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ABstrACt
Objective We sought clinically relevant predictive 
biomarkers present in CD4 T-cells, or in serum, that 
identified those patients with undifferentiated arthritis 
(UA) who subsequently develop rheumatoid arthritis (RA). 
Methods Total RNA was isolated from highly purified 
peripheral blood CD4 T cells of 173 early arthritis clinic 
patients. Paired serum samples were also stored. 
Microarray analysis of RNA samples was performed and 
differential transcript expression among 111 ‘training 
cohort’ patients confirmed using real-time quantitative 
PCR. Machine learning approaches tested the utility of 
a classification model among an independent validation 
cohort presenting with UA (62 patients). Cytokine 
measurements were performed using a highly sensitive 
electrochemiluminescence detection system.
results A 12-gene transcriptional ‘signature’ identified 
RA patients in the training cohort and predicted the 
subsequent development of RA among UA patients 
in the validation cohort (sensitivity 68%, specificity 
70%). STAT3-inducible genes were over-represented 
in the signature, particularly in anti-citrullinated 
peptide antibody-negative disease, providing a risk 
metric of similar predictive value to the Leiden score 
in seronegative UA (sensitivity 85%, specificity 75%). 
Baseline levels of serum interleukin 6 (IL-6) (which signals 
via STAT3) were highest in anti-citrullinated peptide 
antibodies-negative RA and distinguished this subgroup 
from non-RA inflammatory synovitis (corrected p<0.05).
Paired serum IL-6 measurements correlated strongly with 
STAT3-inducible gene expression.
Conclusion The authors have identified IL-6-mediated 
STAT-3 signalling in CD4 T cells during the earliest clinical 
phase of RA, which is most prominent in seronegative 
disease. While highlighting potential biomarker(s) for early 
RA, the role of this pathway in disease pathogenesis 
awaits clarification.

The importance of prompt disease-modifying ther-
apy in early rheumatoid arthritis (RA) is now estab-
lished.1 2 Yet about 40% of patients with new-onset 
inflammatory arthritis present with disease that is 
unclassifiable at inception, having a so-called undif-
ferentiated arthritis (UA).3 Timely intervention for 
the subset of these UA patients who subsequently 
develop RA therefore remains problematic. The 
issue is highlighted by the publication of updated 
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RA classification criteria4 and a validated ‘predic-
tion rule’ that foretells risk of UA progression to 
RA.5 Such approaches rely heavily on autoanti-
body status, emphasising the specificity of circu-
lating anti-citrullinated peptide antibodies (ACPA) 
for RA.6 Consequently, the diagnosis of ACPA-
negative RA remains challenging in the early arthri-
tis clinic (EAC), being frequently delayed despite 
application of the prediction rule.7

The potential for the whole-genome transcription 
profiling to yield clinically relevant prognostic ‘gene 
signatures’ in autoimmune disease has been demon-
strated.8 9 Applying a similar, prospective approach to 
the discovery of predictive biomarkers in UA should 
complement existing diagnostic algorithms, while 
providing new insights into disease pathogenesis.10 
However, the use of peripheral blood (PB) mononu-
clear cells for transcriptional analysis may result in 
data that are biased by relative subset abundance.11 
To address this, protocols for rapid ex vivo positive 
selection of cell subsets for the purpose of tran-
scription profiling have been validated.12 Although 
no single cell-type is exclusively implicated in RA, 
many of its established and emerging genetic asso-
ciations implicate the CD4 T cell.13 We therefore 
hypothesised that the PB CD4 T-cell transcriptome 
would provide a useful substrate for both biomarker 
discovery and a pathophysiological understanding 
of RA induction.

MAteriAls And MethOds
A complete description of experimental and bioin-
formatics approaches are given in the online sup-
plementary text.

