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Abstract

The computational and cognitive properties of neural systems are often thought to be imple-

mented in terms of their (stochastic) network dynamics. Hence, recovering the system

dynamics from experimentally observed neuronal time series, like multiple single-unit

recordings or neuroimaging data, is an important step toward understanding its computa-

tions. Ideally, one would not only seek a (lower-dimensional) state space representation of

the dynamics, but would wish to have access to its statistical properties and their generative

equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally

powerful and dynamically universal formal framework which has been extensively studied

from both the computational and the dynamical systems perspective. Here we develop

a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs

(PLRNNs) within the statistical framework of state space models, which accounts for noise

in both the underlying latent dynamics and the observation process. The Expectation-Maxi-

mization algorithm is used to infer the latent state distribution, through a global Laplace

approximation, and the PLRNN parameters iteratively. After validating the procedure on

toy examples, and using inference through particle filters for comparison, the approach is

applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC)

obtained during performance of a classical working memory task, delayed alternation. Mod-

els estimated from kernel-smoothed spike time data were able to capture the essential

computational dynamics underlying task performance, including stimulus-selective delay

activity. The estimated models were rarely multi-stable, however, but rather were tuned to

exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work

advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation frame-

work for PLRNNs that may enable to recover relevant aspects of the nonlinear dynamics

underlying observed neuronal time series, and directly link these to computational

properties.
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Author summary

Neuronal dynamics mediate between the physiological and anatomical properties of a

neural system and the computations it performs, in fact may be seen as the ‘computational

language’ of the brain. It is therefore of great interest to recover from experimentally

recorded time series, like multiple single-unit or neuroimaging data, the underlying sto-

chastic network dynamics and, ideally, even equations governing their statistical evolu-

tion. This is not at all a trivial enterprise, however, since neural systems are very high-

dimensional, come with considerable levels of intrinsic (process) noise, are usually only

partially observable, and these observations may be further corrupted by noise from mea-

surement and preprocessing steps. The present article embeds piecewise-linear recurrent

neural networks (PLRNNs) within a state space approach, a statistical estimation frame-

work that deals with both process and observation noise. PLRNNs are computationally

and dynamically powerful nonlinear systems. Their statistically principled estimation

from multivariate neuronal time series thus may provide access to some essential features

of the neuronal dynamics, like attractor states, generative equations, and their computa-

tional implications. The approach is exemplified on multiple single-unit recordings from

the rat prefrontal cortex during working memory.

Introduction

Stochastic neural dynamics mediate between the underlying biophysical and physiological

properties of a neural system and its computational and cognitive properties (e.g. [1–4]).

Hence, from a computational perspective, we are often interested in recovering the neural net-

work dynamics of a given brain region or neural system from experimental measurements.

Yet, experimentally, we commonly have access only to noisy recordings from a relatively small

proportion of neurons (compared to the size of the brain area of interest), or to lumped surface

signals like local field potentials or the EEG. Inferring from these the computationally relevant

dynamics is therefore not trivial, especially since both the recorded signals (e.g., spike sorting

errors; [5]) as well as the neural system dynamics itself (e.g., stochastic synaptic release; [6])

come with a good deal of noise. The stochastic nature of neural dynamics has, in fact, been

deemed crucial for perceptual inference and decision making [7–9], and potentially helps to

avoid local minima in task learning or problem solving [10].

Speaking in statistical terms, ’model-free’ techniques which combine delay embedding

methods with nonlinear basis expansions and kernel techniques have been one approach to

the problem [11; 12]. These techniques provide informative lower-dimensional visualizations

of population trajectories and (local) approximations to the neural flow field, but they may

highlight only certain, salient aspects of the dynamics (but see [13]) and, in any case, do not

directly return distribution generating equations or underlying computations. Alternatively,

state space models, a statistical framework particularly popular in engineering and ecology

(e.g. [14]), have been adapted to extract lower-dimensional, probabilistic neural trajectory

flows from higher-dimensional recordings [15–25]. State space models link a process model

of the unobserved (latent) underlying dynamics to the experimentally observed time series

via observation equations, and differentiate between stochasticity in the process and observa-

tion noise (e.g. [26]). So far, with few exceptions (e.g. [23; 27]), these models assumed linear

latent dynamics, however. Although this may often be sufficient to yield lower-dimensional

smoothed trajectories, it implies that the recovered dynamical model may be less apt for cap-

turing highly nonlinear dynamical phenomena in the observations, and will by itself not be
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powerful enough to reproduce a range of important dynamical and computational processes

in the nervous system, among them multi-stability which has been proposed to underlie neural

activity during working memory [28–32], limit cycles (stable oscillations), or chaos (e.g. [33]).

Here we derive a new state space algorithm based on piecewise-linear (PL) recurrent neural

networks (RNN). It has been shown that RNNs with nonlinear activation functions can, in

principle, approximate any dynamical system’s trajectory or, in fact, dynamical system itself

(given some general conditions; [34–36]). Thus, in theory, they are powerful enough to recover

whatever dynamical system is underlying the experimentally observed time series. Piecewise

linear activation functions, in particular, are by now the most popular choice in deep learning

algorithms [37–39], and considerably simplify some of the derivations within the state space

framework (as shown later). They may also be more apt for producing working memory-type

activity with longer delays if for some units the transfer function happens to coincide with the

bisectrix (cf. [40]), and ease the analysis of fixed points and stability. We then apply this newly

derived algorithm to multiple single-unit recordings from the rat prefrontal cortex obtained

during a classical delayed alternation working memory task [41].

Results

State space model

This article considers simple discrete-time piecewise-linear (PL) recurrent neural networks

(RNN) of the form

zt ¼ Azt� 1 þW maxf0; zt� 1 � θg þ Cst þ εt ; εt � Nð0;ΣÞ; ð1Þ

where zt = (z1t. . .zMt)
T is the (M×1)-dimensional (latent) neural state vector at time t = 1. . .T, A =

diag([a11. . .aMM]) is an M×M diagonal matrix of auto-regression weights, W = (0 w12. . .w1M, w21

0 w23. . .w2M, w31 w32 0 w34. . .w3M,. . .) is an M×M off-diagonal matrix of connection weights,

θ = (θ1. . .θM)T is a set of (constant) activation thresholds, st is a sequence of (known) external K-

dimensional inputs, weighted by (M×K) matrix C, and εt denotes a Gaussian white noise process

with diagonal covariance matrix Σ ¼ diagð½s2
11

. . . s2
MM�Þ. The max-operator is assumed to work

element-wise.

In physiological terms, latent variables zmt are often interpreted as a membrane potential

(or current) which gives rise to spiking activity as soon as firing threshold θm is exceeded (e.g.

[42,43]). According to this interpretation, the diagonal elements in A may be seen as the neu-

rons’ individual membrane time constants, while the off-diagonal elements in W represent the

between-neuron synaptic connections which multiply with the presynaptic firing rates. In sta-

tistical terms, (1) has the form of an auto-regressive model with a nonlinear basis expansion in

variables zmt (e.g. [44;45]), which retains linearity in parameters W for ease of estimation.

Restricting model parameters, e.g. S, to be of diagonal form, is common in such models to

avoid over-specification and help identifiabiliy (e.g. [26; 46]; see also further below). For

instance, including a diagonal in W would be partly redundant to parameters A (strictly so in

a pure linear model). For similar reasons, and for ease of presentation, in the following we will

focus on a model for which K = M and C = I (i.e., no separate scaling of the inputs), although

the full model as stated above, Eq 1, was implemented as well (and code for it is provided; of

course, the case K>M could always be accommodated by pre-multiplying st by some prede-
fined matrix C, obtained e.g. by PCA on the input space). While different model formulations

are around in the computational neuroscience and machine learning literature, often they may

be related by a simple transformation of variables (see [47]) and, as long as the model is power-

ful enough to express the whole spectrum of basic dynamical phenomena, details of model

specification may also not be overly crucial for the present purposes.

Nonlinear state space model for identifying computational dynamics
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A particular advantage of the PLRNN model is that all its fixed points can be obtained easily

analytically by solving (in the absence of external input) the 2M linear equations

z� ¼ ðAþWO � IÞ� 1WOθ; ð2Þ

where O is to denote the set of indices of units for which we assume zm� θm, and WO the

respective connectivity matrix in which all columns from W corresponding to units in O are

set to 0. Obviously, to make z� a true fixed point of (1), the solution to (2) has to be consistent

with the defined set O, that is z�m� θm has to hold for all m 2 O and z�m> θm for all m =2 O.

For networks of moderate size (say M<30) it is thus computationally feasible to explicitly

check for all fixed points and their stability.

For estimation from experimental data, latent state model (1) is then connected to some

N-dimensional observed vector time series X = {xt} via a simple linear-Gaussian model,

xt ¼ B�ðztÞ þ ηt ;ηt � Nð0;ΓÞ; ð3Þ

where ϕ(zt)≔max{0,zt−θ}, {ηt} is the (white Gaussian) observation noise series with diagonal

covariance matrix Γ ¼ diagð½g2
11

. . . g2
NN�Þ, and B an N×M matrix of regression weights. Thus,

the idea is that only the PL-transformed activation ϕ(zt) reaches the ‘observation surface’ as,

e.g., with spiking activity when the underlying membrane dynamics itself is not visible. We

further assume for the initial state,

z1 � Nðμ0 þ s1;ΣÞ; ð4Þ

which has, for simplicity, the same covariance matrix as the process noise in general (reducing

the number of to be estimated parameters). In the case of multiple, temporally separated trials,

we allow each one to have its own individual initial condition μk, k = 1. . .K.

The general goal here is to determine both the model’s unknown parameters X = {μ0,A,W,

S,B,Γ} (assuming fixed thresholds θ for now) as well as the unobserved, latent state path

Z ≔ {zt} (and its second-order moments) from the experimentally observed time series {xt}.

These could be, for instance, properly transformed multivariate spike time series or neuroim-

aging data. This is accomplished here by the Expectation-Maximization (EM) algorithm which

iterates state (E) and parameter (M) estimation steps and is developed in detail for model (1)

and (3) in the Methods. In the following I will first discuss state and parameter estimation sep-

arately for the PLRNN, before describing results from the full EM algorithm in subsequent sec-

tions. This will be done along two toy problems, a higher-order nonlinear oscillation (stable

limit cycle), and a simple ’working memory’ paradigm in which one of two discrete stimuli

had to be retained across a temporal interval. Finally, the application of the validated PLRNN

EM algorithm will be demonstrated on multiple single-unit recordings obtained from rats on

a standard working memory task (delayed alternation; data from [41], kindly provided by Dr.

