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Abstract: The paper concerns multicast packet traffic throughput maximization in multi-hop wireless
sensor networks with time division multiple access to radio channel. We assume that the modulation
and coding schemes (MCSs) that are used by the (broadcasting) nodes as well as the transmission
power of the nodes are adjustable. This leads to the main research question studied in this paper: to
what extent traffic throughput can be increased by proper MCSs assignment and transmission power control
(TPC) at the nodes? To answer this question, we introduce mixed-integer programming formulations
for joint MCSs assignment and TPC optimization, together with a solution algorithm. Finally,
we present a numerical study illustrating the considerations of the paper. The numerical results
show a significant gain being achieved by proper MCSs assignment, which is further increased by
applying TPC.

Keywords: wireless sensor networks; multicast traffic; throughput maximization; transmission
scheduling; TDMA; transmission power control; IoT; MCS; mixed-integer programming

1. Introduction

Wireless sensors networks (WSNs) are an important element of modern networking,
mainly due to the rapidly growing range of their applications [1], including the military,
smart cities, environment, health care, and agriculture [2]. Some interesting recent applica-
tions examples of WSNs in transportation system can be found in [3], while [4,5] discuss
the role of WSNs in COVID-19 detection and monitoring. WSNs are often composed of
the numerous low-cost nodes, thus they are usually perceived in the context of the limited
resources when it comes to power, memory, and computational capabilities. However,
although initially envisioned to serve simple services, such as environmental data monitor-
ing, they have recently become one of the most promising solution for Internet of Things
(IoT). Therefore, they are not only the limited resources that should be taken into account
while designing a solution for WSNs, but also some Quality of Service (QoS) requirements,
such as bandwidth or delay [6]. Particularly, such requirements are especially important in
Industrial Internet of Things where a huge amount of data requires a high network capacity
to avoid severe network congestions [7] (for a comprehensive study of the problem of
designing a high-performance wireless network, i.e., the networks with Gbps data rates
and 10-µs-level cycle time, in industrial environment the reader is referred to [8], and
for the recent discussion on IoT in general the reader is referred to [9,10]). However, in
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the existing literature, this fact is often neglected and the main focus is on the energy
efficiency or the network lifetime maximization, and not on the performance requirements
to be fulfilled by the network. Thus, we believe that the traffic throughput maximization
problem is of a great importance in the context of WSNs.

As far as the traffic throughput maximization problem is concerned, it is important
to take multicast transmission into account. Note that, in the wireless networks multiple
nodes can receive the packets broadcast in the same transmission, as long as they are
within transmitter’s transmission range (clearly, it is not possible in the wired networks
where multicast transmission requires a copy of a given packet to be sent to each recipient).
Multicast transmission can lead to a significant gain of throughput as well as to the lower
energy consumption because of the broadcast nature of wireless medium. Obviously, this
statement is well justified in the existing literature. For example, paper [11] discusses
the advantageous of multicast transmission in WSNs, while algorithms and protocols for
multicast transmission in WSN can be found, for example, in [12,13]. Moreover, some
papers, such as [14–16], consider multicast transmission for the particular throughput
maximization problem that we dealt with in this paper. In particular, the numerical
section presented in [16] contains a comparison of unicast vs. multicast routing efficiency,
highlighting the gain that is achieved by utilizing multicast in WSNs.

Two other factors that play a crucial role in traffic throughput maximization are proper
modulation and coding schemes (MCSs) assignment as well as the transmission power
control (TPC). Because of the tradeoff between the number of simultaneous transmissions
and transmission data rates the selection of MCSs is not at all straightforward; however, it
leads to a significant gain of traffic throughput, as shown in [17]. Such a gain can be further
increased by applying TPC (for example, using the lowest power sufficient to realize a
transmission can potentially result in the increase of the number of parallel transmissions).
Unfortunately, joint MCSs assignment and TPC turns out to be a very complex task.

At this point, it is important to notice that, although MCSs assignment and TPC
can be optimized separately (e.g., by optimizing MCSs assignment for a given and fixed
transmission power level, and then, on top of that, optimizing TPC), such an approach will,
in general, not lead to optimal solutions. This is because the transmission power level used
in the first step of such a procedure can exclude some MCSs from feasible solutions. On
one hand, a low transmission power level can exclude the MCSs with high transmission
data rates and relatively low transmission range and, on the other hand, the same MCSs
can be excluded by a high transmission power level because of the high interference level
when other nodes transmits concurrently (note that MCSs with high transmission date
rates require strong signal to be properly decoded). Therefore, it is crucial to treat the
optimization of MCSs assignment and TPC jointly.

In the light of the foregoing, in this paper we study the following research question: to
what extent traffic throughput can be increased by proper modulation and coding schemes assign-
ment and transmission power control at the nodes? To answer this question, we provide the
optimization model for multicast traffic throughput maximization in WSNs utilizing time
division multiple access (TDMA) to radio channel, where both MCSs and the transmission
power of the broadcasting nodes are adjustable. We assume that the MCSs as well as the
transmission power used by the broadcasting nodes can be switched from a time slot to a
time slot. Two TPC cases are considered in the paper: discrete TPC and continuous TPC. In
the former, the transceivers can use only a discrete, usually small, set of power levels (this
is common when it comes to low-cost sensor nodes), while, in the latter, the transmissions
power applied by the nodes can change continuously. The presented optimization model
is the extension of the model that was introduced in [14] (the model was further extended
in [17] to include dynamic MCSs assignment) that make it possible to deal with the complex
problem of including transmission power control into throughput optimization in WSNs
with dynamic MCSs assignment that serve multicast traffic. The provided optimization
model allows us to treat the considered problem in a rigid mathematical way, thus it can be
used as a benchmark while designing algorithms and protocols to be implemented in the
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real networks. To the best of our knowledge, such a model does not exist in the literature
and, together with the numerical study that illustrates the considerations of the paper,
constitute the main contributions of this work.