Patients
Patients with recent onset arthritis, naïve to dis-
ease-modifying anti-rheumatic drugs and corticos-
teroids, were recruited between September 2006 
and December 2008. An initial working clinical 
diagnosis was updated by the consulting rheuma-
tologist at consecutive clinic visits for the duration 
of the study—median 28 months and >12 months 
in all cases. RA was diagnosed only where 1987 
American College of Rheumatology classification 
criteria14 were fulfilled; UA was defined as a ‘sus-
pected inflammatory arthritis where RA remained 
a possibility, but where established classification 
criteria for any rheumatological condition remained 
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unmet’ (see online supplementary text and supplementary table 
S1). Individuals whose arthritis remained undifferentiated at the 
end of the study were excluded. Patients gave written informed 
consent before inclusion into the study, which was approved by 
the local regional ethics committee.

Cd4 t-cell rnA processing and array analysis
Whole blood drawn between 13:00 and 16:30 was stored at 
room temperature for ≤4 h before processing. After monocyte 
depletion by immuno-rosetting, an automated magnetic bead-
based positive selection protocol was used to isolate CD4 
cells (Stemcell Technologies, Vancouver, Canada). Using this 
approach, a median CD4 T-cell purity of 98.9% was achieved 
(range 95–99.7%), which was determined using flow cytom-
etry (see online supplementary figure S1). Total CD4 T-cell 
RNA was immediately extracted, then quality controlled using 
an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, California, 
USA). The median RNA integrity number15 of samples used was 
9.4. cRNA generated from 250 ng total RNA (Illumina TotalPrep 
RNA Amplification Kit) was hybridised to the Illumina Whole 
Genome 6v3 BeadChip (Illumina, San Diego, California, USA), 
representing 48 804 known genes and expressed sequence tags. 
Array data were processed using Illumina BeadStudio soft-
ware, then it was normalised, batch corrected,16 filtered and 
quality controlled as described (online supplementary text and  
figure S2).

To define differential expression a fold-change cut-off of 1.2 
between comparator groups was combined with a significance 
level cut-off of p<0.05 (Welch’s t-test), corrected for multiple 
testing using the false-discovery-rate method of Benjamini  
et al.17 Genes thereby identified were used to train a support 
vector machine (SVM) classification model based on known 
outcomes among a ‘training’ sample set.18 The model’s accuracy 
as a prediction tool was then assessed among an independent 

‘validation’ sample set. To obtain larger lists of differentially 
expressed genes for biological pathway analysis, significance 
thresholds were relaxed through the omission of multiple-
test-correction and Ingenuity Pathways Analysis software 
(Ingenuity Systems, Redwood City, California, USA) was then 
employed.

serum cytokine measurement
Between 13:00 and 16:30, baseline serum was drawn and frozen 
at −80°C until use. Serum interleukin 6 (IL-6), soluble IL-6 recep-
tor (sIL6R), tumour necrosis factor α (TNFα), leptin and granu-
locyte colony stimulating factor concentrations were measured 
using a highly sensitive electrochemiluminescence immunosor-
bance detection system (Meso Scale Discovery, Gaithersberg, 
Maryland, USA), assays having been validated as outlined 
(online supplementary text and figure S3).

Quantitative real-time PCr
CD4 T cell total RNA samples were reverse transcribed 
using superscript II reverse transcriptase and random hexam-
ers, according to the manufacturer’s instructions (Invitrogen, 
Carsbad, California, USA). Real-time PCR reactions were per-
formed as part of a custom-made TaqMan Low Density Array 
(7900HT real-time PCR system, Applied Biosystems, Foster City, 
California, USA). Raw data were normalised and expressed rela-
tive to the housekeeping gene β-actin as 2−∆Ct values.19

General statistics
Parametric and non-parametric analyses of variance, Mann–
Whitney U tests, Pearson’s correlation coefficients, intra-
class correlations, multivariate analyses and the construction 
of receiver operator characteristic (ROC) curves were per-
formed, as described, using SPSS version.15.0 (SPSS, Chicago, 
Illinois, USA). The derivation of Leiden prediction rules5 and 

table 1 Clinical characteristics of the rheumatoid arthritis (RA) and non-RA comparator groups used to generate list 
of differentially expressed genes, which together comprise a training cohort for machine-learning (total n=111) and the 
independent undifferentiated arthritis (UA) validation cohort (n=62)

training cohort test cohort

rA (n=47) non-rA (n=64) p* UA† (n=62)

