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When a French aircraft carrier set sail on 22 January,
2020 for a mission of several months, its 1,769
crewmembers were unaware of a stowaway in

the form of a novel virus. The SARS-CoV-2 virus, assumed
in early 2020 to be a recent arrival in Europe, was already
on board. Upon the ship’s return to Toulon, the main naval
base of France on the Mediterranean Sea, most of the crew
were confined to their barracks and 1,688 sailors participat-
ed in health monitoring. In this issue of Haematologica,
Boudin and colleagues report data from this unique epi-
demiological setting,1 which could have hardly been better
designed, if it had been set up for the purpose of studying
a SARS-CoV-2 outbreak among young professionals.
After 1 month at sea, the first case of COVID-19 was rec-

ognized. Another month went by before an epidemic
broke out, which forced the ship’s early return to base
within 2 weeks. Several viral strains were detected by
nucleotide sequencing.1 This observation could imply the
embarkation of multiple sailors who were independently
infected, an unlikely scenario in Europe so early in the pan-
demic. Possibly, only one crewmember was the source,
and the initial strain evolved within the 12 weeks’ voyage
while spreading among the crew.
Due to its exponential rate of spread, the SARS-CoV-2

virus rapidly infected at least 1,279 sailors, 76% of the par-
ticipants of the study, whose median age was 28 years.
Only 13% were female, without difference in the infection
rate between males and females.1,2 This rate seemed strik-
ingly high among young, healthy individuals,1 although it
may not differ so much from that of other SARS-CoV-2
outbreaks, but rather reflected an exceptionally thorough
follow-up and documentation. Only 14% of the infected
participants remained asymptomatic.1 The median age of
the 19 patients requiring only oxygen therapy was 45
years; the five patients admitted to intensive care units
were older than 50 years. All infected sailors recovered
eventually. These relatively benign clinical courses may not
be representative of COVID-19  among the general popu-
lation or cruise ship passengers, with a decidedly older age
profile and related comorbidities.3

A PubMed search for “ABO in COVID-19” yielded more
than 50 publications including reviews and meta-
analyses,4,5 documenting this possible correlation as a topic
of intense research in the past 9 months.3,6 The study by
Boudin et al.1 provides data leading to an important clarifi-
cation: the rate of infection among young adults is inde-
pendent of ABO blood group. This study can be consid-
ered the definitive conclusion on this aspect, as the quality
of the epidemiological data was optimal. Studies in smaller
cohorts7-10 and less well-defined epidemiological settings7-9,11

should be considered with caution, even if there are many.
They are more likely to be affected by unknown
cofounders. Particular precaution should be applied when
COVID-19 was associated with ABO along with other
blood group systems.10 Better data on ABO blood group
and SARS-CoV-2 infection may not be accrued soon, and
any future study would have to measure up to the quality
of the study by Boudin et al.1 Can the ABO in COVID-19
topic be considered settled?
An early study did not claim an influence of ABO on the

SARS-CoV-2 infection rate.12 Rather the clinical course and
disease outcome in patients, once infected, may differ
depending on the ABO blood group.3,6,7,9,12,13 The lack of con-
vincing evidence for an association between ABO and out-
come in some,10,14 even many, studies cannot be construed
as convincing evidence for lack of such an association. The
largest and most comprehensive data set so far was from
patients with respiratory failure.15

This genome-wide association study15 reported a small
association signal coinciding with the chromosomal posi-
tion of the ABO blood group system. Outcome was better
for patients with blood group O than for those with blood
group A. The study design was criticized for using blood
donors as the majority of controls.14 Using flawed control
cohorts is a notorious cause of erroneous conclusions,16 and
blood donors are generally selected in favor of blood group
O.17 However, it remains to be explored whether the odds
ratio introduced by this well-founded bias of Spanish6 and
Italian donor recruitment, could entirely explain the odds
ratio of excess death associated with blood group A.15 Even



a modest influence of ABO blood group on outcome should
not be neglected, as happened once the SARS-CoV-1 epi-
demic abated,18 but should be investigated and resolved.
Minor effects are important in precision medicine enabling
comprehensive treatment of patients with COVID-19.
Less than 20% of patients with COVID-19 received

blood transfusions.19-21 The details of ABO matching can
easily be reported,22 as they are routinely known. When
properly documented, the combined data from small
prospective observational studies can amount to impres-
sive case series.23 ABO data may offer surprising insights,
as cellular blood components contain residual plasma, and
often a lot. For logistical reasons, components that are not
ABO-identical can be transfused in a “major ABO-compat-
ible” way (for instance, O red cells to an A recipient), with-
out explicitly informing the hematologists. In such cases,
anti-A or anti-B from the donor will bind to cell surfaces of
the recipient’s tissues and form immune complexes with A
or B antigens that are soluble in the recipient’s plasma.24

This pathophysiology applies particularly to the transfu-
sion of platelet components.18

