobase million (FPKM) or 
count forms of ovarian serous cystadenocarcinoma from TCGA were acquired from UCSC-Xena (https:// xena. 
ucsc. edu/), while the corresponding clinicopathological information were acquired from cBioPortal (https:// 
www. cbiop ortal. org/). FPKM data were transformed into transcripts per million (TPM) data before analysis. 
After processing, a total of 322 patients with complete clinical data and overall survival (OS) ≥ 1 month were 
enrolled in this study as a training cohort. Clinicopathological characteristics were each divided into two groups: 
age (≥ 60 years, < 60 years), stage (stages I–II, III–IV), histological grade (low-grade: G1 and G2, high-grade: 
other grades), longest dimension (≥ 1 cm, < 1 cm), tumor site (unilateral, bilateral) and race (white, nonwhite). 
Next, microarray and survival data of OC patients with OS ≥ 1  month from GSE53963 (n = 170), GSE9891 
(n = 276), GSE13876 (n = 157), GSE26712 (n = 184), GSE49997 (n = 194) and GSE140082 (n = 376) were down-
loaded from the GEO database (https:// www. ncbi. nlm. nih. gov/ geo/) as validation  cohorts22–26. All methods were 
carried out in accordance with the Declaration of Helsinki guidelines and approved by the Clinical Research Eth-
ics Committee of the Second Xiangya Hospital, Central South University. All data analyzed in this study were 
downloaded from public databases, and the informed consent have been obtained by the data provider.

Abundance estimation and prognosis prediction of immune cells. The abundances of 22 immune 
cell types in each OC sample were calculated by CIBERSORT in R  software27. Subsequently, univariate and 
multivariate Cox analyses were conducted to identify the immune cells that were significantly associated with 
prognosis. A risk score (MRS) was constructed based on the most prognostic immune cells (M1 macrophages 
and M2 macrophages) and their corresponding risk coefficients. Next, the prognostic value of the risk score was 
evaluated by risk plots and Kaplan–Meier plotter curves. Finally, the immune landscape discrimination value 
of the risk score was evaluated by gene set variation analysis (GSVA), and the expression levels of the major 
immune checkpoints (CTLA-4, PDCD-1 and CD274) and 22 immune cell types between the different groups 
separated by the optimal cutoff value of the risk score according to the “roc” method.

Identification and prognostic analyses of the hub genes associated with immune cells. The 
gene expression modules and their associations with the 22 immune cell types in OC were identified by 
 WGCNA28. The genes in the modules closely associated with M1 macrophages or M2 macrophages were selected 
for further analyses. Seven genes were screened out by least absolute shrinkage and selection operator (LASSO) 
analysis, and the prognostic values of these genes were further analyzed by univariate and multivariate Cox 
analyses. Subsequently, a risk score (GRS) was constructed based on the remaining prognostic genes (P < 0.05) 
and their corresponding risk coefficients. The prognostic value and the immune landscape discrimination value 
of the GRS were evaluated consistent with the methods of MRS. Finally, the potential therapeutic drugs target-
ing these significant prognostic genes were screened by CellMiner, a web-based tool for exploring transcript and 
drug patterns in the NCI-60 cell line set.

Acquisition and processing of scRNA sequencing data. ScRNA sequencing data of four primary 
OC tumors, two peritoneal metastases and two relapsed tumors were downloaded from the GEO database 
(GSE130000). Data processing and analysis were performed using the “Seurat”  package29. After filtering by the 
criteria of min.cells = 3 and min.features = 200, a total of 32,078 cells (including 13,366 primary tumor cells, 
5385 peritoneal metastasis tumor cells and 13,327 relapse tumor cells) remained for further analysis. Next, data 
normalization and screening of the 3000 highly variable genes (HVGs) were conducted by the “SCTransform” 
method. After principal component analysis (PCA), the 24 most powerful PCs were used for t-distributed sto-
chastic neighbor embedding (t-SNE) analysis for dimension reduction. Subsequently, cells were divided into 
fourteen clusters with a resolution of 0.5 by KNN analysis and the “FindClusters” method, and cell types were 
subsequently annotated by specific cell markers as previously  described30–32. Finally, cell–cell communications 
among the cell types were investigated by the “CellChat”  package33.