Age (years; mean, SD range) 60 (46–74) 48 (34–62) 0.01 52 (37–67)
% Female 65 61 NS 77
% White Caucasian 96 92 NS 90
Symptom duration (weeks; median, IQR) 12 (8–24) 21 (10.5–52) 0.026 14 (12–26)
Tender joint count (median, IQR) 10 (4–15)  7 (2–14) NS  8 (3–16.5)
Swollen joint count (median, IQR)  6 (2–10)  0 (0–2) <0.001  1 (0–3)
Morning stiffness (hours; median, IQR)  1 (0.75–2)  0.75 (0.1–2) 0.007  1 (0.5–2)
ESR (s; median, IQR) 56 (30–78) 24 (14–52) <0.001 30 (18–60)
CRP (g/l; median, IQR) 17 (9–62)  5 (2.5–19) <0.001  8.5 (0–17)
ACPA+ (number; per cent) 29 (62)  0 (0) <0.001 13 (21)
RF+ (number; per cent) 36 (77)  3 (6) <0.001 20 (32)
DAS28 (median)  5.37 NA –
Leiden prediction score (median, IQR) NA NA –  6.4 (5–7.6)
Outcome diagnoses (number, per cent)
 RA 47 (100)  0 (0) – 25 (40)
 Seronegative sponyloarthropathy – 22 (34) –  8 (13)
 Self-limiting inflammatory – 12 (19) –  9 (15)
 Other inflammatory –  3 (5) –  2 (3)
 OA/non-inflammatory – 27 (42) – 18 (29)

Values are mean (1 SD range), median (IQR) or % for normally distributed, skewed or dichotomous data, respectively.
* Statistical tests for significant difference between RA and non-RA groups; t-test, Mann–Whitney U or Fisher’s exact test for normally 
distributed, skewed or dichotomous data, respectively.
† Demographic, clinical and serological parameters are given for UA–RA and UA–non-RA subgroups in online supplementary table S2.  
ACPA, anti-citrullinated peptide antibodies; CRP, C reactive protein; DAS28, disease activity score (incorporating 28-swollen/tender joint counts);  
ESR, erythrocyte sedimentation rate; NS, not significant; OA, osteoarthritis; RA, rheumatoid arthritis; RF, rheumatoid factor; UA, undifferentiated arthritis.
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transcriptional ‘risk metrics’ for ACPA-negative RA is outlined 
in the online supplementary text.

resUlts
Patient groups
A total of 173 patient samples were retrospectively selected for 
microarray analysis. One hundred and eleven of these originated 
from patients assigned definitive diagnoses at inception, con-
firmed at a median 28 months follow-up (minimum 1 year); an 
RA versus non-RA discriminatory ‘signature’ was derived from 
this ‘training cohort’ alone. The remaining 62 samples, all repre-
senting UA patients, formed an independent ‘validation cohort’ 
for testing the utility of the ‘signature’ according to diagnostic 
outcomes as they evolved during the same follow-up period. As 
expected, the characteristics of the UA cohort (age, acute phase 
response, joint counts, etc.) fell between the equivalent mea-
surements in the RA and control sample sets within the train-
ing cohort (table 1). For subsequent pathway analysis, all 173 
samples were pooled before being divided into four categories 
based on diagnostic outcome at the end of the study (see online 
supplementary table S2).

rA transcription ‘signature’ most accurate in ACPA-negative UA
Using a significance threshold robust to multiple test correction 
(false-discovery-rate p<0.05),17 12 genes were shown to be dif-
ferentially expressed (>1.2-fold) in PB CD4 T cells between 47 
‘training cohort’ EAC patients with a confirmed diagnosis of 
RA, and 64 who could be assigned non-RA diagnoses (table 2). 

