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Abstract: We report the development of a laser gas analyzer that measures gas concentrations at a
data rate of 100 Hz. This fast data rate helps eddy covariance calculations for gas fluxes in turbulent
high wind speed environments. The laser gas analyzer is based on derivative laser absorption
spectroscopy and set for measurements of water vapor (H2O, at wavelength ~1392 nm) and carbon
dioxide (CO2, at ~2004 nm). This instrument, in combination with an ultrasonic anemometer, has
been tested experimentally in both marine and terrestrial environments. First, we compared the
accuracy of results between the laser gas analyzer and a high-quality commercial instrument with
a max data rate of 20 Hz. We then analyzed and compared the correlation of H2O flux results at
data rates of 100 Hz and 20 Hz in both high and low wind speeds to verify the contribution of high
frequency components. The measurement results show that the contribution of 100 Hz data rate to
flux calculations is about 11% compared to that measured with 20 Hz data rate, in an environment
with wind speed of ~10 m/s. Therefore, it shows that the laser gas analyzer with high detection
frequency is more suitable for measurements in high wind speed environments.

Keywords: laser gas analyzer; flux measurement; eddy covariance method; derivative absorption
spectroscopy; gas sensors

1. Introduction

The exchange of energy and mass between the ocean and atmosphere has significant
impacts on the global environment, climate, and ecological balance. Flux measurements of
heat, water, carbon dioxide, and methane, as well as other trace gases have been widely
used to estimate the exchange of energy and mass [1–5]. With decades of technological
development, the eddy covariance method has become a preferred method for direct flux
estimations in turbulent motions without parametric assumptions, and is widely used in
ecological flux observations [6].

Generally, the physical principle for the eddy covariance method is to measure the
quantity of molecules moving upward or downward over time, and the speed in which
they travel. Mathematically it can be represented as a covariance between measurements
of vertical velocity of the upward or downward movements, and the concentration of
the entity of interest [7]. The basic equipment for a flux measurement system mainly
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includes a three-dimensional ultrasonic anemometer and a gas analyzer. In the last decade,
substantial progress has been made in the development of spectroscopic trace gas sensing
technologies. This includes non-dispersive infrared spectroscopy (NDIR), tunable diode
laser absorption spectroscopy (TDLAS), quantum cascade laser absorption spectroscopy
(QCL-TDLAS), cavity ring-down spectroscopy (CRDS), and photoacoustic spectroscopy
(PAS). Spectroscopic methods have advantages of high selectivity, high sensitivity, long-
term stability, and have been applied for eddy covariance measurements. For example,
Fortuniak et al. measured the greenhouse gases (CO2, CH4, H2O) at the wetlands of Biebrza
National Park in Poland by using a sonic anemometer and gas analyzers (LI-COR LI-7500-
H2O/CO2 and LI-7700-CH4) operating with 10 Hz frequency [8]. Kormann et al. developed
a novel tunable diode laser absorption spectrometer for trace gas flux measurements based
on micrometeorological techniques where the spectrometer was used to measure CH4
and N2O fluxes from rice paddies and tropical ecosystems [9]. Christian et al. tested a
performance of a quantum cascade laser (QCL)-based N2O flux measurements against gas
chromatography (GC) [10]. Crosson developed an analyzer based on cavity ring-down
spectroscopy to measure the concentrations of CO2, H2O and CH4 [11]. He et al. developed
a unique open-path CRDS technique for atmospheric sensing [12]; and Gong et al. recently
developed a high-sensitivity resonant photoacoustic sensor for remote CH4 gas detection
at ppb-levels [13,14].

Turbulent changes happen very quickly, and the respective changes are very small in
concentration, density, or temperature. It is therefore necessary to use an instrument with
high precision and fast data rate of measurements, especially in high wind environments.
Nevertheless, data rates of flux measurements reported in literature are typically around
20 Hz or slower. The 20 Hz frequency detection may cause data loss and inaccuracy for an-
alyzing the gas exchange and flux. For trace gases measurements, tunable laser absorption
spectroscopy was developed decades ago as an ideal analysis and measurement technology,
which has the advantages of high resolution, high selectivity, and high sensitivity [15,16]. It
is widely used in the fields of greenhouse gas detection, toxic and hazardous gas detection
in chemical parks, respiratory diagnosis, aero-engine combustion flow field diagnosis,
deep-sea dissolved gas, and isotope detection [17–24].