Differential analysis between the two groups separated by GRS. In the training cohort, patients 
were divided into two groups according to the optimal cutoff value of the GRS. Differentially expressed genes 
(DEGs) between the two groups were identified by the “DESeq2” package according to the count data, while 
the functional differences between the two groups were revealed by gene set enrichment analysis (GSEA). Next, 
functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG)34,35, were performed on the significant DEGs (P < 0.05 and |log2FoldChange| > 1). All of the functional 
analyses in this study were conducted by the “clusterProfiler”  package36.

Results
Construction and efficiency evaluation of MRS. The flowchart of this study is shown in Fig. 1. The 
overall abundances of 22 immune cell types across the 322 OC samples in the training cohort were calculated 
by CIBERSORT (Fig. 2A). We noticed that the most enriched immune cell types in OC were M0 macrophages, 
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M1 macrophages, M2 macrophages, resting memory CD4 T cells and CD8 T cells. Next, significant prognostic 
immune cells (M1 macrophages and M2 macrophages, P < 0.05) screened by univariate and multivariate Cox 
analyses (Table S1) were used to construct the MRS according to the following formula: abundances of M1 mac-
rophages × (− 4.056590) + abundances of M2 macrophages × (2.323889). OC patients were separated into high- 
and low-score groups according to the optimal cutoff value automatically calculated by the “roc” method in 
the “ggrisk” package; the group information, survival status and abundances of M1 macrophages and M2 mac-
rophages between the two groups are visualized in Fig. 2B. The Kaplan–Meier plotter curve showed that patients 
in the low-score group had a significantly better prognosis than those in the high-score group (Fig. 2C). To fur-
ther clarify the mechanisms of MRS affecting prognosis, differences in the immune landscape between the two 
groups were systematically investigated. We found that the expression levels of the major immune checkpoints 
(CTLA-4, PDCD-1 and CD274) were both significantly highly expressed in the low-score group (Fig. 2D–F). In 
addition, as revealed by GSVA, some immune-related terms were significantly enriched in the low-score group, 
such as antigen processing and presentation, intestinal immune network for IgA production and NK cell-medi-
ated cytotoxicity (Fig. 2G). Furthermore, the results showed that M1 macrophages, resting NK cells, activated 
memory CD4 T cells, CD8 T cells, follicular helper T cells and regulatory T cells were significantly enriched in 
the low-score group, while M2 macrophages, activated mast cells, monocytes and neutrophils were significantly 
enriched in the high-score group (Fig. 2H). Next, the correlation between clinicopathological features and risk 
score was explored. As shown in Fig. S1A, patients in the “≥ 60 years” group had a higher MRS than the one in 
the “< 60 years” group, while there was no significant difference between groups with other clinicopathological 
features (Fig. S1B–F). Taken together, these results indicated that MRS showed good performance in prognosis 
prediction, that it could divide OC patients into two significantly different immune cell landscapes, and that 
patients in the low-score group (immune subtype) may have a better therapeutic response to ICIs.