Convalescent plasma use in randomized clinical trials,25-27

in other clinical studies,28-33 and outside of them, is moni-
tored for safety,27,34,35 best including ABO matching.
Evidence is lacking to direct our practice on ABO matching
of convalescent plasma. Hence, policies reflect the under-
standing and application of the basic principles of ABO
compatibility, which have not been corroborated for
COVID-19. “Minor ABO-compatible” plasma (for
instance, AB plasma to an O recipient) transfers soluble A
and B antigens. When bound by the recipient’s anti-A or
anti-B, immune complexes are formed.24 These are a
known trigger of the innate immune system,36 which
receives another boost from the complement in the trans-
fused plasma.37 Coagulation factors differ based on the
patient’s ABO blood group and are, of course, also trans-
fused by plasma.3,38 The interaction of complement and
coagulation39 is not well understood in critically ill patients
with COVID-19, whose potential harm from convalescent
plasma should be considered and limited.40 Convalescent
plasma, containing high-titer anti-SARS-CoV-2 and neu-
tralizing antibody,41 can be tested for isoagglutinin titers,
too. Convalescent plasma with high-titer anti-A or anti-B
should be transfused to ABO-identical recipients,18 and a
low-titer product is best for immune globulin manufactur-
ing. Any indication to transfuse blood components con-
taining plasma, particularly if not ABO identical, should be
carefully considered and the exposure evaluated in studies.
The ABO blood group system may have some influence

on disease progression, once an individual is infected by
SARS-CoV-2 and falls ill. The study by Boudin et al. in its
unique epidemiological setting offered convincing evi-
dence that becoming infected with the virus was not influ-
enced by the ABO blood group in young professionals.1

This difference is not surprising, as the mechanisms
involved likely differ between infection and disease pro-
gression.
The sailors’ experience in spring 2020 should serve as a

reminder: the risk of acquiring a SARS-CoV-2 infection is
exceptionally high among young adults exposed to the
virus in certain circumstances and no ABO blood group
type can protect an individual from becoming infected.
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The goal of personalized medicine is to match
patient-specific factors with relevant therapeutic
options. The therapeutic conundrum in acute

myeloid leukemia (AML) remains the heterogeneity of the
disease and the paucity of treatment options for which
there are highly predictive biomarkers. AML is broadly
heterogeneous across all measured axes, including mor-
phological presentation, cytogenetics, point mutations,
expression signatures, epigenetic signatures, and chro-
matin signatures.1,2 Furthermore, within patients, subclonal
architecture suggests ongoing acquisition of new variants
and expression signatures,3 providing for intrapatient
leukemic heterogeneity as well as interpatient heterogene-
ity. Just as heterogeneity can be seen across a range of
measurements, response diversity has been mapped to
clinical and molecular diversity, providing prognostic
opportunities, but not yet personalized opportunities.2

AML results in unrestrained growth of the leukemia cells
in vivo, but this has not translated into easy in vitro growth
sufficient for effective cell manipulation in laboratory set-
tings. Primary human AML cells grow poorly in liquid tis-
sue culture media or methylcellulose. Only a fraction of
samples will effectively engraft into immunodeficient
mice, and among these, it is often only a subclone that
engrafts.4 Recent progress has made short-term ex vivo cul-
ture possible, and improvements in the immunodeficient
hosts have improved xenograft potential.5

Ex vivo analysis of chemotherapy has been championed
by several groups, including the large-scale BEAT AML
project.6-9 Studies have increasingly suggested ex vivo corre-

lations with clinical response and the feasibility of scaling
up to achieve sufficient throughput to identify useful func-
tional biomarkers of sensitivity and resistance to
chemotherapy.  
In this issue, Tavor et al. present a focused analysis that

leverages careful sample selection with ex vivo drug sensi-
tivity.10 They applied a 384-well approach to interrogates
cell viability in liquid culture after 48 hours assessed across
46 drugs, each at 12 concentrations, which provided a
broad area under the curve (AUC) measurement. In this
assay, the authors used cytokine combinations (colony-
stimulating factor, interleukin 3, interleukin 6, thrombopoi-
etin) in liquid culture and avoided stromal cell co-culture to
facilitate viability read-out using a streamlined ATP-depen-
dent assay (Cell Titer Glo). This approach provides an effi-
cient read-out of early chemotoxicity, but does not provide
an effective measure of differentiation or the cell toxicity
that occurs after several days of exposure or cell divisions.
In evaluating outcomes using this design, it is worth noting
that the strong cytokine stimuli in the tissue culture may
bias cell survival and chemosensitivity to cells that are
capable of utilizing those signaling pathways or dependent
on their stimuli for survival, and the small cell numbers
evaluated in 384-well formats focus outcomes on pheno-
types in the bulk cell population.
Tavor et al. found that relapse samples were less

chemosensitive than the paired diagnostic sample, across
diverse classes of chemotherapy. Indeed, there were statis-
tical differences between the sensitivity of diagnostic and
relapse pairs to some common salvage agents, including