An extended list, obtainable by omitting multiple-test correc-
tion, appears as online supplementary gene-list 1. Supervised 
hierarchical cluster analysis of the resultant dataset (111 sam-
ples, 12 genes), demonstrated a clear tendency for EAC patients 
diagnosed with RA to cluster together based on this transcrip-
tion profile (figure 1A). Quantitative real-time PCR (qRT-PCR)
was used to analyse expression of seven of the differentially 
expressed genes in a subset of 73 samples (for baseline char-
acteristics of this subset, see online supplementary table S4). 
Despite the reduced power to detect change in this smaller data-
set, robust differential expression was confirmed for six of the 
seven genes (table 2).

To derive a metric denoting risk of progression to RA, the 
sum of normalised expression values for the 12-gene RA ‘sig-
nature’ was calculated for each individual in the training cohort 
(see online supplementary text). A ROC curve was constructed 
for this risk metric, the area under which (0.85; SEM=0.04) 
suggested promising discriminatory utility (figure 1B). A SVM 
based on the training cohort dataset was then applied to clas-
sify members of the validation cohort, correctly identifying UA 
patients who developed RA with a sensitivity, specificity, posi-
tive and negative likelihood ratio (0.68, 95% CI 0.48 to 0.83); 
0.70, 95% CI0.60 to 0.87); 2.2, 95% CI 1.2 to 3.8) and 0.4  95% 
CI 0.2 to 0.8), respectively. However, we observed that of the 
13 ACPA-positive UA patients, 12 progressed to RA, indicating 
that autoantibody status alone was a more sensitive predictor 
of RA in this subset. By contrast, when applied exclusively to 
the ACPA-negative subset of the UA validation cohort (n=49), 
the SVM classification model provided a sensitivity of 0.85 
(95% CI 0.58 to 0.96) and a specificity of 0.75 (0.59-0.86) for 
progression to RA, thereby performing best in this diagnosti-
cally most challenging patient group. Hierarchical cluster-
ing of the ACPA-negative UA samples based on their 12-gene 
RA ‘signature’ expression profiles further illustrates molecu-
lar similarities within the ACPA-negative RA outcome group  
(figure 1C).

Gene signature adds value to existing tools in diagnosing  
ACPA-negative UA
Next, we tested the value of our 12-gene signature in compari-
son with the existing ‘Leiden prediction rule’ as a predictor of RA 
among UA patients.5 While the discriminatory utility achieved 
by the prediction rule in our UA cohort was comparable with 
that previously reported (n=62; AU ROC curve=0.86; SEM=0.05, 
data not shown), its performance diminished among the ACPA-
negative sub-cohort (n=49; AU ROC curve=0.74; SEM=0.08; 
figure 1D). Employing a 12-gene risk metric, as described above, 
equivalent discriminatory utility was found in this sub-cohort 
(AU ROC curve=0.78; SEM=0.08, data not shown). However, 
by deriving a modified risk metric, which combined all features 
of the Leiden prediction rule with our 12-gene risk metric (see 
online supplementary text and table S5), and applying it to the 
independent ACPA-negative UA cohort, we could improve the 
utility of the prediction rule for seronegative UA patients (AU 
ROC=0.84; SEM=0.06; figure 1D).

stAt3 transcription profile is most prominent in  
ACPA-negative rA
All 173 patients studied were now grouped into four cat-
egories based on outcome diagnosis alone: ACPA-positive 
RA, ACPA-negative RA, inflammatory non-RA controls and 
osteoarthritis(OA); their demographic and clinical characteris-
tics are presented for comparison (online supplementary table 

table 2 Fold-change and significance level for genes differentially expressed 
at inception among peripheral blood CD4 T cells between early arthritis clinic 
patients with inception diagnoses of RA and non-RA (confirmed at ≥1 year; 
median 28 months follow-up). The official gene symbol and RefSeq accession 
number are given as identifiers. Listed STAT3-regulated genes are italicised.  
12 genes included in statistically most robust ‘RA signature’ appear in boldface, 
and additional STAT3-regulated genes referred to in text are also provided