Efficiency validation of the MRS. To further validate the efficiency of the MRS, a total of 170 OC patients 
in GSE53963 were comprehensively analyzed. First, the abundances of 22 immune cells were estimated by CIB-
ERSORT (Fig. 3A). Next, the MRS was calculated by the same formula used for the training cohort, and OC 
patients were divided into two groups according to the optimal cutoff value automatically calculated by the “roc” 
method in the “ggrisk” package. The results of survival analyses showed that patients in the low-score group had 
a significantly better prognosis than those in the high-score group, consistent with the results in the training 
cohort (Fig. 3B,C). Moreover, the prognostic values of the MRS were further validated in the other five GEO 
datasets (Fig. S2A–E). The details of these GEO datasets are listed in Table S2. Furthermore, significantly high 
expression of immune checkpoints (CTLA-4, PDCD-1 and CD274) was observed in the low-score group in the 
GSE53963 dataset (Fig. 3D–F). Some immune-related terms were significantly enriched in the low-score group, 
such as NK cell-mediated cytotoxicity, antigen processing and presentation and the T cell receptor signaling 
pathway, as revealed by GSVA (Fig. 3G). Finally, the expression levels of immune cells between the two groups 
were explored. As shown in Fig. 3H, M1 macrophages, plasma cells, activated memory CD4 T cells, CD8 T cells 
and follicular helper T cells were significantly enriched in the low-score group, while naïve B cells, activated den-
dritic cells, M2 macrophages, activated mast cells, neutrophils, resting NK cells, resting memory CD4 T cells and 
naïve CD4 T cells were significantly enriched in the high-score group. These results indicated that MRS showed 
excellent performance in prognosis prediction and immune landscape discrimination in the validation cohorts.

Identification of MRS related hub genes. To identify the hub genes that are closely associated with 
M1 and M2 macrophages, WGCNA was conducted in the training cohort. According to the soft threshold 

Figure 1.  Flowchart of the study.
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Figure 2.  Immune and survival analyses in the training cohort. (A) The overall abundances of 22 immune cell types 
across 322 OC samples. (B) Cutoff value (upper panel), survival status (middle panel) and expression heatmap of 
M1 and M2 macrophages (lower panel). (C) Kaplan–Meier plotter curve between the high- and low-score groups 
separated by the optimal cut-off value of MRS. (D–F) The expression levels of CTLA-4, PDCD1 and CD274 between 
the high- and low-score groups. (G) GSVA between the two risk groups. (H) The expression levels of 22 immune cell 
types between the high- and low-score groups. *p < 0.05, **p < 0.01, ***p < 0.001. ns not significant.
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Figure 3.  Immune and survival analyses in the GSE53963 dataset. (A) The overall abundances of 22 immune cell 
types across 170 OC samples. (B) Cutoff value (upper panel), survival status (middle panel) and expression heatmap 
of M1 and M2 macrophages (lower panel). (C) Kaplan–Meier plotter curve between the high- and low-score groups 
separated by the optimal cutoff value of MRS. (D–F) The expression levels of CTLA-4, PDCD1 and CD274 between 
the high- and low-score groups. (G) GSVA between the two risk groups. (H) The expression levels of 22 immune cell 
types between the high- and low-score groups. *p < 0.05, **p < 0.01, ***p < 0.001. ns not significant.
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power = 7, genes were divided into fifteen coexpression modules (Fig.  4A,B). In general, purple and salmon 
modules showed a stronger correlation with more immune cells, including M1 macrophages and CD8 T cells 
(Fig. 4C). From another perspective, M1 macrophages were closely associated with the tan, purple, brown and 
salmon modules, while M2 macrophages were closely associated with the brown module (Fig. 4C). Considering 
that these four modules (tan, purple, brown and salmon) were also closely associated with each other (Fig. 4D), 
a total of 1697 genes in these modules were selected for further analyses.