In this work, we have developed a simple and compact laser gas analyzer with a data
rate of 100 Hz, based on laser absorption spectroscopy and derivative absorption spec-
troscopy. The analyzer is designed by using two diode DFB lasers operating at wavelengths
of ~2004 nm for CO2 and ~1392 nm for H2O measurements. Meanwhile, we have designed
a multi-pass cell with a 20 m optical path length for CO2 absorption measurements and a
single-path cell of 15 cm optical path length for H2O absorption measurements, as well as a
miniaturized TDLAS electronics system. By developing a fast data processing of derivative
absorption spectroscopy, we were able to achieve gas concentration measurements at a
100 Hz data rate. The system was tested in high and low wind speed environments by field
measurements on an offshore platform in the Yellow Sea near the Yan-tai city in Shandong
province and on the Jue-hua Island near Huludao city in Liaoning province. We compare
the accuracy of results between our laser gas analyzer and a commercial instrument LI-COR
LI-7500. Finally, we analyzed and compared the impact of data rates between 100 Hz and
20 Hz in high and low wind speeds to verify the contribution of high frequency detection.

2. Materials and Methods
2.1. Transmission-Intensity-Normalized Second-Derivative Spectroscopy

A direct tunable diode laser absorption spectroscopy (dTDLAS) is a reliable means for
trace gas detections as it is relatively simple in construction, easy to handle, and reliable to
use [25]. The technology is based on an attenuation of laser radiation due to absorption as
descript by the Lambert–Beer’s law, which can be written as:

I(ν) = I0(ν) · exp[−ε(ν) · L · C], (1)
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where I0(ν) is the incident intensity of the laser radiation of frequency ν. After passing
through an absorbing medium, where optical path length is L and gas concentration is
C, the transmitted intensity I(ν) is detected. The concentration-normalized absorption
coefficient ε(ν) can be described by Equation (2):

ε(ν) = S(T) · P · φ(P, T, ν), (2)

where P is the total pressure, S(T) is the temperature-dependent line strength, φ(P, T, ν) is
the line shape function which is pressure and temperature dependent [26,27].

However, the detection limit of dTDLAS is affected by noise contributions in the
measurement signal. The data analysis during concentration inversion also involves
numerical division, logarithmic calculations, and possible nonlinear least-squares fitting.
This type of calculation-intensive analysis is a challenge for the simple microcontrollers
typically used in such measurement instruments, and slows the data acquisition rate. To
improve on this, a derivative spectroscopy technique [28,29] can be applied. By processing
spectral signal with second-order differential, the derivative spectral signal is obtained, and
correlated with gas concentration. The transmission-intensity-normalized first and second
derivatives of measurement signals can be written by Equations (3) and (4), respectively.

dI
dν

/I =
dI0

dν
/I0 − L · C · dε

dν
, (3)

d2 I
dν2 /I =

d2 I0

dν2 /I0 +

(
L · C · dε

dν

)2
− 2 · L · C · dε

dν
× dI0

dν
/I0 − L · C · d2ε

dν2 , (4)

When a linearly ramp is used as drive current to a diode laser, the first term of
Equation (4) is zero in an ideal case when changes of laser intensity are proportional to
changes in its drive current. The residual deviation from zero is not dependent on the gas
absorption and can be treated as an offset background. The values of the second and third
term are zero at the center frequency of an absorption line, where the curvature slope (i.e.,
first derivative) is zero. The fourth term (second derivative) reaches a maximum value at
the line center. Therefore, the transmission-intensity-normalized second derivative spectra
have a linear relationship with the concentration of the absorbing medium.

2.2. Method of Flux Measurements

The eddy covariance (EC) method has been widely used for direct measurements of
surface atmosphere exchange. It uses the covariance between vertical velocity wi in wind
speed and fast variations of Ci in trace concentration. The EC flux F can be calculated from
a recorded time series of N measurements as:

F = C′ · w′ = 1
N

N

∑
i=1

[(Ci − C) · (wi − w)] =
1
N

N

∑
i=1

C′ i · w′ i, (5)

where C′ and w′ are the instantaneous deviations from their corresponding mean values
C and w, respectively. For this work, an ultrasonic anemometer (GILL-HS100) was used
to determine vertical wind speeds. The instantaneous gas concentrations of the species of
interest (i.e., H2O vapor and CO2 gas) were measured with our newly developed laser gas
analyzer at a fast data rate of 100 Hz. As eddies occur on a wide range of timescales, it
is necessary to use sufficiently long averaging time for calculating mean values. For this
study, a time interval of about 5 min was chosen for calculating the average value when
operating at a data rate of 100 Hz (resulting in a total of 30,000 data points). Alternatively,
the effective data sampling can be slowed to a lower rate (e.g., 20 Hz), or the averaging
time base can be extended.
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2.3. Selection of Spectral Absorption Lines