Microarray data  
(47 rA vs 64 non-rA)

qrt-PCr data 
(32 rA vs 41 
non-rA*)

Gene (Accn. no.)
12-Gene rA signature: FC

Uncorr. 
p†

Corr. 
p† FC p‡

BCl3 (nM_005178) 1.59 2.6×10−5 0.03 2.15 0.005
sOCs3 (nM_003955) 1.55 3.4×10−6 0.03 1.83 0.002
PiM1 (nM_002648) 1.52 6.8×10−6 0.03 1.67 0.001
sBnO2 (nM_014963) 1.47 1.2×10−5 0.03 1.13 0.158
ldhA (nM_005566) 1.23 3.8×10−5 0.04 1.25 0.003
CMAh (nr_002174) 1.2 1.7×10−5 0.03 1.40 0.003
nOG (nM_005450) −1.32 3.1×10−5 0.03 −1.59 0.004
PdCd1 (nM_005018) 1.42 1.0×10−5 0.03 ND ND
iGFl2 (nM_001002915) 1.31 1.1×10−7 0.002 ND ND
lOC731186 (XM_001128760) 1.28 2.3×10−5 0.03 ND ND
MUC1 (nM_001044391) 1.26 2.0×10−5 0.03 ND ND
GPrin3 (Cr743148)§ 1.32 2.1×10−4 0.049 ND ND
Additional STAT3-regulated:
ID3 (NM_002167) −1.3 5.2×10−4 0.16 ND ND
MYC (NM_002467) 1.2 0.04 0.75 1.29 0.01

*Baseline characteristics of Quantitative real-time PCR validation sub-cohort are similar to 
those of the training cohort overall (table 1) and are given in the online supplementary table 
S4.
†Calculations based on normalised expression values of array data; Welch’s t-test, raw and 
multiple-test-corrected p values given (see methods).
‡Calculations based on expression data normalised to the house-keeping gene β-actin 
(2−ΔCt); Mann–Whitney U test (see methods).
§Transcript CR743148 (Illumina Probe ID 6370082) has been retired from NCBI, but 
the expressed sequence tag corresponds to splice variant(s) within the GPRIN3 gene 
(chromosome 4.90).
FC, linearised fold-change expression in RA relative to non-RA (ie, negative values 
represent genes downregulated in RA relative to non-RA by n-fold); ND, not done;  
RA, rheumatoid arthritis.
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S2). Three lists of differentially expressed genes were then gen-
erated by comparing each of the ‘inflammatory’ groups (which 
themselves exhibited comparable acute phase responses) with 
the OA group (>1.2-fold change; uncorrected p<0.05; online 
supplementary gene-lists 2–4). The three lists were overlapped 
on a Venn diagram (figure 2).

A highly significant over-representation of genes involved in 
the cell cycle was identified in association with ACPA-positive 
RA (24/43; p<1.0×10−5); figure 2; online supplementary gene-
list 5). In addition, genes involved in the regulation of apoptosis 
were over-represented in ACPA-negative RA patients, and RA 
was, in general, characterised by genes with functional roles in 
T cell differentiation (figure 2 online supplementary gene-lists 
5–8). Importantly, within the highly significant 12-gene RA 
‘signature,’ several genes (PIM1, SOCS3, SBNO2, BCL3 and 
MUC1) were noted to be STAT3-inducible based on literature 
sources.20–25 The majority of these were more markedly dif-
ferentially expressed in ACPA-negative than ACPA-positive RA  
(figures 3A,B and online supplementary figures S4A–C). 
Additional STAT3-inducible genes (MYC, IL2RA)20 26 27 exhib-
ited similar expression patterns, and there was a trend for 
STAT3 to be upregulated in ACPA-negative compared with 
ACPA-positive RA (online supplementary figures S4D–F). 
Moreover, a reciprocal pattern of expression across outcome 
groups was observed for the dominant negative helix-loop-helix 
protein-encoding gene inhibitor of DNA-binding 3 (ID3) (online 
supplementary figure S4G), consistent with its putative regula-
tory role in STAT3 signalling.28 MYC and ID3, although absent 
from the discriminatory RA signature under the stringent sig-
nificance thresholds used, were however robustly differentially 
expressed between RA and non-RA patients within the training 
cohort (table 2). Finally, in relation to both the 12-gene signa-
ture and the extended list of genes exclusively deregulated in 
ACPA-negative RA (online supplementary gene list 6), overlap 