Construction and evaluation of GRS. To explore whether these genes have MRS-related functions, 
survival and immune-related analyses were performed. The seven prognostic hub genes screened by LASSO 
(Fig.  5A,B) were further analyzed by univariate and multivariate Cox analyses (Fig.  5C,D). Subsequently, 
a risk score (GRS) was constructed based on remaining four most significant prognostic genes (FZD3, RP4-
597N16.1, TRBV10-3 and VSIG4; P < 0.05) and their corresponding risk coefficients as follow: expression 
levels of FZD3 × (− 0.021642228) + expression levels of RP4-597N16.1 × (− 0.108795364) + expression levels of 
TRBV10-3 × (− 0.498230068) + expression levels of VSIG4 × (0.008368181). OC patients were separated into two 
groups according to the optimal cutoff value of GRS calculated by the “roc” method; the group information, 
survival status and expression levels of the abundances of these four hub genes of the two groups are visualized 
in Fig. 5E. The Kaplan–Meier plotter curve showed that patients in the low-score group had a significantly better 
prognosis than those in the high-score group (Fig. 5F). Consistent with the MRS results, the expression levels 
of the immune checkpoints (CTLA-4, PDCD-1 and CD274) were also significantly highly expressed in the low-
score group (Fig. 5G–I). Moreover, the results of immune analyses showed that M1 macrophages, CD8 T cells, 
follicular helper T cells and regulatory T cells were significantly enriched in the low-score group, while M2 mac-
rophages, activated mast cells, monocytes and neutrophils were significantly enriched in the high-score group 
(Fig. 5J). Next, the correlation between clinicopathological features and risk score was explored. As shown in 

Figure 4.  Identification of MRS-related gene modules. (A) Diagrams of scale independence and mean 
connectivity for the identification of soft threshold power. (B) Sample cluster dendrogram of OC patients in the 
training cohort. (C) Correlation heatmap between modules and immune cell types. (D) Correlation heatmap 
between modules.
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Figure 5.  Construction an evaluation of the GRS. (A,B) Cvfit and fit plots of LASSO screen. (C) Forest plot of univariate Cox analysis. 
(D) Forest plot of multivariate Cox analysis. (E) Cutoff value (upper panel), survival status (middle panel) and expression heatmap of 
the four significant prognostic genes (FZD3, RP4-597N16.1, TRBV10-3 and VSIG4) (lower panel). (F) Kaplan–Meier plotter curve 
between the high- and low-score groups separated by the optimal cutoff value of GRS. (G–I) The expression levels of CTLA-4, PDCD1 
and CD274 between the high- and low-score groups. (J) The expression levels of 22 immune cell types between the high- and low-
score groups. *p < 0.05, **p < 0.01, ***p < 0.001, ns: not significant.
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Fig. S1G,H, patients in the “stage III–IV” group and in the “nonwhite” group had a higher GRS than those in the 
“stage I–II” group and the “white” group, while there was no significant difference in GRS between groups with 
other clinicopathological features (Fig. S1I–L). It is noteworthy that the most effective gene for GRS construction 
is TRBV10-3 (|risk efficiency| = 0.498230068), which is a T cell receptor. These results indicated that the GRS also 
exhibited excellent performance in prognosis prediction and immune cell landscape discrimination, similar to 
the results of MRS, and M1 and M2 macrophages may affect the prognosis of OC patients by regulating T cell 
function.

Processing of scRNA sequencing data and cell–cell communication analysis. To further eluci-
date the potential interactions between macrophages and T cells, scRNA sequencing data were analyzed. After 
data filtering, a total of 32,078 cells from eight samples remained for further analysis. The expression profiles of 
primary, metastatic and relapsed tumor cells, as well as the correlations between nFeature-RNA and nCount-
RNA, are visualized in Figure S3A,B. Next, a total of fourteen clusters were identified across all of the cancer 
cells, and they were annotated to seven cell types (cancer cells, CD4 T cells, CD8 T cells, endothelial cells, 
fibroblasts, M1/M2-like macrophages and other cells) according to the specific markers as previously described 
(Fig. 6A–D). Specific markers for cell annotation are listed in Table S3. As shown in Fig. S3C, there were no sig-
nificant batch effects caused by the cell cycle. The significant DEGs in each cell type are visualized in Fig. 6E. Vio-
lin plots and feature plots were used to visualize the marker genes in each cell type (Fig. 6F–N and Fig. S3D–L). 
Next, cell–cell communication analysis was conducted across these cell types. The results showed that CD8 T 
cells mainly acted as signal receivers which could receive signals from the other five cell types except endothelial 
cells (Fig. 7A). Next, the potential signaling pathways between these cell types were investigated by internal 
secreted signaling in the “CellChat” package. The results indicated that the potential signaling pathway between 
CD8 T cells and other cell types was MIF-CD74/CXCR4 (Fig. 7B,C). A violin plot was subsequently used to visu-
alize the expression levels of MIF-CD74/CXCR4 signaling molecules in these cell types (Fig. 7D). Interestingly, 
the outgoing molecule CD74 was significantly highly expressed in M1/M2-like macrophages, while the ingoing 
molecule CXCR4 was significantly highly expressed in CD8 T cells. These results suggested that cell–cell com-
munication between M1/M2-like macrophages and CD8 T cells may represent the most important pairs in OC. 
Taken together, these results indicated that M1/M2-like macrophages may affect the prognosis of OC patients by 
regulating CD8 T cells function through cell–cell communication.