To achieve reliable measurements of trace gas concentrations, a spectral simulation
is performed to determine whether the selected lines have sufficient strengths for mea-
surements and are well isolated from the absorptions by other gas species without any
serious interference. H2O and CO2 have several strong absorption bands in the infrared
spectral range between 1.0 µm and 2.5 µm, as shown in Figure 1 [30]. For example, the
line strengths of CO2 near 2.0 µm wavelength region are much stronger than in 1.6 µm
region. So in this study, we used a ~2.0 µm diode laser for more sensitive detections.
Figure 1c,d show the simulation of spectral absorption around 4991 cm−1 and 7181 cm−1,
based on the HITRAN2016 database [31] for 2% H2O and 400 ppmv CO2 in air under
nominal conditions (P = 1 atm, T = 296 K, path length L = 15 cm for H2O or 20 m for
CO2, respectively). The results indicate that the target lines for H2O and CO2 detection are
appropriate with minimum spectral inference. So the diode lasers of 1.392 µm wavelength
(NEL, NLK1E5GAAA) and 2.004 µm wavelength (NEL, KELD1G5BAAA) are used in
this work.
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2.4. Experimental Setup

A schematic of the laser gas analyzer and experimental setup developed for flux
measurement is shown in Figure 2, comprised of three units: a laser gas analyzer, an
ultrasonic anemometer for three-dimensional wind speeds, power supply, and data acqui-
sition. Among them, our developed laser gas analyzer consists of a miniaturized TDLAS
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measuring system and two gas absorption cells. The two diode lasers are driven by cur-
rent controllers and temperature controllers with precision setting voltages, generated by
digital-to-analog converters (DAC, Analog Devices AD5682, 14 bits) in combination with
a microcontroller (ST, STM32H743VIT6). The wavelengths of diode lasers are ramped at
a rate of 2 kHz via their operation currents. The fiber-coupled laser output is collimated
and focused to either a single-pass absorption cell (15 cm optical path length) for H2O mea-
surements, or a multi-pass absorption cell (Herriott style, 50 passes, total 20 m optical path
length, 51-mm dimeter mirrors with 99.99% highly-reflective dielectric coatings around
2.0 µm) for CO2 measurements. The laser radiation is detected by a wavelength-extended
(up-to 2.6 µm) InGaAs photodiode (GPD Optoelectronics), and then amplified (Analog
Devices AD8065) and recorded by an analog-to-digital converter (ADC, 16 bits, on the
STM32H743 microcontroller). The final results of gas concentrations and wind speeds are
sent to a laptop computer by an Ethernet port and saved to a memory card. A GPS receiver
is used to provide time information for synchronizing the data between the ultrasonic
anemometer and the laser gas analyzer.
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3. Results and Discussion
3.1. Signal Processing

To quickly process the measurement data for this project, we applied the Savitzky–
Golay filter method [32] for signal smoothing and differentiation. This digital filtering
technique fits successive sub-sets of adjacent data points with a low-degree polynomial by
the method of linear least squares. As a result of this moving-window data smoothing pro-
cess, it increased the precision of the data without distorting the signal tendency. Another
important aspect of this Savitzky–Golay filtering technique is that it also obtains derivative
information of the signal profile based on the fitted polynomials. For spectroscopy applica-
tions, the Savitzky–Golay filtering technique can help to reduce signal noise and identify
structure components in complex spectra [33,34]. It enables us to achieve fast numerical
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data analysis of recorded measurement transmission absorption spectra for determining
gas concentrations in gas sensing applications.