with independently predicted STAT3-inducible gene sets (see 
online supplementary text and supplementary gene list 9) con-
firmed a preponderance of STAT3-inducible genes (hypergeo-
metric p-values <0.005 in both cases; see online supplementary 
text) – which was not seen for genes deregulated only in ACPA-
positive RA (p=0.19).

serum il-6 is highest in ACPA-negative rA and independently 
predicts Cd4 stAt3-inducible gene expression
Since one classical mechanism of STAT3 phosphorylation is via 
gp130 co-receptor ligation,29 we hypothesised that increased 
systemic levels of a key gp130 ligand and pro-inflammatory 
cytokine, IL-6, may be responsible for the STAT3-mediated 
transcriptional programme in early RA patients. Baseline serum 
IL-6 was measured in 131 of the 173 EAC patients which were  
subsequently grouped according to their ultimate diagnosis 
(ACPA-negative RA, ACPA-positive RA, non-RA inflamma-
tory arthropathy or OA). IL-6 levels were low overall (generally 
<100 pg/ml), but were highest in the ACPA-negative RA group  
(figure 3C). Indeed, unlike the generic marker of systemic inflam-
mation C reactive protein (CRP), baseline IL-6 discriminated  
ACPA-negative RA from non-RA inflammatory arthritides  
(figures 3C,D). Furthermore, among individuals for whom 
paired and contemporaneous serum IL-6 and PB CD4 T-cell RNA  
samples were available, clear correlations between IL-6 and 
the normalised expression of STAT3-inducible genes were seen 
(figures 4A–D; also online supplementary figures S5A–D); for 
example, serum IL-6 measurements correlated with norma-
lised SOCS3 expression: Pearson’s R=0.57, p<0.001 (figure 4A). 
Multivariate analysis confirmed that IL-6, but not CRP or TNFα 
(which does not signal via STAT3), independently predicted 
PB CD4 T cell SOCS3 expression (β=0.53; p<0.001; see online 
supplementary table S6) excluding a more general influence of 
inflammation.

Figure 1 (A) Hierarchical clustering of training set: 111 samples represented by columns, and indicated individual genes by rows (italicised 
genes are STAT3 targets). Colour at each co-ordinate indicates gene-wise fold-expression relative to median (colour scale upper right). Underlying 
colour bar labels samples by inception diagnosis. (B) Receiver operator characteristic (ROC) plot for a rheumatoid arthritis (RA) risk metric derived 
from normalised gene expression values in the training cohort. Area under curve=0.85; SEM=0.04; p<0.001. (C) Hierarchical clustering of anti-
citrullinated peptide antibodies -negative undifferentiated arthritis ‘validation’ sub-cohort samples based on expression patterns of the same genes 
(interpretation as for figure 1A). (D) ROC curves comparing discriminatory value, in anti-citrullinated peptide antibodies-negative undifferentiated 
arthritis, of Leiden prediction rule (grey line) with a modified metric incorporating the 12-gene signature. Modified metric confers added value: 
area under ROC curve (original Leiden prediction rule)=0.74; SEM=0.08 versus area under ROC curve (modified metric incorporating gene 
signature)=0.84; SEM=0.06; p<0.001 in both cases.
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Figure 2 Functional analysis of array data. Genes differentially expressed (>1.2-fold change; p<0.05) between osteoarthritis (OA) and three 
separate inflammatory comparator groups were overlapped in a Venn diagram (see text, and online supplementary gene lists 2–4, for detailed list 
compositions). Genes uniquely deregulated in rheumatoid arthritis (RA) (anti-citrullinated peptide antibodies (ACPA)-negative, ACPA-positive or both) 
could thereby be identified and subjected to pathway analysis (see text). The top two over-represented biological functions identified for the three 
indicated sets are shown, along with the proportion of the set associated with the function in question, and a p value relating to the likelihood of given 
proportions occurring by chance (Fisher’s exact test). Online supplementary gene lists 5–7 summarise functionally related genes thereby identified. 
The three indicated sets were combined to identify canonical pathways over-represented among genes differentially expressed between RA and 
OA in general. Pathways of particular interest in the biological context are listed (genes in question are listed in online supplementary gene list 8), 
*hypergeometric p-values (Fisher’s exact) in each case <0.01.