James Hyman, University of Nevada, Las Vegas).

State estimation

The latent state distribution, as explained in Methods, is a high-dimensional (piecewise)

Gaussian mixture with the number of components growing as 2T×M with sequence length T

and number of latent states M. Here a semi-analytical, approximate approach was developed

that treats state estimation as a combinatorial problem by first searching for the mode of the

full distribution (cf. [16; 48]; in contrast, e.g., to a recursive filtering-smoothing scheme that

makes local (linear-Gaussian) approximations, e.g. [15; 26]). This approach amounts to solving

a high (2M×T)-dimensional piecewise linear problem (due to the piecewise quadratic, in the

states Z, log-likelihood Eqs 6 and 7). Here this was accomplished by alternating between (1)

Nonlinear state space model for identifying computational dynamics
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solving the linear set of equations implied by a given set of linear constraints O≔ {(m,t)|zmt�

θm} (cf. Eq 7 in Methods) and (2) flipping the sign of the constraints violated by the current

solution z�(O) to the linear equations, thus following a path through the (M×T)-dimensional

binary space of linear constraints using Newton-type iterations (similar as in [49], see Meth-

ods; note that here the ‘constraints’ are not fixed as in quadratic programming problems).

Given the mode and state covariance matrix (evaluated at the mode from the negative inverse

Hessian), all other expectations needed for the EM algorithm were then derived analytically,

with one exception that was approximated (see Methods for full details).

The toy problems introduced above were used to assess the quality of these approximations.

For the first toy problem, an order-15 limit cycle was produced with a PLRNN consisting of

three recurrently coupled units, inputs to units #1 and #2, and parameter settings as indicated

in Fig 1 and provided Matlab file ‘PLRNNoscParam’. The limit cycle was repeated for 50 full

cycles (giving 750 data points) and corrupted by process noise (cf. Fig 1). These noisy states

(arranged in a (3 x 750) matrix Z) were then transformed into a (3 x 750) output matrix X, to

which observation noise was added, through a randomly drawn (3 x 3) regression weight

matrix B. State estimation was started from a random initial condition. True (but noise-cor-

rupted) and estimated states for this particular problem are illustrated in Fig 1A, indicating a

tight fit (although some fraction of the linear constraints were still violated,�0.27% in the

present example and<2.3% in the working memory example below; see Methods on this

issue).

To examine more systematically the quality of the approximate-analytical estimates of the

first and second order moments of the joint distribution across states z and their piecewise lin-

ear transformations ϕ(z), samples from p(Z|X) were simulated using bootstrap particle filter-

ing (see Methods). Although these simulated samples are based only on the filtering (not the

smoothing) steps (and (re-)sampling schemes may have issues of their own; e.g. [26], analytical

and sampling estimates were in tight agreement, correlating almost to 1 for this example, as

shown in Fig 2.

Fig 3A illustrates the setup of the ‘two-cue working memory task’, chosen for later compa-

rability with the experimental setup. A 5-unit PLRNN was first trained by conventional gradi-

ent descent (‘real-time recurrent learning’ (RTRL), see [50; 51]) to produce a series of six 1’s

on unit #3 and six 0’s on unit #4 five time steps after an input (of 1) occurred on unit #1, and

the reverse pattern (six 0’s on unit #3 and six 1’s on unit #4) five time steps after an input

occurred on unit #2. A stable PLRNN with a reasonable solution to this problem was then cho-

sen for further testing the present algorithm (cf. Fig 3C). (While the RTRL approach was cho-

sen to derive a working memory circuit with reasonably ‘realistic’ characteristics like a wider

distribution of weights, it is noted that a multi-stable network is relatively straightforward to

construct explicitly given the analytical accessibility of fixed points (see Methods); for instance,

choosing θ = (0.5 0.5 0.5 0.5 2), A = (0.9 0.9 0.9 0.9 0.5), and W = (0 ω − ω − ω − ω, ω 0 − ω − ω
– ω, − ω − ω 0 ω – ω, − ω − ω ω 0 − ω, 11110) with ω = 0.2, yields a tri-stable system.) Like for

the limit cycle problem before, the number of observations was taken to be equal to the num-

ber of latent states, and process and observation noise were added (see Fig 4 and Matlab file

‘PLRNNwmParam’ for specification of parameters). The system was simulated for 20 repeti-

tions of each trial type (i.e., cue-1 or cue-2 presentations) with different noise realizations and

each ‘trial’ started from its own initial condition μk (see Methods), resulting in a total series

length of T = 20×2×20 = 800 (although, importantly, in this case the time series consisted of

distinct, temporally segregated trials, instead of one continuous series, and was treated as such

an ensemble of series by the algorithm). As before, state estimation started from random initial

conditions and was provided with the correct parameters, as well as with the observation

matrix X. While Fig 3B illustrates the correlation between true (i.e., simulated) and estimated

Nonlinear state space model for identifying computational dynamics
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states across all trials and units, Fig 3C shows true and estimated states for a representative

cue-1 (left) and cue-2 (right) trial, respectively. Again, our procedure for obtaining (or approx-

imating) the maximum a-posteriori (MAP) estimate of the state distribution appears to work

quite well (in general, only locally optimal or approximate solutions may be achieved, however,

and the algorithm may have to be repeated with different state initializations; see Methods).

Parameter estimation

Given the true states, how well would the algorithm retrieve the parameters of the PLRNN? To

assess this, the actual model states (which generated the observations X) from simulation runs

Fig 1. State and parameter estimates for nonlinear cycle example. (A) True (solid/ open-circle lines) and

estimated (dashed-star lines) states over some periods of the simulated limit cycle generated by a 3-state

PLRNN when true parameters were provided (for this example, θ� (0.86,0.09,–0.85); all other parameters as

in B, see also provided Matlab file ‘PLRNNoscParam.mat’). ‘True states’ refers to the actual states from which

the observations X were generated. Inputs of sit = 1 were provided to units i = 1 and i = 2 on time steps 1 and

10 of each cycle, respectively. Note that true and inferred states are tightly overlapping in this low-noise

example (such that the ‘stars’ appear on top of the ‘open circles’). (B) True and estimated model parameters

for (from top-left to bottom-right) μ0,A,W,Σ,B,Γ, when true states (but not their higher-order moments) were

provided. Bisectrix lines (black) indicate identity.

https://doi.org/10.1371/journal.pcbi.1005542.g001
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Fig 2. Agreement between simulated (x-axes) and semi-analytical (y-axes) solutions for state expectancies for the

model from Fig 1 across all three state variables and T = 750 time steps. Here, ϕ(zi)≔max{0,zi−θi} is the PL activation

function. Simulated state paths and their moments were generated using a bootstrap particle filter with 104 particles. Bisectrix

lines in gray indicate identity.

https://doi.org/10.1371/journal.pcbi.1005542.g002

Fig 3. State estimation for ‘working memory’ example when true parameters were provided. (A) Setup

of the simulated working memory task: Stimulus inputs (green bars, sit = 1, and 0 otherwise) and requested

outputs (black = 1, light-gray = 0, dark-grey = no output required) across the 20 time points of a working

memory trial (with two different trial types) for the 5 PLRNN units. (B) Correlation between estimated and true

states (i.e., those from which the observations X were generated) across all five state variables and T = 800

time steps. Bisectrix in black. (C) True (open-circle/ solid lines) and estimated (star-dashed lines) states for

output units #3 (blue) and #4 (red) when s15 = 1 (left) or s25 = 1 (right) for single example trials. Note that true

and inferred states are tightly overlapping in this low-noise example (such that the ‘stars’ often appear on top

of the ‘open circles’). Although working memory PLRNNs may, in principle, be explicitly designed (see text),

here a 5-state PLRNN was first trained by conventional gradient descent (real-time recurrent-learning [50]) to

perform the task in A, to yield more ‘natural’ and less uniform ground truth states and parameters. Here, all

θi = 0 (implying that there can only be one stable fixed point). See Matlab file ‘PLRNNwmParam.mat’ and Fig 4

for details on parameters.

https://doi.org/10.1371/journal.pcbi.1005542.g003
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of the oscillation and the working memory task described above were provided as initialization

for the E-step. Based on these, the algorithm first estimated the state covariances for z and ϕ(z)

(see above), and then the parameters in a second step (i.e., the M-step). Note that the parame-

ters can all be computed analytically given the state distribution (see Methods), and, provided

the state covariance matrices (summed across time) as required in Eq 17A, 17D and 17F are

non-singular, have a unique solution. Hence, in this case, any misalignment with the true

model parameters can only come from one of two sources: i) estimation was based on one

finite-length noisy realization of the PLRNN process, ii) all second order moments of the state

distribution were still estimated based on the true state vectors. However, as can be appreciated

from Fig 1B (oscillation) and Fig 4 (working memory), for the two (relatively low-noise) exam-

ple scenarios studied here, all parameter estimates still agreed tightly with those describing the

true underlying model.

In the more general case where both the states and the parameters are unknown and only

the observations are given, note that the model as stated in Eqs 1 & 3 is over-specified as, for

instance, at the level of the observations, additional variance placed into S may be compen-

sated for by adjusting Γ accordingly, and by rescaling W and, within limits, A (cf. [52; 53]). In

the following we therefore always arbitrarily fixed S (to some scalar; see Methods), as common

in many latent variable models (like factor analysis), including state space models (e.g. [27;

46]). It may be worth noting here that the relative size of S vs. Γ determines how much weight

is put on temporal consistency among states (“S<Γ”) vs. fitting of the observations (“S>Γ”)

within the likelihood, Eq 5.

Joint estimation of states and parameters by EM

The observations above confirm that our algorithm finds satisfactory approximations to the

underlying state path and state covariances when started with the right parameters, and—vice

versa—identifies the correct parameters when provided with the true states. Indeed, the M-

step, since it is exact, can only increase the expected log-likelihood Eq 5 with the present state

expectancies fixed. However, due to the system’s piecewise-defined discrete nature, modifying

Fig 4. True and estimated parameters for the working memory PLRNN (cf. Fig 3) when true states

were provided. From top-left to bottom-right, estimates for: μ0,A,W,Σ,B,Γ. Note that most parameter

estimates were highly accurate, although all state covariance matrices still had to be estimated as well (i.e.,

with the true states provided as initialization for the E-step). Bisectrix lines in black indicate identity.

https://doi.org/10.1371/journal.pcbi.1005542.g004
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the parameters may lead to a new set of constraint violations, that is may throw the system

into a completely different linear subspace which may imply a decrease in the likelihood in the

E-step. It is thus not guaranteed that a straightforward EM algorithm converges (cf. [54; 55]),

or that the likelihood would even monotonically increase with each EM iteration.