Figure 3a shows one example of a CO2 measurement spectrum and the associated 1st
and 2nd derivatives obtained via a Savitzky–Golay filtering. The transmission spectrum
was acquired for samples of ~500 ppmv CO2 by the ADC with 450 data points, and
averaged 16 times in successive laser current scans. Simulations of the absorbance and
2nd differentiation spectrum at 1 ppmv CO2 concentration are displayed in Figure 3b. The
16 bits ADC for recording the photodetector signal has sufficient resolution (i.e., 1/65,535)
to cover concentrations from ~2000 ppmv down to sub ppmv. Our noise-limited detection
sensitivity corresponds to an absorbance level of ~1.5 × 10−4.
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3.2. Gas Analyzer Performance

To evaluate the performance of numerical analysis of derivative absorption spec-
troscopy, we prepared a series of reference gas mixtures of CO2 and H2O with different
concentrations and made measurements at atmospheric pressure. The subsequent second
derivative absorption signals were calculated by using the Savitzy–Golay filter method,
as shown in Figure 4a for CO2 and Figure 4c for H2O. As expected, a linear correlation
between the signal peak magnitude of the second derivative spectra and the CO2 and H2O
concentrations were confirmed. The results presented in Figure 4b,d show a good linear
dependence (adj. R2 = 0.995 for CO2 and adj. R2 = 0.999 for H2O), and demonstrate that
the algorithm is valid for trace gas measurements. The slope of the fitted straight-line
also serves as a conversion coefficient between the experimental measurements and the
resulting gas concentrations.

The detection limit of the developed laser gas analyzer is evaluated by using Allan
variance plots [35]. Figure 5 shows the results of Allan deviations for CO2 and H2O
concentration measurements with a sample containing 500 ppmv CO2 and 2% H2O, plotted
in a log–log scale. The measurement noise at 100 Hz data rate (i.e., 0.01 s averaging time)
is about 0.40 ppmv for CO2, and 8.17 ppmv for H2O, respectively. As the averaging
time increases, the minimum reaches about 0.026 ppmv for CO2 at 6 s integration time,
and 3.12 ppmv for H2O at 0.13 s integration time. Table 1 summarizes the performance
comparison between the laser gas analyzer we developed, and the commercial instrument
LI-7500-CO2/H2O based on non-dispersive infrared technology [36]. The TDLAS gas
analyzer we developed performs slightly better for H2O than the LI-7500 instrument, but
was slightly worse for CO2. The major advancement of our device is its fast maximum
measurement data rate of 100 Hz, corresponding to a time resolution of 10 ms, which
would enable observation of fast turbulent motions for eddy covariance.
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Table 1. Performance comparison between our laser gas analyzer and a commercial instrument.

Our TDLAS Analyzer LI-7500 Analyzer

Method Laser absorption spectroscopy Non-dispersive infrared spectroscopy

Detection limit, H2O 3.25 ppmv at 10 Hz
8.17 ppmv at 100 Hz

4.70 ppmv at 10 Hz
6.70 ppmv at 20 Hz

Detection limit, CO2
0.13 ppmv at 10 Hz

0.40 ppmv at 100 Hz
0.11 ppmv at 10 Hz
0.16 ppmv at 20 Hz

Maximum data rate 100 Hz 20 Hz

3.3. Experimental Field Measurements

In order to test the performance of the developed gas analyzer for H2O and CO2
fluxes measurements under low and high wind speed environments, we conducted the
field measurements at two distinctive sites, as depicted in Figure 6. Figure 6a shows the
installation of our integrated instruments and an ultrasonic anemometer on an offshore
platform in the Yellow Sea of Yan-tai city in Shandong province (Site-A) with high-wind-
speed marine environment. Figure 6b shows the installation on the Jue-hua Island of
Huludao city in Liaoning province (Site-B) with low-wind-speed terrestrial environment.
The commercial LI-7500-CO2/H2O instrument is also installed nearby to calibrate and
compare the accuracy of measurements.
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The results of comparison measurements for an hour in the marine environment
(Figure 6a) with wind speed of about 13 m/s are displayed in Figure 7a,b, which show
CO2 and H2O concentrations determined by our laser gas analyzer and the commercial
LI-7500 analyzer. Our H2O sensing unit was installed close to the LI-7500, while the
CO2 sensing unit was slightly further away. The H2O concentration measurements show
good agreement between the two instruments. The difference of CO2 concentration trend
between our laser gas analyzer and the LI-7500 analyzer was partly due to its installation
location, which is slightly further away, therefore had different wind conditions. Another
contributing factor might be the mounting and housing of the multi-pass sensing unit,
which we will investigate in future studies. Furthermore, we measured CO2 absorption in
the wavelength region of its ~2.0 µm absorption band, while the LI-7500 analyzer operated
around the ~4.2 µm stronger absorption band, resulting in a higher sensitivity with shorter
optical path length. The detected concentration of CO2 for both analyzers in the marine
environment ranges from 380 ppmv to 410 ppmv, and the detected concentration of H2O
ranges for 22 mmol/mol to 25 mmol/mol.
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For the investigation of the frequency characteristics of the measurements and the
time response of the instruments, we applied the frequency power density method to
analyze the recorded time series of the concentration data [37]. Figure 8a,b show the
comparison of power density spectra for CO2 and H2O concentrations between the laser
gas analyzer and LI-7500 analyzer via a fast Fourier transform method. The slope of spectra
(ploted in log–log scales) is approximate to −5/3 of the Kolmogorov theory in the inertial
subrange [38], indicating that the laser gas analyzer is capable of measuring turbulence
fluxes of CO2 and H2O via EC method.
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3.4. Comparison of Flux Measurements under Low and High Wind Speeds