Given that only 30–50% of PB CD4 T cells are thought to 
express membrane-bound IL6R,30 we also measured sIL6R (as 
a surrogate of IL-6R trans-signalling)31 and two other gp130 
ligands, granulocyte colony stimulating factor and leptin, 
both of which have been implicated in RA pathogenesis.32 33 
However, levels in sera from a subset of 80 study patients cor-
related with neither the diagnostic outcome nor the STAT3 
gene expression. Finally, IL-10 and IL-17, which are both 
STAT3 activators,34 were undetectable in the vast majority of 
sera (data not shown).

stAt3-inducible, rA-associated expression signature is 
activated by il-6 in primary Cd4 t cells of healthy donors in vitro
To confirm that the observed deregulated expression of STAT3 
target genes among early RA patients was downstream of IL-6 
signalling, primary human CD4 T cells were incubated in vitro 
with recombinant human IL-6 and the expression of relevant 
target genes measured at 1 and 6 h (see online supplementary 
text and figures S6–S7). Robust upregulation of SOCS3, PIM1, 
BCL3 and MYC was observed consistently 1 h after the addi-
tion of IL-6. A similar trend was seen for SBNO2, which became 
significant in the presence of recombinant soluble human IL-6 
receptor. Conversely and consistent with prior observations, a 
distinct trend towards repression of ID3 was seen in response 
to IL-6 plus sIL6R.

disCUssiOn
We present a unique analysis of the CD4 T-cell transcriptome in 
a well-characterised inception cohort of early arthritis patients 
attending a routine EAC in UK. As a potential diagnostic tool, 
it is significant that our 12-gene ‘RA expression signature’  
(table 2) performed best among the diagnostically challenging 
ACPA-negative UA patient group. Intriguingly, these findings 
support the involvement of CD4 T cells in both ACPA positive 
and negative disease.

The signature’s sensitivity and specificity (0.85 and 0.75) for 
predicting subsequent RA in seronegative UA patients equate to 
a positive likelihood ratio of 3.4, indicating that a prior probabil-
ity of 25% for RA progression among this cohort (13 of the 49 
patients progressed to RA) doubles to 53% for an individual who 
has been assigned a positive SVM classification.35 Moreover, 
of the 13 ACPA-negative UA patients who progressed to RA 
in our cohort, 8 fell into an ‘intermediate’ risk category for RA 
progression according to the validated Leiden prediction score.5 
Encouragingly, all but one of these patients were correctly clas-
sified based on their 12-gene expression profile. Our proposal 
that this approach might add value to existing algorithms for 
the diagnosis of ACPA-negative UA is further supported by the 
construction of ROC curves comparing the Leiden prediction 
rule with a modified risk metric that incorporates features of our 
gene signature (figure 1D).