To examine this issue, full EM estimation of the WM model (as specified in Fig 4, using

N = 20 outputs in this case) was run 240 times, starting from different random, uniformly dis-

tributed initializations for the parameters. Fig 5B (Δt = 0) gives, for the five highest likelihood

solutions across all 240 runs (Fig 5A), the mean squared error (MSE) avg½ðxit � x̂ itÞ
2
� between

actual neural observations xit and model predictions x̂ it , which is close to 0 (and, correspond-

ingly, correlations between predicted and actual observations were close to 1). With respect to

the inferred states, note that estimated and true model states may not be in the same order, as

any permutation of the latent state indices together with the respective columns of observation

matrix B will be equally consistent with the data X (see also [27]). For the WM model exam-

ined here, however, partial order information is implicitly provided to the EM algorithm

through the definition of unit-specific inputs sit. For the present example, true and estimated

states for the highest likelihood solution were nicely linearly correlated for all 5 latent variables

(Fig 6), but some of the regression slopes significantly differed from 1, indicating a degree of

freedom in the scaling of the states. Note that if the system were strictly linear, the states would

be identifiable only up to a linear transformation in general, since any multiplication of the

latent states by some matrix V could essentially be reversed at the level of the outputs by back-

multiplying B with V-1 (cf. [27]). Likewise, in the present piecewise linear system, one may

expect that there is a class of piecewise-linear transformations of the states which is still com-

patible with the observed outputs, and hence that the model is only identifiable up to this class

of transformations (a general issue with state space models, of course, not particular to the

present one; cf. [53]). However, this might not be a too serious issue, if one is primarily inter-

ested in the latent dynamics (rather than in the exact parameters).

Fig 7 illustrates the distribution of initial and final parameter estimates around their true

values across all 240 runs (before and after reordering the estimated latent states based on the

rotation that would be required for achieving the optimal mapping onto the true states, as

determined through Procrustes analysis). Fig 7 reveals that a) the EM algorithm does clearly

improve the estimates and b) these final estimates seemed to be relatively ‘unbiased’ (i.e., with

deviations centered around 0).

Computational complexity of state inference and EM algorithm

How do the computational costs of the algorithm grow as the number of latent variables in the

model is increased? As pointed out in Paninski et al. [16], exploiting the block-tridiagonal

nature of the covariance matrices, the numerical operations within one iteration of the state

inference algorithm (i.e., solving @Q�ΩðZÞ=@Z ¼ 0, Eq 7) can be done in linear, O(M×T), time,

just like with the Kalman filter (due to the model’s Markov properties, full inversion of the

Hessian is also not necessary to obtain the relevant moments of the posterior state distribu-

tion). This leaves open the question of how many more mode search iterations, i.e. linear equa-

tion solving (Eq 7) and constraint-flipping (vector dO) steps, are required as the number of

latent variables (through either M or T) increases. The answer is provided in Fig 8A which is

based on the experimental data set discussed below. Although a full computational complexity

analysis is beyond the scope of this paper, at least for these example data (and similar to what

has sometimes been reported for the somewhat related Simplex algorithm; [56]), the increase

with M appears to be at most linear. Likewise, the total number of iterations within the full

EM procedure, i.e. the number of mode-search steps summed across all EM iterations (thus
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Fig 5. Performance of full EM algorithm on working memory model. (A) Log-likelihood as a function of

EM iteration for the highest-likelihood run out of all 240 initializations. As in this example, the log-likelihood,

although generally increasing, was not always monotonic (note the little ripples; see discussion in Results).

(B) Mean squared prediction error, avg½ðxit � x̂ itÞ
2
�, between true (fxtg) and predicted (fx_tg) observations

across all 20 output variables and the 5 highest-likelihood solutions, as a function of ahead-prediction time

step Δt, for the original PLRNN (blue curve) and for a linear dynamical system (LDS; red curve) estimated

via EM from the same, PLRNN-generated data. Note that while the true and estimated observations agree

almost perfectly for both the PLRNN and LDS if predicted directly from the inferred states (i.e., x_t ¼ B�ðẑ tÞ),
prediction quality severely decays for the LDS while remaining high for the PLRNN if fx_tg-predictions were

made from states forecast Δt time steps into the future (see text for further explanation; note that a slight

decay in prediction quality across Δt is inevitable because of the process noise). Error bars = SEM.

https://doi.org/10.1371/journal.pcbi.1005542.g005
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reflecting the overall scaling of the full algorithm), was about linear (Fig 8B; in this case, single-

constraint instead of complete flipping (see Methods) was used which, of course, increases the

overall number of iterations but may perform more stably; note that in general the absolute

number of iterations will also depend on detailed parameter settings of the algorithm, like the

EM convergence criterion and error tolerance). Thus, overall, the present state inference algo-

rithm seems to behave quite favorably, with an at most linear increase in the number of itera-

tions required as the number of latent variables is ramped up.

Application to experimental recordings

I next was interested in what kind of structure the present PLRNN approach would retrieve

from experimental multiple (N = 19) single-unit recordings obtained while rats were performing

Fig 6. State estimates for ML solution (cf. Fig 5) from the full EM algorithm on the working memory model. In this example, true and estimated states

were nicely linearly related, although mostly with regression slopes deviating from 1 (see text for further discussion). State estimation in this case was

performed by inverting only the single constraint corresponding to the largest deviation on each iteration (see Methods). Bisectrix lines in black indicate

identity.

https://doi.org/10.1371/journal.pcbi.1005542.g006

Fig 7. Full EM algorithm on working memory model. (A) Parameter estimates for ML solution from Fig 5. True parameters (on x-axes or as blue bars,

respectively), initial (gray circles or green bars) and final (black circles or yellow bars) parameter estimates for (from left to right) μ0,A,W,B,Γ. Bisectrix lines in

blue. Correlations between true and final estimates are indicated on top (note from Eq 17C that the estimates for μ0 are based on just one state, hence will

naturally be less precise). (B) Distributions of initial (gray curves), final (black-solid curves), and final after reordering of states (black-dashed curves),

deviations between estimated and true parameters across all 240 EM runs from different initial conditions. All final distributions were approximately centered

around 0, indicating that final parameter estimates were relatively unbiased. Note that partial information about state assignments was implicitly provided to

the network through the unit-specific inputs (and, more generally, may also come from the unit-specific thresholds θi, although these were all set to 0 for the

present example), and hence state reordering only produced slight improvements in the parameter estimates.

https://doi.org/10.1371/journal.pcbi.1005542.g007
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a simple and well-examined working memory task, namely spatial delayed alternation [41] (see

Methods). (Note that in the present context this analysis is mainly meant as an exemplification

of the current model approach, not as a detailed examination of the working memory issue

itself.) The delay was always initiated by a nose poke of the animal into a port located on the side

opposite from the response levers, and had a minimum length of 10 s. Spike trains were first

Fig 8. Computational performance of state inference (E-step) and full EM algorithm as the number of

latent states is increased. (A) The number of full mode-search iterations, i.e. the number of constraint-sets

Ω visited as defined through constraint vector d (cf. Eq 7) within one E-step, increases (sub-)linearly with

the number M of latent states included in the model. (B) Likewise, the total number of mode-search steps

(evaluated with single-constraint flipping here) summed across all EM iterations increases about linearly with

M (single-constraint flipping requires about 10-fold more iterations than full-constraint flipping, but was

observed to perform more stably). Note that this measure combines the number of EM iterations with the

number of mode-search steps during each EM pass, and in this sense reflects the scaling of the full EM

procedure. Performance tests shown were run on the experimental data sets illustrated in Figs 9–12. Means

were obtained across 40 different initial conditions (with each, in turn, representing the mean from 3x14 = 42

runs in A, or 14 runs in B, separately for each of 14 trials). Error bars = SEM (across initial conditions).

https://doi.org/10.1371/journal.pcbi.1005542.g008

Fig 9. Prediction of single unit responses. (A) Top row: Example of an ACC unit (darker-gray curves) captured very well

by the estimated PLRNN despite considerable trial to trial fluctuations (3 consecutive trials shown). Both model estimates

from the directly inferred states (black curves) and from 1-step-ahead predictions of states zt (dashed curves) are shown.

Bottom row: Example of another ACC unit on the same three trials where only the average trend was captured by the PLRNN

when firing rates were estimated from either the directly inferred or predicted states. Gray vertical bars in all panels indicate

times of cue/ response. State estimation in this case was performed by inverting only the single constraint corresponding to

the largest deviation on each iteration (see Methods). (B) Correlations among actual (fxtg) and predicted (fx_tg) observations

for all 19 neurons within this data set.

https://doi.org/10.1371/journal.pcbi.1005542.g009
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transformed into kernel density estimates by convolution with a Gaussian kernel (see Methods),

as done previously (e.g. [12; 57; 58]), and binned with 500 ms resolution. This also renders the

observed data more suitable to the Gaussian noise assumptions of the present observation

model, Eq 3. Models with different numbers of latent states were estimated, with M = 5 or

M = 10 chosen for the examples below. Periods of cue presentation were indicated to the model

by setting external inputs sit = 1 to units i = 1 (left lever) or i = 2 (right lever) for three 500 ms

time bins surrounding the event (and sit = 0 otherwise), and the response period was indicated

by setting s3t = 1 for 3 consecutive time bins irrespective of the correct response side (i.e., non-

discriminatively). The EM algorithm was started from a range of different initializations of the

parameters (including thresholds θ), and the 5 highest likelihood solutions were considered fur-

ther for the examples below.