Measurements of wind speed form an integral part in the determination of flux of gas
emissions and movements. Three-dimensional wind speeds are measured via an ultrasonic
anemometer. However, the mounting of the anemometer may not be exactly vertical or
horizontal to the ground. A coordinate rotation is needed to transform the measurement
values of the anemometer to the three velocity components u, ν, w in respect to the ground,
where w is the vertical wind velocity and is expected to have a mean value of zero. The
components u and ν are the two wind velocities in the horizontal plane. The horizontal
component ν is also aligned during the coordinate rotation to have a mean value of zero.
Therefore, the component u represents the speed along horizontal wind direction. The
results of wind speeds after rotating and H2O concentrations are plotted in Figure 9. The
maximum horizontal wind speed in the marine environment of Site-A is about 13 m/s,
whereas the maximum vertical wind speed is about 4 m/s in the terrestrial environment
of Site-B.
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Figure 9. Measurement data of H2O concentrations and three-dimensional wind velocities (u, v for
the two horizontal components, w for vertical). (a) Data of Site-A. (b) Data of Site-B.

Fast measurements can capture more details of rapid small-scale turbulence in air
movements, especially in a high wind speed environment. Subsequently, this is expected
to be an advantage for flux determination. We numerically analyzed the impact of data
sampling rate by block averaging every 5 data samples of the original 100 Hz data set to
obtain a 20 Hz data set. This 20 Hz data set loses frequency contributions above 20 Hz.
Both data sets are computed for flux using a 5 min time base (see Equation (5)). The results
of H2O fluxes are shown in Figure 10, for both high and low wind speeds.
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Figure 10. Comparison of H2O fluxes between 20 Hz and 100 Hz. (a) The comparison of H2O fluxes
between 20 Hz and 100 Hz in 10 m/s wind speed environment. (b) The correlation analysis of H2O
fluxes between 20 Hz and 100 Hz in 10 m/s wind speed environment. (c) The comparison of H2O
fluxes between 20 Hz and 100 Hz in 4 m/s wind speed environment. (d) The correlation analysis of
H2O fluxes between 20 Hz and 100 Hz in 4 m/s wind speed environment.

As described in Figure 10a,b, the H2O fluxes computed for data rates of 20 Hz and
100 Hz can differ by up to 16% (adjustable R2 = 0.84) in the 10 m/s wind speed environment.
As a comparison, the difference of H2O fluxes is about 5% (adjustable R2 = 0.95) in the
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4 m/s wind speed environment, shown in Figure 10c,d. The difference suggests that the
contribution of 100 Hz flux measurements increases by about 11%, as wind speed changes
from 4 m/s to 10 m/s. The data points spread out further away from the straight-line in
Figure 10b than in Figure 10d.

4. Conclusions

In this paper, a laser gas analyzer based on a second derivative laser absorption
spectroscopy method has been developed to achieve a 100 Hz fast data rate, which is faster
than that of a well-established 20 Hz commercial instrument. In combination with an
ultrasonic anemometer, we applied the new laser gas analyzer for measurements of gas
fluxes by using the eddy covariance method. Two DFB lasers operating at ~2.004 µm for
CO2 and ~1.392 µm for H2O were used as optical sources. We built a multi-pass absorption
cell of 20 m optical path length for CO2 measurements, and a single-pass absorption cell of
15 cm optical path length for H2O detection. A miniaturized TDLAS electronics system was
designed for the operation and analysis of the gas concentration measurements. The gas
analyzer achieves a detection limit of 8.17 ppmv for H2O and 0.40 ppmv for CO2 at 0.01 s
integration time. Meanwhile, we made field measurements by installing the integrated
instruments in two different environments to verify the influence of different wind speeds
on flux measurements against a commercial instrument LI-7500. In general, the 100-Hz gas
analyzer we developed has a wide prospect for flux measurement applications, especially
when rapid turbulence is involved.
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