Our data indicate that PB CD4 T cells in early RA are char-
acterised by a predominant upregulation of biological path-
ways involved in cell cycle progression (ACPA-positive) and 
survival, death and apoptosis (ACPA-negative) (figure 2; also 
online supplementary gene lists 5–6). Pathway analysis also sug-
gested that T-cell development and differentiation were deregu-
lated in both RA serotypes (online supplementary gene list 7). 
These findings concur with previous observations of impaired 
T-cell homeostasis in RA, characterised by increased turnover, 
telomere shortening and immunosenescence.36 37 Given the 
well-characterised importance of the STAT3 signalling path-
way in both oncogenesis and T-cell survival, it was notable that 
five genes from our statistically robust 12-gene RA signature 
are downstream of STAT3 signalling.20–25 The degree to which 
these genes sub-cluster according to the expression pattern 
among individuals in both the training and validation cohorts  
(figure 1A,C) presumably reflects their co-regulation by STAT3. 
Their upregulation was generally most pronounced in ACPA-
negative RA (figure 3A,B; also online supplementary figure 
S4A–C), explaining why the predictive utility of the 12-gene 
signature was optimal in this disease subset.
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Our observation that increased serum IL-6 levels among 
EAC attendees may predict a diagnosis of RA versus alterna-
tive arthritides is consistent with findings of previous biomarker 
studies,38 39 but ours is the first demonstration of a particular 
association with ACPA-negative disease (figure 3C). Striking 
correlations were seen between PB CD4 T-cell expression of 
several STAT3-inducible genes and paired, contemporaneous 
serum IL-6 concentrations, which were independent of alter-
native acute phase markers (figures 4A–D; also online supple-
mentary figures S5A–D and table S6). STAT3 phosphorylation 
and downstream transcription is initiated by ligation of the cell-
surface gp130 co-receptor by a range of ligands, including IL-6.40 
We measured IL-6 in particular because of its recognised role as 
a pro-inflammatory cytokine in RA,41 and we excluded similar 
relationships with sIL6R (a surrogate of IL-6R trans-signalling) 
and other relevant substrates of STAT3 signalling. Therefore, 
the STAT3-inducible gene expression signature that we have 
identified does appear to be downstream of IL-6 signalling. The 
capacity of IL-6 alone to induce the STAT-3-regulated elements 
of our early RA gene expression signature in primary CD4 T 
cells was confirmed in vitro (online supplementary figures S6 
and S7).

In conclusion, our data provide strong evidence for the induc-
tion of an IL-6-mediated STAT3 transcription programme in 
PB CD4 T cells of early RA patients, which is most promi-
nent in ACPA-negative individuals and which contributes to 
a gene expression ‘signature’ that may have diagnostic util-
ity. Furthermore, our findings could pave the way for a novel 
treatment paradigm, whereby emerging drugs targeting the 
IL-6-gp130-STAT3 ‘axis’42 43 find a rational niche as first choice 
agents in the management of ACPA-negative RA. Studies, such 
as ours, should ultimately contribute to the realisation of true 

‘personalised medicine’ in early inflammatory arthritis, in which 
complex heterogeneity is stratified into pathophysiologically 
and therapeutically relevant subsets, with clear benefits in terms 
of clinical outcome and cost.
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Figure 3 (A–B) Baseline profiles of indicated STAT3-regulated genes across four outcome groups; see online supplementary figure S4 and table S2 
for additional examples and patient characteristics, respectively. (C–D) Baseline serum interleukin-6 (C; n=131) and C reactive protein (D; n=173) 
measurements across outcome groups. P-values: non-parametric analyses of variance (Kruskall–Wallis); for post-hoc analyses, 1, 2 and 3 asterisks 
denote p<0.05, 0.01 and 0.001, respectively (Dunn’s multiple comparison analysis). ACPA, anti-citrullinated peptide antibodies; IL-6, interleukin 6;  
NS, not significant; RA, rheumatoid arthritis; IA, inflammatory arthritis.
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Figure 4 (A–D) Serum interleukin 6 (IL-6) concentrations correlate with STAT3-inducible gene expression in peripheral blood CD4 T cells (see online 
supplementary figure S5, for additional examples). Data are shown for 131 individuals in whom paired, contemporaneous samples were available at 
baseline; Pearson’s R and associated p values are shown.

data sharing statement Raw and processed microarray data used in this study is 
available via Gene Expression omnibus at: http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?token=bviftkociimgsnk&acc=GSE20 098.
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