Fig 10A gives the log-likelihoods across EM iterations for these 5 highest-likelihood solutions

(starting from 36 different initializations) for the M = 5 model. Interestingly, there were single

neurons whose responses were predicted quite well by the estimated model despite large trial-

to-trial fluctuations (Fig 9A, top row), while there were others with similar trial-to-trial fluctua-

tions for which the model only captured the general trend (Fig 9A, bottom row; to put this into

context, Fig 9B gives the full distribution of correlations between actual and predicted observa-

tions across all 19 neurons). This may potentially indicate that trial-to-trial fluctuations in single

neurons could be for very different reasons: For instance, in those cases where strongly varying

single unit responses are nevertheless tightly reproduced by the estimated model, a larger pro-

portion of their trial-to-trial fluctuations may have been captured by the latent state dynamics,

ultimately rooted in different (trial-unique) initializations of the states (recall that the states are

not completely free to vary in accounting for the observations, but are constrained by the mod-

el’s temporal consistency requirements). In contrast, when only the average trend is captured,

the neuron’s trial-to-trial fluctuations may be more likely to represent true intrinsic (or mea-

surement) noise sources that the model’s deterministic part cannot account for. In practice,

Fig 10. Log-likelihood of PLRNN and cross-validation performance of linear (LDS) and nonlinear

(PLRNN) state space models on the ACC data. (A) Examples of log-likelihood curves across EM iterations

from the 5/36 highest-likelihood runs for a 5-state PLRNN estimated from 19 simultaneously recorded

prefrontal neurons on a working memory task (cf. Fig 9). State estimation here was performed by inverting

only the single constraint corresponding to the largest deviation on each iteration (see Methods). (B) Cross-

validation error (CVE) for the PLRNN (red curve) and the LDS (blue curve) as a function of the number of

latent states M. CVE was assessed on each of 14 left-out trials with model parameters estimated from the

remaining 14–1 = 13 experimental trials. Shown are squared errors ðxit � x̂ itÞ
2

averaged across all units i,

time points t, and 40 different initial conditions. (C) Same as A, but with outputs x̂ it estimated from states

predicted Δt = 1 (solid curves) or Δt = 3 (dashed curves) time steps ahead. Note that in this case the PLRNN

consistently performs better than a LDS for all M, with the PLRNN-LDS difference growing as Δt increases.

Error bars represent SEMs across those of the 40 initial conditions for which stable models were obtained

(same for the means).

https://doi.org/10.1371/journal.pcbi.1005542.g010
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such conclusions would have to be examined more carefully to rule out that no other factors in

the estimation procedure, like different local maxima, initializations, or over-fitting issues (see

below), could account for these differences. Although this was not further investigated here, this

observation nevertheless highlights the potential of (nonlinear) state space models to possibly

provide new insights also into other long-standing issues in neurophysiology.

Cross-validation is an established means to address over-fitting [45], although due to the pres-

ence of both unknown parameters and unknown states, its application to state space models and

its interpretation in this context may be a bit less straightforward. Here the cross-validation error

was first assessed by leaving out each of the 14 experimental trials in turn, estimating model para-

meters X from the remaining 13 trials, inferring states zt given these parameters on the left-out

trial, and computing the squared prediction errors ðxit � x̂ itÞ
2

between actual neural observations

xit and model predictions x̂ it on the left-out trial. As shown in Fig 10B, this measure steadily

(albeit sub-linearly) decreases as the number M of latent states in the model is increased. At first

sight, this seems to suggest that with M = 5 or even M = 10 the over-fitting regime is not yet

reached. On the other hand, the latent states are, of course, not completely fixed by the transition

equations, but have some freedom to vary as well (the true effective degrees of freedom for such

systems are in fact very hard to determine, cf. [59]). Hence, we also examined the Δt-step-ahead

prediction errors, that is, when the transition model were iterated Δt steps forward in time, and

x̂ i;tþDt ¼ bi��ðẑtþDtÞ estimated from the deterministically predicted states ẑtþDt ¼ HDtðE½zt�Þ (with

HΔt the Δt-times iterated map H(zt) = Azt + Wϕ(zt) + Cst), not from the directly inferred states

(that is, predictions were made on data points which were neither used to estimate parameters

nor to infer the current state). These curves are shown for Δt = 1 and Δt = 3 in Fig 10C, and con-

firm that M = 5 might be a reasonable choice at which over-fitting has not yet ensued. (Alterna-

tively, the predictive log-likelihood, log pðXtestjΞ̂trainÞ ¼ log
Z

pðXtestjẐÞpðẐjΞ̂trainÞdẐ, may be

used for model selection (i.e., choice of M), with pðẐjΞ̂trainÞ either approximated through the E-

step algorithm (with all X-dependent terms removed), or bootstrapped by generating Ẑ-trajecto-

ries from the model with parameters Ξ̂train (note that this is different from particle filtering since

pðẐjΞ̂trainÞ does not depend on test observations Xtest). This is of course, however, computation-

ally more costly to evaluate than the Δt-step-ahead prediction error.)

Fig 11 shows trial-averaged latent states for both left- and right-lever trials, illustrated in

this case for one of the five highest likelihood solutions (starting from 100 different initializa-

tions) for the M = 10 model. Recall that the first 3 PLRNN units received external inputs to

indicate left cue (i = 1), right cue (i = 2), or response (i = 3) periods, and so, not too surpris-

ingly, reflect these features in their activation. On the other hand, the cue response is not very

prominent in unit i = 1, indicating that activity in the driven units is not completely dominated

by the external regressors either, while unit i = 10 (not externally driven) shows a clear left-cue

response. Most importantly, many of the remaining state variables clearly distinguish between

the left and right lever options throughout the delay period of the task, in this sense carrying a

memory of the cue (previous response) within the delay. Some of the activation profiles appear

to systematically climb or decay across the delay period, as reported previously (e.g. [1; 60]),

but are a bit harder to read (at least in the absence of more detailed behavioral information),

such that one may want to stick with the simpler M = 5 model discussed above. Either way, for

this particular data set, the extracted latent states appear to summarize quite well the most

salient computational features of this simple working memory task.

Further insight about the dynamical mechanisms of working memory might be gained by

examining the system’s fixed points and their eigenvalue spectrum. For this purpose, the EM

algorithm was started from 400 different initial conditions (that is, initial parameter estimates
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and threshold settings θ) with maximum absolute eigenvalues (of the corresponding fixed

points) drawn from a relatively uniform distribution within the interval [0 3]. Although the

estimation process rarely returned truly multi-stable solutions (just 2.5% of all cases), one fre-

quently discussed candidate mechanism for working memory (e.g. [29; 32]), there was a clear

trend for the final maximum absolute eigenvalues to aggregate around 1 (Fig 12). For the dis-

crete-time dynamical system (1) this implies it is close to a bifurcation, with fixed points on

the brink of becoming unstable, and will tend to produce (very) slow dynamics as the degree

of convergence shrinks to zero along the maximum eigenvalue direction (strictly, a single

eigenvalue near 1 does not yet guarantee a slow approach, but makes it very likely, especially in

a (piecewise) linear system). Indeed, effectively slow dynamics is all that is needed to bridge

the delays (see also [1]), while true multi-stability may perhaps even be the physiologically less

likely scenario (e.g. [61; 62]). (Reducing the bin width from 500 ms to 100 ms appeared to pro-

duce solutions with eigenvalues even closer to 1 while retaining stimulus selectivity across the

delay, but this observation was not followed up more systematically here).

Comparison to linear dynamical systems

Linear dynamical systems (LDS) have frequently and successfully been used to infer smooth

neural trajectories from spike train recordings [15; 16; 20; 22] or other measurement modali-

ties [63]. However, as noted before, they cannot, on their own, as a matter of principle, pro-

duce a variety of dynamical phenomena essential for neural computation and observed

experimentally, including multi-stability (e.g. [29; 2]), limit cycles (stable oscillations; e.g. [3]),

chaos (e.g. [33]), and many types of bifurcations and phase transitions. For instance, the ques-

tion of whether working memory performance is better explained in terms of multi-stability

or effectively slow dynamics (see above, Fig 12) is largely beyond the realm of an LDS, due to

its inherent inability to express multi-stability in the first place. An LDS is therefore less suit-

able for retrieving system dynamics or computations in general.

Nevertheless, it may still be instructive to ask how much of the underlying dynamics

could already be explained in linear terms. The most direct comparison of PLRNN to LDS

Fig 11. Example (from one of the 5 highest likelihood solutions) for latent states of a PLRNN with

M = 10 estimated from ACC multiple single-unit recordings during working memory (cf. Figs 9 and

10). Shown are trial averages for left-lever (blue) and right-lever (red) trials with SEM-bands computed across

trials. Dashed vertical lines flank the 10 s period of the delay phase used for model estimation. Note that latent

variables z4 and z5, in particular, differentiate between left and right lever responses throughout most of the

delay period.

https://doi.org/10.1371/journal.pcbi.1005542.g011
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performance is made by replacing the nonlinearity ϕ(zt) = max{0,zt − θ} in Eq 1 simply by

the linear function ϕ(zt) = zt−θ, yielding an LDS with exactly the same parameters X as the

PLRNN which can be subjected to the very same estimation and inference procedures (only

that state inference can now be done exactly in just one step). Fig 10B reveals that a LDS fits

the observed neural recordings about as well as the PLRNN for M�5, and starts to excel

PLRNN performance for M>5. Since the major difference in this context is that the PLRNN

places a tighter constraint on the temporal consistency of the states through the threshold-

nonlinearity, it seems reasonable that this result is due to over-fitting, i.e. the LDS due to its

smoothness allows for more freedom for the states to adjust to the actual observations (cf.

[64]). It is important to bear in mind that consistency with the actual observations is just one

objective of the maximum-likelihood formulation, Eq 5; the other is consistency of states

across time according to the model specification.

Either way, the PLRNN starts to significantly outperform the LDS in terms of the Δt-step-

ahead prediction errors (see above), with the gap in performance widening as Δt increases (Fig

10C). This strongly suggests that the PLRNN has internalized aspects of the system dynamics

which the LDS fails to represent, i.e. supports the presence of nonlinear structure in the transi-

tion dynamics. Interestingly, looking back at Fig 5B, it turns out that even for simulated data

generated by a PLRNN (at least for this example), for Δt = 0 an estimated LDS is about as good

in reproducing the actual observations as an estimated PLRNN itself (with an MSE close to 0),

that is, although, unlike the PLRNN it does not have the correct model structure. However,

similar to what has been observed for the experimental data (Fig 10B and 10C), this perfor-

mance rapidly drops and falls far behind that of the PLRNN (which remains low) as 1 or more

time steps into the future are to be predicted (note that for the simulated model, unlike the

Fig 12. Initial (gray) and final (black) distributions of maximum (absolute) eigenvalues associated

with all fixed points of 400 PLRNNs estimated from the experimental data (cf. Figs 9–11) with different

initializations of parameters, including the (fixed) threshold parameters θi. Initial parameter

configurations were deliberately chosen to yield a rather uniform distribution of absolute eigenvalues� 3.

https://doi.org/10.1371/journal.pcbi.1005542.g012
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experimental example, the true number of states is known of course). This confirms that

although the LDS may capture the actual observations quite well, it may not, unlike the

PLRNN, be able to properly represent the underlying system within its internal dynamics.