Differential analysis. To systematically clarify the differences between the two groups separated by GRS, 
differential analysis and functional enrichment analyses were conducted in the training cohort. The significant 
DEGs between the two groups are shown in Fig. S4A,B. We noticed that TRBV10-3 and RP4-597N16.1 were 
both in the top five significantly highly expressed genes in the low-score group (Fig. S4B). The GSEA results 
revealed that there were significant differences in some immune-related terms between the two groups, such as 
lymphocyte-mediated immunity, regulation of the immune effector process, negative regulation of the immune 
system process, activation of the innate immune response and B cell-mediated immunity (Fig. S4C–G). Next, 
GO and KEGG analyses were conducted based on the significant DEGs. As shown in Fig. S4H, the most signifi-
cant results of GO analyses were also immune-related terms such as humoral immune response and comple-
ment activation in biological process (BP), immunoglobulin complex and T cell receptor complex in cellular 
components (CC), and antigen binding and immunoglobulin receptor binding in molecular function (MF). The 
most significant terms in KEGG analysis were both associated with signaling transfer such as cytokine-cytokine 
receptor interactions and chemokine signaling pathways (Fig. S4I). These results further clarified the differences 
in immune-related terms and immune-related signaling pathways between the groups of OC patients separated 
by GRS. Hypothetic scheme of research results was visualized in Fig. 8.

Discussion
OC is a life-threatening gynecological cancer with limited therapeutic  options1,2. Immunotherapy using ICIs and 
CAR-T cells has shown excellent efficacy in a variety of tumors, but the response of OC to immunotherapy is still 
 unsatisfactory15,18–21. Therefore, it is urgent to clarify the immune characteristics of OC to construct a model for 
immunotherapy response prediction and to search for synergetic therapeutic targets.

In this study, immune cell abundances in OC patients were calculated by CIBERSORT, and a risk score (MRS) 
based on the most significant prognostic immune cell types (M1 and M2 macrophages) were subsequently con-
structed. According to the risk coefficients, M1 macrophages (also known as classically activated macrophages) 
were identified as a protective factor in OC, while M2 macrophages (also known as alternatively activated mac-
rophages) were identified as an adverse factor in OC, consistent with previous  research37–39.

Macrophage polarization has been reported to play an important role in a variety of tumor pathological 
processes, such as carcinogenesis and metastasis, and in chemotherapy and immunotherapy  responses40–43. 
Promoting the polarization of M2 macrophages to M1 macrophages is an important method for antitumor 
 therapy38,44,45. However, the integrated role of M1 and M2 macrophages in the prediction of prognosis and 
response to immunotherapy in OC patients remains largely unknown. In this study, we constructed a prognostic 
risk score (MRS) based on the abundances and risk coefficients of M1 and M2 macrophages in OC for the first 
time. It is noteworthy that this risk score signature can well distinguish OC patients into two immune character-
istic landscapes. These results suggested that MRS can effectively identify the immune subtypes of OC patients 
who have a better prognosis and may have a sensitive response to ICIs.