As a note on the side, an LDS could be utilized to find proper, efficient initializations for

the corresponding PLRNN, or to first improve initial estimates (although it remains to be

examined whether this could potentially also bias the search space in an unfavorable way).

Discussion

Reconstructing computational dynamics from neuronal recordings

In the present work, a semi-analytical, maximum-likelihood (ML) approach for estimating

piecewise-linear recurrent neural networks (PLRNN) from brain recordings was developed.

The idea is that such models would provide 1) a representation of neural trajectories and com-

putationally relevant dynamical features underlying high-dimensional experimental time

series in a much lower-dimensional latent variable space (cf. [20; 25]) and 2) more direct access

to the neural system’s statistical and computational properties. Specifically, once estimated to

reproduce the data (in the ML sense), such models may, in principle, allow for more detailed

analysis and in depth insight into the system’s probabilistic computational dynamics, e.g.

through an analysis of fixed points and their linear stability (e.g. [28; 30; 32; 47; 65–70]), prop-

erties which are not directly accessible from the experimental time series.

Model-free (non-parametric) techniques, usually based on Takens’ delay embedding theo-

rem [71] and extensions thereof [72; 73], have also frequently been applied to gain insight

into neuronal dynamics and its essential features, like attracting states associated with different

task phases from in-vivo multiple single-unit recordings [11; 12] or unstable periodic orbits

extracted from relatively low-noise slice recordings [74]. In neuroscience, however, one com-

monly deals with high-dimensional observations, as provided by current multiple single-unit

or neuroimaging techniques (which still usually constitute just a minor subset of all the sys-

tem’s dynamical variables). In addition, there is a large variety of both process and measure-

ment noise sources. Measurement noise may come from direct physical sources like, for

instance, instabilities and movement in the tissue surrounding the recording electrodes, noise

properties of the recording devices themselves, the mere fact that only a fraction of all system

variables is experimentally accessed (‘sampling noise’), or may result from preprocessing steps

like spike sorting (e.g. [75; 76]). Process noise sources include thermal fluctuations and the

probabilistic behavior of single ion channel gating [77], probabilistic synaptic release [6], fluc-

tuations in neuromodulatory background and hormone levels, and a large variety of uncon-

trollable external noise sources via the sensory surfaces, including somatosensory and visceral

feedback from within the body. In fact, the stochasticity of the neural dynamics itself has been

deemed essential for a number of computational processes like those involved in decision

making and inference [7–9]. This is therefore a quite different scenario from the comparatively

low-dimensional and low-noise situations in, e.g., laser physics [78], and delay-embedding-

based approaches to the reconstruction of neural dynamics may have to be augmented by

machine learning techniques to retrieve at least some of its most salient features [11; 12].

Of course, model-based approaches like the one developed here are also plagued by the

high dimensionality and high noise levels inherent in neural data, but perhaps to a lesser extent

than approaches like delay embeddings that aim to directly construct the state space from the

observations (see also [79]). This is because models as pursued in the statistical state space

framework explicitly incorporate process and measurement noise assumptions into the sys-

tem’s description, performing smoothing in the latent space. Also, as long as the latent variable

space itself is relatively small and related to the observations by simple linear equations, as
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here, the high dimensionality of the observations themselves does not constitute a too serious

issue for estimation. More importantly, however, it is of clear advantage to have access to pro-

cess equations generating state distributions consistent with the observations, as this allows for

a more in depth analysis of the system’s stochastic dynamics and its relation to neural compu-

tation (e.g. [2; 28; 30; 47; 68; 70; 33]). There have also been various attempts to account for the

observed dynamics directly in terms of nonlinear time series models (e.g. [13, 78, 80]), i.e.

without reference to an underlying latent variable model, e.g. through differential equations

expressed in terms of nonlinear basis expansions in the observations, estimated through

strongly regularized (penalized) regression methods [11; 13; 80]. For neuroscientific data

where usually only a small subset of all dimensions is observed, this implies that this approach

has to be augmented by delay embedding techniques to replace the unobserved variables. This,

in turn, may potentially lead to very high-dimensional systems (cf. [11,13]) that may necessi-

tate further pre-processing steps to reduce the dimensionality again, in a way that preserves

the dynamics. Also, there is no distinction between measurement and dynamical noise in

these models, and, although functionally generic, the parameters of such models may be

harder to interpret in a neuroscientific context. How these different assumptions and method-

ological steps affect the reconstruction of neural dynamics from high-dimensional, noisy neu-

ral time series, as compared to state space models, remains an open and interesting question at

this point.

Comparison to other neural state space models

State space models are a popular statistical tool in many fields of science (e.g. [14; 63]), although

their applications in neuroscience are of more recent origin [15, 16; 18; 19; 21–24]. The Dynamic

Causal Modeling (DCM) framework advanced in the human fMRI literature to infer the func-

tional connectivity of brain networks and their dependence on task conditions [63; 81] may be

seen as a state space approach, although these models usually do not contain process noise

(except for the more recently proposed ‘stochastic DCM’ [81]) and are commonly estimated

through Bayesian inference, which imposes more constraints (via computational burden) on the

complexity of the models that could potentially be dealt with in this framework. In neurophysiol-

ogy, Smith & Brown [15] were among the first to suggest a state space model for multivariate

spike count data by coupling a linear-Gaussian transition model with Poisson observations, with

state estimation achieved by making locally Gaussian approximations to Eq 18. Similar models

have variously been used subsequently to infer local circuit coding properties [18] or, e.g., bio-

physical parameters of neurons or synaptic inputs from postsynaptic voltage recordings [82; 17].

Yu et al. [25] proposed Gaussian Process Factor Analysis (GPFA) for retrieving lower-dimen-

sional, smooth latent neural trajectories from multiple spike train recordings. In GPFA, the cor-

relation structure among the latent variables is specified (parameterized) explicitly rather than

being given through a transition model. Buesing et al. [20], finally, discuss regularized forms of

neural state space models to enforce their stability.

By far most of the models discussed above are linear in their latent dynamics, however

(although observations may be non-Gaussian). As demonstrated in the Results, linear state

space models may potentially be similarly well fit for reproducing actual observations, at least

for the particular model and experimental systems studied here. In fact, this is not at all

guaranteed in general, if the underlying processes are highly nonlinear (unlike those in Fig 5

where the nonlinearity was comparatively mild (not depending on multi-stability)). Thus, they

may often be sufficient to obtain smoothed neural trajectories or lower-dimensional represen-

tations of the observed process [25], to uncover properties of the underlying connectivity [63;

81], or to estimate synaptic/neuronal parameters [16; 82]. However, as linear systems are
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strongly limited in the repertoire of dynamics and computations they can produce (e.g. [65;

83]), they cannot serve as a model for the underlying computational processes and dynamics

in general, and do not allow for the type of analyses which led into Fig 12. A LDS can, on its

own, express at most one isolated fixed point (or a neutrally un-/stable continuum), or (neu-

trally un-/stable) sinusoidal-like cycles, but cannot represent any of the more complex phe-

nomena which characterize physiological activity and are a hallmark of most computation. On

the other hand, a direct comparison of LDS vs. PLRNN predictive performance may be highly

revealing in itself: While some cognitive processes (like decision making, sequence or syntax

generation) would clearly be expected to be highly nonlinear in their underlying dynamics [4;

84; 85], others (early stimulus responses, or value updating, for instance) may follow more of a

linear rule (e.g., if stimuli were projected into a high-dimensional space for linear separability;

cf. [86]). Directly contrasting LDS with PLRNN predictions on the same data set (as carried

out in Fig 10), may uncover such important differences in computational mechanisms, and

hence constitute an interesting analysis strategy in its own right.

There are a couple of other exceptions from the linear framework the current work builds on:

Yu et al. [23] suggested a RNN with sigmoid-type activation function (using the error function),

coupled to Poisson spike count outputs, and used it to reconstruct the latent neural dynamics

underlying motor preparation and planning in non-human primates. In their work, they com-

bined the Gaussian approximation suggested by Smith & Brown [15] with the Extended Kalman

Filter (EKF) for estimation within the EM framework. These various approximations in conjunc-

tion with the iterative EKF estimation scheme may be quite prone to numerical instabilities and

accumulating errors, however (cf. [26]). Earlier work by Roweis & Ghahramani [27] used radial

basis function (RBF) networks as a partly analytically tracktable approach. Nonlinear extensions

to DCM, incorporating quadratic terms, have been proposed as well recently [87]. State and

parameter estimation has also been attempted in (noisy) nonlinear biophysical models [88; 89],

but these approaches are usually computationally expensive, especially when based on numerical

sampling [89], while at the same time pursuing objectives somewhat different from those tar-

geted here (i.e., less focused on computational properties). A very recent article by Whiteway &

Butts [90] discusses an approach closely related to the present one in that it also assumed piece-

wise linear latent states (or, ‘rectified linear units (ReLU)’). Unlike here, however, the latent states

were not connected through a dynamical systems model with separate process noise (but just

constrained through a smoothness prior). Indeed, the objectives of this work were different, as

Whiteway & Butts [90] aimed more at capturing unobserved sources of input in accounting for

observed neural activity (more in the spirit of factor analysis), rather than attempting to retrieve

an underlying stochastic dynamics as in the present work. They found, however, that the inclu-

sion of nonlinearities may help in accounting for observed data and improve interpretability of

the latent factors.

In summary, nonlinear neural state space models remain a relatively under-researched

topic in theoretical neuroscience. PLRNNs, as chosen here, have the advantage of being mathe-

matically comparatively tracktable, which allowed for the present, reasonably fast, semi-analyt-

ical algorithm, yet they are computationally and dynamically still powerful [91–94].

Alternative inference/training schemes, network architectures, and

observation distributions

A number of other inference schemes have been suggested for state space models, comprising

both analytical approximations [22] and numerical (sampling) techniques (e.g. [26]). Among

the former are the Extended Kalman filter (based on local Taylor series approximations),

methods based on variational inference as reviewed in Macke et al. [22], or the (global) Laplace
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approximation advertized in Paniniski et al. ([16]; see also [22]). Durbin & Koopman [26]

review different variants of particle filter schemes for sequential numerical sampling. These

may often be simpler to use, but are usually computationally much more costly than the semi-

analytical methods. The Unscented Kalman Filter may be seen somewhere in between, using a

few deliberately chosen sample (‘sigma’) points for a local parametric assessment [26]. Here

we chose a global approach rather than a recursive-sequential scheme, that is by solving the

full M×T system of linear equations within each subspace defined by constraints O in one go.

Apart from its generally nice computational properties as discussed in Paniniski et al. [16], it

seems particularly well-suited for the present piecewise-linear model Eqs (1) and (3), in dealing

with the combinatorial explosion which builds up along the chain from t = 1. . .T. However,

the mathematical properties of the present algorithm, among them issues of convergence/

monotonicity, local maxima/ saddles, and uniqueness and existence of solutions, certainly

require further illumination which may lead to algorithmic improvements. In particular, iden-

tifiability of dynamics, that is to what degree and under which conditions the true underlying

dynamical system could be recovered by the PLRNN-EM approach, remains an open issue

(one line of extension toward greater approximation power would be polynomial basis expan-

sions, at the cost, however, of losing the straightforward interpretation in terms of ‘neural

networks’).

Most commonly, different variants of gradient-based techniques are being used to train

recurrent neural networks to fit observations [40, 42, 50, 95, 96]. For instance, recurrent net-

work models have been trained to perform behavioral tasks [43] or reproduce behavioral data

to infer the dynamical mechanisms potentially underlying working memory [97] or context-

dependent decision making [68]. In these settings, however, the observations–that is behav-

ioral data points or requested task outputs–are usually relatively sparse in time compared to

the time scale of the underlying dynamics, unlike the neural time series settings studied here

where the data can be as dense as the latent state vectors of the model. More importantly, in

contrast to these previous gradient-based approaches, the present scheme embeds RNNs into a

statistical framework that comes with explicit probability assumptions, thereby puts error bars

on state and parameter estimates and returns the posterior probability distribution across

latent states, which links in with the observations through a separate measurement function

(enabling, for instance, dimensionality reduction), and allows for likelihood-based statistical

inference and model comparison. Some preliminary analyses using stochastic Adagrad [98]

for training PLRNNs on the time series from the working memory example (cf. Fig 3) seemed,

on top, to indicate that the resulting parameter estimates may correlate less well (<0.51 for A

and W, after optimal reordering of states) with the true model parameters than those obtained

with the present EM approach (>0.78) for the lowest error/ highest likelihood solutions (this

may potentially be improved through teacher forcing, which, however, is not applicable when

the observed and latent space differ in dimensionality and are related through an, in general,

not strictly invertible transform, as here).

Other observation models, like the Poisson model for spike counts [15; 22], are also relatively

straightforward to accommodate within this framework (see [16]). However, there are also other

ways to deal with spike count observations, like simple Box-Cox-type transforms to make them

more Gaussian, e.g. the sqrt-transform suggested for GPFA [25], or kernel-density smoothing

(e.g. [58]) as used here. The latter has the additional advantage of reducing the impact of ‘binning

noise’, due to the somewhat arbitrary mapping of real-valued spike times onto discrete (user-

defined) time bins for the purpose of counting. In general, from a practical perspective, it may

therefore still be an open question of whether the additional computational burden that comes

with non-Gaussian observation models (e.g. the requirement of Newton-Raphson steps for each

mode-search iteration) pays off in the end compared to these alternatives. In either case, for the
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time being, it seems useful to have a more general approach which can also deal with other mea-

surement modalities, like neuroimaging data, which are not of a count-nature.

The present approach could also be extended by incorporating various additional structural

features. For instance, a distinction between units with excitatory vs. inhibitory connections

[43] could be accommodated quite easily within the present framework (requiring constrained

optimization for weight parameters, however, e.g. through quadratic programming). Or spe-

cial gated linear units which make LSTM networks so powerful [39,40] may potentially also

yield improvements within the present EM/ state-space framework (although, in general, one

may want to be cautious about the assumptions that additional structural elements like these

may imply about the underlying neural system to be examined).

Mechanisms of working memory

Although the primary focus of this work was to develop and evaluate a state space framework

for PLRNNs, some discussion of the applicational example chosen here, working memory, is

in order. Working memory is generally defined as the ability to actively hold an item in mem-

ory, in the absence of guiding external input, for short-term reference in subsequent choice

situations [99]. Various neural mechanisms have been proposed to underlie this cognitive

capacity, most prominently multi-stable neural networks which retain short-term memory

items by switching into one of several stimulus-selective attractor states [28; 29; 32]. These

attractors usually represent fixed points in the firing rates, with assemblies of recurrently cou-

pled stimulus-selective cells exhibiting high rates while those cells not coding for the present

stimulus in short-term memory remaining at a spontaneous low-rate base level. These models

were inspired by the physiological observation of ‘delay-active’ cells [100–102], that is cells that

switch into a high-rate state during the delay periods of working memory tasks, and back to a

low-rate state after completion of a trial, similar to the ‘delay-active’ latent states observed in

Fig 11. Nakahara & Doya [103] were among the first to point out, however, that, for working

memory, it may be completely sufficient (or even advantageous) to tune the system close to a

bifurcation point where the dynamics becomes very slow (see also [1]), and true multi-stability

may not be required. This is supported by the present observation that most of the estimated

PLRNN models had fixed points with eigenvalues close to 1 but were not truly bi- or multi-

stable (cf. Fig 12), yet this was sufficient to account for maintenance of stimulus-selectivity

throughout the 10 s delay of the present task (cf. Fig 11) and for experimental observations (cf.

Fig 9). Recently, a number of other mechanisms for supporting working memory, however,

including sequential activation of cell populations [104] or synaptic mechanisms [105] have

been discussed. Thus, the neural mechanisms of working memory remain an active research

area to which statistical model estimation approaches as developed here may contribute, but

too broad a topic in its own right to be covered in more depth by this mainly methodological

work.

Models and methods

Expectation-maximization algorithm: State estimation

As with most previous work on estimation in (neural) state space models [20; 22; 23; 26], we

use the Expectation-Maximization (EM) framework for obtaining estimates of both the model

parameters and the underlying latent state path. Due to the piecewise-linear nature of model

(1), however, the conditional latent state path density p(Z|X) is a high-dimensional ‘mixture’

of partial Gaussians, with the number of integrations to perform to obtain moments of p(Z|X)

scaling as 2T×M. Although analytically accessible, this will be computationally prohibitive for

almost all cases of interest. Our approach therefore focuses on a computationally reasonably
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efficient way of searching for the mode (maximum a-posteriori, MAP estimate) of p(Z|X)

which was found to be in good agreement with E(Z|X) in most cases. Covariances were then

approximated locally around the MAP estimate.

More specifically, the EM algorithm maximizes the expected log-likelihood of the joint dis-

tribution p(X,Z) as a lower bound on log p(X|X) [27], where X = {μ0,A,W,S,B,Γ} denotes the

set of to-be-optimized-for parameters (note that we dropped the thresholds θ from this for

now):

QðΞ;ZÞ≔E½log pðZ;XjΞÞ�

¼ E �
1

2
ðz1 � μ0 � s1Þ

TΣ� 1ðz1 � μ0 � s1Þ

� �

þ E �
1

2

XT

t¼2

ðzt � Azt� 1 � W�ðzt� 1Þ � stÞ
TΣ� 1ðzt � Azt� 1 � W�ðzt� 1Þ � stÞ

" #

þ E �
1

2

XT

t¼1

ðxt � B�ðztÞÞ
TΓ� 1ðxt � B�ðztÞÞ

" #

�
T
2
ðlogjΣj þ logjΓjÞ:

ð5Þ

For state estimation (E-step), if ϕ were a linear function, obtaining E(Z|X,X) would be

equivalent to maximizing the argument of the expectancy in (5) w.r.t. Z, i.e., E[Z|X,X]� arg

maxZ[log p(Z,X|X)] (see [16]; see also [106]). This is because for a Gaussian mean and mode

coincide. In our case, p(X,Z) is piecewise Gaussian, and we still take the approach (suggested

in [16]) of maximizing log p(Z,X|X) directly w.r.t. Z (essentially a Laplace approximation of p
(X|X) where we neglect the Hessian which is constant around the maximizer; cf. [16, 48]).

Let O(t)� {1. . .M} be the set of all indices of the units for which we have zmt� θm at time t,
and WO(t) and BO(t) the matrices W and B, respectively, with all columns with indices 2 O(t)
set to 0. The state estimation problem can then be formulated as

maximize

Q�ΩðZÞ≔ �
1

2
ðz1 � μ0 � s1Þ

TΣ� 1ðz1 � μ0 � s1Þ

�
1

2

XT

t¼2

½zt � ðAþWOðt� 1ÞÞzt� 1 þWOðt� 1Þθ � st�
TΣ� 1½zt � ðAþWOðt� 1ÞÞzt� 1 þWOðt� 1Þθ � st�

�
1

2

XT

t¼1

ðxt � BOðtÞzt þ BOðtÞθÞ
TΓ� 1ðxt � BOðtÞzt þ BOðtÞθÞ

w:r:t: ðΩ;ZÞ; subject to zmt � ym 8t;m 2 OðtÞ AND zmt > ym 8t;m=2OðtÞ

ð6Þ

Let us concatenate all state variables into one long column vector, z = (z1,. . .,zT) = (z11. . .

zmt. . .zMT)T, and unwrap the sums across time into large, block-banded MT×MT matrices (see

[16; 83]) in which we combine all terms quadratic or linear in z, or ϕ(z), respectively. Further,

define dO as the binary (MT×1) indicator vector which has 1s everywhere except for the entries

with indices 2 O� {1. . .MT} which are set to 0, and let DO ≔ diag(dO) the MT×MT diagonal

matrix formed from dO. Let Θ≔ (θ,θ,. . .,θ)(MT×1), and Θ+M the same vector shifted downward
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by M positions, with the first M entries set to 0. One may then rewrite Q�ΩðZÞ in the form

Q�ΩðZÞ ¼ �
1

2
½zTðU0 þDOU1 þ UT

1
DO þDOU2DOÞz

� zTðv0 þDOv1 þ V2diag½d
þM
O
�ΘþM þ V3DOΘþDOV4DOΘÞ

� ðv0 þDOv1 þ V2diag½d
þM
O
�ΘþM þ V3DOΘþDOV4DOΘÞ

Tz� þ const:

ð7Þ

The MT×MT matrices U{0. . .2} separate product terms that do not involve ϕ(z) (U0), involve

multiplication by ϕ(z) only from the left-hand or right-hand side (U1), or from both sides

(U2). Likewise, for the terms linear in z, vector and matrix terms were separated that involved

zmt or θm conditional on zmt > θm (please see the provided MatLab code for the exact composi-

tion of these matrices). For now, the important point is that we have 2M× T different quadratic

equations, depending on the bits on and off in the binary vector dO. Consequently, to obtain

the MAP estimator for z, in theory, one may consider all 2M×T different settings for dO, for

each solve the linear equations implied by @Q�ΩðZÞ=@Z ¼ 0, and select among those for which

the solution z� is consistent with the considered set O (if one exists; see below) the one which

produces the largest value Q�Ωðz�Þ.
In practice, this is generally not feasible. Various solution methods for piecewise linear

equations have been suggested in the mathematical programming literature in the past [107;

108]. For instance, some piecewise linear problems may be recast as a linear complementarity

problem [109], but the pivoting methods often used to solve it work (numerically) well only

for smaller scale settings [49]. Here we therefore settled on a similar, simple Newton-type

iteration scheme as proposed in [49]. Specifically, if we denote by z�(O) the solution to Eq 7

obtained with the set of constraints O active, the present scheme initializes with a random

drawing of the {zmt}, sets the components of dO for which zmt > θm to 1 and all others to 0, and

then keeps on alternating between (1) solving @Q�ΩðZÞ=@Z ¼ 0 for z�(O) and (2) flipping the

bits in dO for which sgn½2dðkÞO � 1� 6¼ sgn½z�kðOÞ � yk�, that is, for which the components of the

vector

c≔ð2dO � 1Þ
T
� ðθ � z�ðOÞÞ ð8Þ

are positive, until the solution to @Q�ΩðZÞ=@Z ¼ 0 is consistent with set O (i.e., c� 0).