It has been reported that macrophages can affect the immune response in many ways, such as releasing self-
activatable photo-extracellular  vesicles46, delivering exosomes carrying functional molecules such as microRNA 
and delivering drugs as  messengers47,48. However, the specific macrophage-related molecules that may mediate 
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the immune function in OC remain unknown. In this study, WGCNA was conducted to identify the hub genes 
that were closely associated with M1 and M2 macrophages, which may mediate the functions of macrophages 
in OC. After subsequent survival analyses, a macrophage-related gene risk score (GRS) was constructed based 
on the four significant prognostic hub genes (FZD3, RP4-597N16.1, TRBV10-3 and VSIG4). Consistent with 
the MRS results, the immune subtype with better prognosis and an inflammatory immune microenvironment 
can also be identified by GRS. These results indicated that targeting the hub genes for the construction of GRS 

Figure 6.  The results of scRNA sequencing data analysis. (A) t-SNE plot of 32,078 cells from eight OC samples. 
(B,C) t-SNE plot showing the annotations for seven cell types. (D) Expression profiles of the marker genes in 
each cell type. (E) Heatmap of significant DEGs in each cell type. (F–N) Specific marker genes of cancer cells 
(F), endothelial cells (G), fibroblasts (H), CD4 T cells (I), CD8 T cells (J), myeloid-derived cells (K, L), M1-like 
macrophages (M) and M2-like macrophages (N).
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Figure 7.  The results of cell–cell communication analysis revealed by scRNA sequencing data. (A) Number 
(left panel) or strength (right panel) of the interactions among the immune cells. (B,C) The possible incoming 
or outgoing signaling pathways among the immune cells. (D) The expression levels of MIF-CD74/CXCR4 
signaling molecules among these cell types were visualized by violin plot.

Figure 8.  Hypothetic scheme.
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may enhance the immune response of OC to immunotherapy. It is noteworthy that the most effective gene 
(TRBV10-3) for the construction of GRS is a T cell receptor, which indicated that macrophages may play a role 
in OC by affecting T cell function.

The function of T cells can be regulated by many immune microenvironment factors, such as M1 macrophage 
repolarization, B cell paracrine secretion and cross-talk among different T cell  subsets49–51. Recently, relevant 
research results from chimeric antigen receptor macrophages (CAR-Ms) have shown that they can induce a 
pro-inflammatory tumor microenvironment and boost anti-tumor T cell  activity52,53. To further investigate the 
potential signaling communication between macrophages and T cells in OC, cell–cell communication analysis 
was conducted by scRNA sequencing data. As revealed in Fig. 7, the most important signaling pair among dif-
ferent cell types in OC was MIF-CD74/CXCR4 between M1/M2-like macrophages and CD8 T cells. This result 
further emphasized the central role of the signaling communications between M1/M2-like macrophages and 
CD8 T cells, which may be potential synergetic therapeutic targets for ICI treatment in OC patients.

However, there are still some limitations to this study. First, the values of the GRS for prognosis prediction 
and immune landscape discrimination need to be validated in more real-world OC patient cohorts because some 
of the four prognostic genes could not be detected in the major microarray platforms. Second, whether patients 
with the immune subtype have a better response to ICIs needs to be further studied in clinical trials. Finally, 
whether the hub genes used for the construction of the GRS can become synergetic therapeutic targets of ICIs 
in OC needs to be further verified by in vitro and in vivo experiments.

In summary, two risk score models were constructed based on M1 and M2 macrophages and their function-
ally related hub genes. The low-score groups of these two models were identified as immune subtypes, patients 
with a better prognosis and an inflammatory immune microenvironment. The signaling pathway molecules 
between M1/M2-like macrophages and CD8 T cell communication may be potential synergetic therapeutic 
targets of ICI treatment in OC patients.

Data availability
The datasets presented in this study can be found in online repositories. In detail, transcriptome data of OC from 
TCGA were downloaded from UCSC-Xena (https:// xena. ucsc. edu/), while the clinicopathological data were 
downloaded from cBioPortal (https:// www. cbiop ortal. org/). Microarray data of OC patients were downloaded 
from the GEO database (https:// www. ncbi. nlm. nih. gov/ geo/).
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