For the problem as formulated in Brugnano & Casulli [49], these authors proved that such a

solution always exists, and that the algorithm will always terminate after a finite (usually low)

number of steps, given certain assumptions and provided the matrix that multiplies with the

states z in @Q�ΩðZÞ=@Z ¼ 0 (i.e., the Hessian of Q�Ωðz�Þ), fulfills certain conditions (Stieltjes-

type; see [49] for details). This will usually not be the case for the present system; although the

Hessian of Q�Ωðz�Þ will be symmetric and positive-definite (with proper parameter settings), its

off-diagonal elements may be either larger or smaller than 0. Moreover, for the problem con-

sidered here, all elements of the Hessian in (7) depend on O, while in [49] this is only the case

for the on-diagonal elements (i.e., in [49] DO enters the Hessian only in additive, not multipli-

cative form as here). For these reasons, the Newton-type algorithm outlined above may not

always converge to an exact solution (if one exists in this case) but may eventually cycle among

non-solution configurations, or may not even always increase Q(Z) (i.e., Eq 5!). To bypass this,

the algorithm was always terminated if one of the following three conditions was met: (i) A

solution to @Q�ΩðZÞ=@Z ¼ 0 consistent with O was encountered; (ii) a previously probed set O

was revisited; (iii) the constraint violation error defined by kc+k1, the l1 norm of the positive

part of c defined in Eq 8, went up beyond a pre-specified tolerance level (this is essentially a

fast proxy for assessing the likelihood, intended to speed up iterations by using quantities
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already computed). With these modifications, we found that the algorithm would usually ter-

minate after only a few iterations (<10 for the examined toy examples) and yield approximate

solutions with only a few constraints still violated (<3% for the toy examples). As a caveat,

unless condition (i) is met, this procedure implies that the returned solution may not even be

locally optimal (in the strict mathematical sense–it would still be expected to live within an

‘elevated’ region of the optimization landscape defined by Q(Z)). On the other hand, since

Q(Z) cannot keep on increasing along a closed cycle (it must ‘come back’), cycling implies there

must be local maxima (or potentially saddles) located on the rims that separate different linear

subspaces defined by dO. Hence, for the elements k of z for which the constraints are still vio-

lated in the end, that is for which ck> 0 in Eq 8, one may explicitly enforce the constraints by

setting the violating states z{k} = θ{k}, then solve again for the remaining states z{l 6¼ k} (placing

the solution on a ridge; or a quadratic program may be solved for the last step). Either way, it

was found that even these approximate (and potentially not even locally optimal) solutions were

generally (for the problems studied) in sufficiently good agreement with E(Z|X).

In the case of full EM iterations (with the parameters unknown as well), it appeared that

flipping violated constraints in dO one by one may often (for the scenarios studied here)

improve overall performance, in the sense of yielding higher-likelihood solutions and less

numerical problems (although it may leave more constraints violated in the end). Hence, this

scheme was adopted here for the full EM, that is only the single bit k
�

corresponding to the

maximum element of vector c in Eq 8 was inverted on each iteration (the one with the largest

wrong-side deviation from θ). In general, however, the resultant slow-down in the algorithm

may not always be worth the performance gains; or a mixture of methods, with dlþ1
k� ¼ 1 � dl

k�

with k�≔arg maxkfck > 0g early on, and dlþ1

fkg ¼ 1 � dl
fkg8k : ck > 0 during later iterations,

may be considered.

Once a (local) maximum zmax (or approximation thereof) has been obtained, the covari-

ances may be read off from the inverse negative Hessian at zmax, i.e. the elements of

V≔ðU0 þDOU1 þ UT
1

DO þDOU2DOÞ
� 1
: ð9Þ

Note that this is a local estimate around the current maximizer zmax (i.e., oblivious to the

discontinuities at the borders of the linear subspaces defined by dO). We then use these covari-

ance estimates to obtain (estimates of) E[ϕ(z)], E[zϕ(z)T], and E[ϕ(z)ϕ(z)T], as required for the

maximization step. Denoting by Fðl; m;s2Þ≔
Z 1

l

Nðx; m; s2Þdx the complementary cumula-

tive Gaussian, to ease subsequent derivations, let us introduce the following notation:

Nk≔Nðyk; z
max
k ; s2

kÞ; Fk≔Fðyk; z
max
k ; s2

kÞ; s2

kl≔covðzmax
k ; zmax

l Þ � vkl: ð10Þ

The elements of the expectancy vectors and matrices above are computed as

E½�ðzkÞ� ¼ s2
kNk þ ðzmax

k � ykÞFk;

E½�ðzkÞ
2
� ¼ ð½zmax

k �
2
þ s2

k þ y
2

k � 2ykzmax
k ÞFk þ ðzmax

k � ykÞs
2
kNk;

E½zk�ðzlÞ� ¼ ðs
2
kl � ylzmax

k þ zmax
k zmax

l ÞFl þ zmax
k s2

l Nl:

ð11Þ
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The terms E[ϕ(zk)ϕ(zl)], for k 6¼ l, are more tedious, and cannot be (to my knowledge and

insight) computed exactly (analytically), so we develop them in a bit more detail here:

E½�ðzkÞ�ðzlÞ� ¼

Z 1

yk

Z 1

yl

pðzk; zlÞðzk � ykÞðzl � ylÞdzkdzl

¼

Z 1

yk

Z 1

yl

pðzk; zlÞzkzldzkdzl � yk

Z 1

yk

Z 1

yl

pðzk; zlÞzldzkdzl � yl

Z 1

yk

Z 1

yl

pðzk; zlÞzkdzkdzl

þ ykyl

Z 1

yk

Z 1

yl

pðzk; zlÞdzkdzl

ð12Þ

The last term is just a (complementary) cumulative bivariate Gaussian evaluated with

parameters specified through the approximate MAP solution (zmax, V) (and multiplied by the

thresholds). The first term we may rewrite as follows:

Z 1

yk

Z 1

yl

pðzk; zlÞzkzldzkdzl ¼

Z 1

yk

pðzkÞzk

Z 1

yl

pðzljzkÞzldzkdzl

¼

Z 1

yk

pðzkÞzk Nðyl; mljk; l
� 1

l Þ þ mljkð1 �

Z yl

� 1

Nðzl; mljk; l
� 1

lk Þdzl

" #

dzk

where mljk≔zmax
l � l

� 1

l llkðzk � zmax
k Þ

ll≔s2
l =ðs

2
ks

2
l � s4

klÞ

llk≔ � s2
kl=ðs

2
ks

2
l � s4

klÞ

ð13Þ

These are just standard results one can derive by the reverse chain rule for integration, with

the λ’s the elements of the inverse bivariate (k,l)-covariance matrix. Note that if the variable zk

were removed from the first integrand in Eq 13, i.e. as in the second term in Eq 12, all terms in

Eq 13 would just come down to uni- or bivariate Gaussians (times some factor) or a univariate

Gaussian expectancy value, respectively. Noting this, one obtains for the second (and corre-

spondingly for the third) term in Eq 12:

yk

Z 1

yk

Z 1

yl

pðzk; zlÞzldzkdzl ¼ yklkNlFðyk; mlk; l
� 1

l Þ þ ykðzmax
l Fk þ s2

klNkÞFðyl; zmax
l ; l

� 1

k Þ

with mkl≔zmax
l þ s2

kl=s2
kðyk � zmax

k Þ

ð14Þ

The problematic bit is the product term

Z 1

yk

pðzkÞzkmljk

Z yl

� 1

Nðzl; mljk; l
� 1

lk Þdzldzk in Eq 13,

which we resolve by making the approximation mljk � ml ¼ zmax
l . This way we have for the first

term in Eq 12:

Z 1

yk

Z 1

yl

pðzk; zlÞzkzldzkdzl � lkNl½l
� 1

l Nðyk; mlk; l
� 1

l Þ þ mlkFðyk; mlk; l
� 1

l Þ�

þ ½ðs2
kz

max
l � s2

klz
max
k ÞNk þ ðzmax

k zmax
l þ s2

klÞFk�Fðyl; mlk; l
� 1

k Þ

ð15Þ

Putting (13)–(15) together with the bivariate cumulative Gaussian yields an analytical

approximation to Eq 12 that can be computed based on the quantities obtained from the

approximate MAP estimate (zmax, V).
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Expectation-maximization algorithm: Parameter estimation

Once we have estimates for E[z], E[zzT], E[ϕ(z)], E[zϕ(z)T], and E[ϕ(z)ϕ(z)T], the maximiza-

tion step is standard and straightforward, so for convenience we just state the results here,

using the notation

E1;D≔
XT� D

t¼1

E½�ðztÞ�ðztÞ
T
� ; E2≔

XT

t¼2

E½ztz
T
t� 1
�; E3;D≔

XT� 1þD

t¼1þD

E½ztz
T
t �;

E4≔
XT� 1

t¼1

E½�ðztÞz
T
t � ; E5≔

XT

t¼2

E½zt�ðzt� 1Þ
T
�;

F1≔
XT

t¼1

xtE½�ðztÞ
T
� ; F2≔

XT

t¼1

xtx
T
t ; F3≔

XT

t¼2

stE½z
T
t� 1
�;

F4≔
XT

t¼2

stE½�ðzt� 1Þ
T
� ; F5≔

XT

t¼1

E½zt�s
T
t ; F6≔

XT

t¼1

sts
T
t

ð16Þ

With these expectancy sums defined, one has

B ¼ F1E� 1

1;0
ð17AÞ

Γ ¼
1

T
ðF2 � F1BT � BFT

1
þ BET

1;0
BTÞ � I ð17BÞ

μ0 ¼ E½z1� � s1 ð17CÞ

A ¼ ½ðE2 � WE4 � F3Þ � I�½E3;0 � I�� 1
ð17DÞ

Σ ¼
1

T
½varðz1Þ þ μ0sT

1
þ s1μ

T
0
þ ET

3;1
� F5 � FT

5
þ F6 þ ðF3 � E2ÞA

T þ AðFT
3
� ET

2
Þ þ AET

3;0
AT

þ ðF4 � E5ÞW
T þWðFT

4
� ET

5
Þ þWET

1;1
WT þ AET

4
WT þWE4AT � � I

ð17EÞ

Note that to avoid redundancy in the parameters, here we usually fixed S = I � 10−2 (for the

toy models) or S = I (for the experimental data).

For W, since we assumed this matrix to have an off-diagonal structure (i.e., with zeros on

the diagonal), we solve for each row of W separately:

Pð0Þ≔ðE3;0 � IÞ� 1ET
4

Pð1Þ≔E5 � ½ðE2 � F3Þ � I�Pð0Þ � F4

8m 2 f1 . . . Mg : Wm;f1:Mgnm ¼ Pð1Þm;f1:Mgnmð½E1;1 � E4;�mPð0Þm��f1:Mgnm;f1:MgnmÞ
� 1

ð17FÞ

where the subscripts indicate the matrix elements to be pulled out, with the subscript dot

denoting all elements of the corresponding column or row (e.g., ‘•m’ takes the mth column of

that matrix). Should matrices Γ, S, W of full form be desired, the derivations simplify a bit–in

essence, the diagonal operator ‘�I‘ in the equations above (except Eq 17D) would have to be

omitted, and Eq 17F could be solved in full matrix form (instead of row-wise). An expression

for input scaling matrix C (cf. Eq 1) is given by C ¼ ðF5 � z1sT
1
� WFT

4
� AFT

3
ÞðF6 � s1sT

1
Þ
� 1

,

but note that C would also show up in (17C)–(17F) (multiplying with st everywhere), as well as

in the state inference equations; matrices A, W, and C would therefore need to be solved for
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simultaneously in this case (complicating the above expressions a bit; see provided MatLab

code for full details).

Starting from a number of different random parameter initializations, the E- and M-steps

are alternated until the log-likelihood ratio falls below a predefined tolerance level (while still

increasing) or a preset maximum number of allowed iterations are exceeded. For reasons men-

tioned in the Results, sometimes it can actually happen that the log-likelihood ratio temporar-

ily decreases, in which case the iterations are continued. If (N−M)2� N + M, factor analysis

may be used to derive initial estimates for the latent states and observation parameters in (3)

[27], although this was not attempted here. Another possibility is to improve initial estimates

first through the much faster, corresponding LDS, before submitting them to full PLRNN esti-

mation. For further implementational details see the MatLab code provided on GitHub (repos-

itory ‘PLRNNstsp’).

Particle filter

To validate the approximations from our semi-analytical procedure developed above, a boot-

strap particle filter as given in [26] was implemented. In bootstrap particle filtering, the state

posterior distribution at time t,

pΞðztjx1; . . . ; xtÞ ¼
pΞðxtjztÞpΞðztjx1; . . . ; xt� 1Þ

pΞðxtjx1; . . . ; xt� 1Þ

¼

pΞðxtjztÞ

Z

zt� 1

pΞðztjzt� 1ÞpΞðzt� 1jx1; . . . ; xt� 1Þdzt� 1

pΞðxtjx1; . . . ; xt� 1Þ

ð18Þ

is numerically approximated through a set of ‘particles’ (samples) fzð1Þt ; . . . ; zðKÞt g, drawn

from pX(zt | x1,. . .,xt−1), together with a set of normalized weights fwð1Þt ; . . . ;wðKÞt g, w
ðrÞ
t ≔

pΞðxtjz
ðrÞ
t Þ

XK

k¼1
pΞðxtjz

ðkÞ
t Þ

� �� 1

. Based on this representation, moments of pX(zt | x1:t) and

pX(ϕ(zt) | x1:t) can be easily obtained by evaluating ϕ (or any other function of z) on the set of

samples fzðrÞt g and summing the outcomes weighted with their respective normalized observa-

tion likelihoods fwðrÞt g. A new set of samples fzðrÞtþ1g for t+1 is then generated by first drawing K
times from fzðkÞt g with replacement according to the weights fwðkÞt g, and then drawing K new

samples according to the transition probabilities pΞðz
ðkÞ
tþ1jz

ðkÞ
t Þ (thus approximating the integral in

Eq 18). Here we used K = 104 samples. Note that this numerical sampling scheme, like a Kalman

filter, but unlike the procedure outlined above, only implements the filtering step (i.e., yields

pX(zt | x1:t), not pX(zt | x1:T)). On the other hand, it gives (weakly) consistent (asymptotically

unbiased; [110; 111]) estimates of all expectancies across this distribution, that is, it does not rely

on the type of approximations and locally optimal solutions of our semi-analytical approach that

almost inevitably will come with some bias (since, among other factors, the local or approximate

mode would usually deviate from the mean by some amount for the present model).

Experimental data sets

Details of the experimental task and electrophysiological data sets used here could be found in

[41, 112]. Briefly, rats had to alternate between left and right lever presses in a Skinner box

to obtain a food reward dispensed on correct choices, with a� 10 s delay enforced between

consecutive lever presses. While the levers were located on one side of the Skinner box, ani-

mals had to perform a nosepoke on the opposite side of the box in between lever presses for

Nonlinear state space model for identifying computational dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005542 June 2, 2017 27 / 33

https://doi.org/10.1371/journal.pcbi.1005542


initiating the delay period, to discourage them from developing an external coding strategy

(e.g., through maintenance of body posture during the delay). While animals were performing

the task, multiple single units were recorded with a set of 16 tetrodes implanted bilaterally into

the anterior cingulate cortex (ACC, a subdivision of rat prefrontal cortex). For the present

analyses, a data set from only one of the four rats recorded on this task was selected for the

present exemplary purposes, namely the one where the clearest single unit traces of delay activ-

ity were observed in the first place. This data set consisted of 30 simultaneously recorded units,

of which the 19 units with spiking rates >1 Hz were retained, on 14 correct trials (only correct

response trials were analyzed). The trials had variable length, but were all cut down to the

same length of 14 s, including 2 s of pre-nosepoke, 5 s extending into the delay from the nose-

poke, 5 s preceding the next lever press, and 2 s of post-response phase (note that this may

imply temporal gaps in the middle of the delay on some trials, which were ignored here for

convenience). All spike trains were convolved with Gaussian kernels (see, e.g., [12; 57; 112]),

with the kernel standard deviation set individually for each unit to one half of its mean inter-

spike-interval. Note that this also brings the observed series into tighter agreement with the

Gaussian assumptions of the observation model, Eq 3. Finally, the spike time series were

binned into 500 ms bins (corresponding roughly to the inverse of the overall (across all 30

recorded cells) average neural firing rates of�2.2 Hz), which resulted in 14 trials of 28 time

bins each submitted to the estimation process. As indicated in the section ‘State space model’, a

trial-unique initial state mean μk, k = 1. . .14, was assumed for each of the 14 temporally segre-

gated trials.
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53. Auger-Méthé M, Field C, Albertsen CM, Derocher AE, Lewis MA, Jonsen ID, et al. State-space mod-

els’ dirty little secrets: even simple linear Gaussian models can have estimation problems. Sci Rep.

2016; 6: 26677. https://doi.org/10.1038/srep26677 PMID: 27220686

54. Wu CFJ. On the Convergence Properties of the EM Algorithm. Ann Statist. 1983; 11: 95–103.

55. Boutayeb M, Rafaralahy H, Darouach M. Convergence analysis of the extended Kalman filter used as

an observer for nonlinear deterministic discrete-time systems. IEEE Trans Autom Control. 1997; 42:

581–586.

56. Megiddo. Advances in Economic Theory. Fifth World Congress. Edited by Bewley Truman F. Cam-

bridge University Press 1987

57. Durstewitz D, Vittoz NM, Floresco SB, Seamans JK (2010) Abrupt transitions between prefrontal neu-

ral ensemble states accompany behavioral transitions during rule learning. Neuron 66: 438–48.

https://doi.org/10.1016/j.neuron.2010.03.029 PMID: 20471356

58. Shimazaki H, Shinomoto S. Kernel Bandwidth Optimization in Spike Rate Estimation. J Comp Neu-

rosci. 2010; 29: 171–182.

59. Janson et al. Effective Degrees of Freedom: A Flawed Metaphor. Lucas Janson, Will Fithian, Trevor

Hastie. Biometrika. 2015, 102: 479–485. https://doi.org/10.1093/biomet/asv019 PMID: 26977114

60. Hyman JM, Ma L, Balaguer-Ballester E, Durstewitz D, Seamans JK. Contextual encoding by ensem-

bles of medial prefrontal cortex neurons. Proc Natl Acad Sci USA. 2012, 109: 5086–5091 https://doi.

org/10.1073/pnas.1114415109 PMID: 22421138

61. Latham PE, Nirenberg S. Computing and stability in cortical networks. Neural Comput. 2004; 16:

1385–1412. https://doi.org/10.1162/089976604323057434 PMID: 15165395

62. Durstewitz D, Seamans JK. Beyond bistability: biophysics and temporal dynamics of working memory.

Neuroscience. 2006; 139: 119–133. https://doi.org/10.1016/j.neuroscience.2005.06.094 PMID:

16326020

63. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003; 19: 1273–1302.

PMID: 12948688

64. Walter E., & Pronzato L. (1996). On the identifiability and distinguishability of nonlinear parametric

models. Mathematics and Computers in Simulation, 42(2–3), 125–134.

65. Strogatz SH. Nonlinear dynamics and chaos. Addison-Wesley Publ; 1994.
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