As written above, we consider TDMA-based WSNs. Note that using TDMA is well
justified in the given context, since it outperforms other medium access control schemes
in terms of traffic throughput. It is also worth mentioning that TDMA is considered to
be one of the most promising solutions for energy efficient WSNs [18]. The list of radio
technologies supporting TDMA includes WirelessHART, ISA100, and the family of IEEE
802.15.4-based low-rate personal area networks (LR-WPAN).

The rest of this paper is organized as follows. In Section 2, we discuss the related
work on multicast transmission, MCSs assignment, and TPC in WSNs. Section 3 presents
the network description and notations used in this paper. Problem statement and the
corresponding mixed-integer programming (MIP) formulations, together with a solution
algorithm, are presented in Sections 4–6. Subsequently, numerical results illustrating con-
siderations of this paper are discussed in Section 7. Finally, Section 9 concludes the paper.

2. Related Work

Wireless sensors networks are widely discussed in the literature. In particular, a lot
of papers concern the specific aspects studied in this paper, i.e., multicast transmission,
modulation and coding schemes assignment, and transmission power control in WSNs.

A majority of papers on multicast transmission in WSNs is devoted to the problem
of finding an energy efficient routing, usually by means of some heuristic algorithms.
Ref. [19] presents a heuristic distributed minimum transmission multicast routing protocol
for WSNs, Ref. [20] studies an energy efficient multicast geographic routing, paper [13]
proposes a multipath scheme applied on a multicast-based hierarchical routing that gives
better energy utilization, which leads to the network lifetime improvement, and [21]
makes use of a genetic algorithm for solving the Network Coding Resource Minimization
problem. Another important group of papers concerning multicast transmission in WSNs
contains the papers focusing on delay minimization. Ref. [22] proposes both centralized
and distributed algorithms for delay-bounded scheduling in duty-cycled WSNs, Ref. [23]
focuses on the latency and network lifetime tradeoff, and [24] deals with an energy efficient,
minimum-delay flooding in duty-cycled WSNs.

Additionally, the problem of modulation and coding schemes assignment has been to
a certain extent studied in the literature. Some interesting conclusions can be found in [25],
where the authors pointed out that using more robust MCSs instead of these with the
highest data rates can lead to the improvement of the overall network throughput. Ref. [26]
studies channel coding for high performance wireless control; particularly, the authors
present a comprehensive analysis of the packet coding schemes used in industrial WSNs
and propose some rules for choosing the most promising coding schemes. Finally, Ref. [27]
provides the performance analysis of the efficient coding schemes for WSNs assuming
BPSK modulation and a Gaussian channel.

Because transmission power control is one of the most important issues when it
comes to WSNs and IoT, it is studied in many papers. For example, paper [27] proposes
a game-theoretic power control mechanism for WSNs with imperfect information. Next,
paper [28] presents plenty of interesting engineering takeaways on wireless mesh networks
(WMNs) configuration, including power control, which result in throughput maximiza-
tion. Finally, Ref. [29] studies the effects of TPC on the energy consumption of WSNs. A
distinguishable and interesting group of work dealing with TPC in WSNs is composed of
the articles that make use of machine learning. Paper [6] takes advantage of reinforcement
learning to provide a distributed solution for choosing the lowest transmission power
possible and, thus, to minimize both energy consumption and interference. Additionally,
paper [30] utilizes reinforcement learning to deal with the average throughput maximiza-
tion per total consumed energy in WSNs in both point-to-point and multinodes scenarios.
As far as the recent research is concerned, the following items should be mentioned. Pa-
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per [31] deals with energy-aware dynamic allocation problem in the context of Social
Internet of Vehicles, Ref. [32] studies the problem of power control and unmanned aerial
vehicle deployment for IoT networks, while [33] proposes a novel self-adaptive power
control-based enhanced energy-aware approach to reduce the energy consumption and
enhance the battery lifetime and reliability.

Despite a vast amount of the literature concerning WSNs, to the best of our knowl-
edge, the papers on throughput maximization as well as mathematical modelling are not
common—most of the existing work treats the problem from the viewpoint of engineering,
without an attempt to provide a rigid mathematical model. Although some interesting
results in this area can be found in [34,35], they are limited to unicast traffic. In [34], mixed-
integer programming formulations for max-min fair flow optimization in WMNs including
both static and dynamic MCSs assignments, while [35] provides a complete optimization
model for joint routing, power control, scheduling, channel assignment as well as rate
control optimization in WMNs. Therefore, we believe that the work presented in this paper,
which is an extension of the model that was introduced in [14] (extended in [17]), is the
first complete optimization model for traffic throughput maximization admitting dynamic
MCSs assignment and TPC in WSNs for multicast traffic.

3. Network Description

In this section, we present the basic assumptions of our optimization model together
with the notations that are summarized in Table 1.

Table 1. Notation: network setting.

Notation Description

V set of nodes
S ,D,Q sensors, destinations, transit nodes, respectively
A set of directed radio links (arcs); a = (b(a), e(a))
δ+(v) set of nodes connected with v by its outgoing arcs
δ−(v) set of nodes connected with v by its incoming arcs
p(v, w) power received at node w from transmitting node v
η noise power
m modulation and coding scheme
M set of MCSs (M := {1, 2, . . . , M})
γ(m) SINR threshold for MCS m
B(m) bitrate in (Mbps) for MCS m
c compatible set (c-set in short)
m(c, w) number of the MCS assigned to node w in c-set c
Ĉ family of all c-sets
W(c) set of nodes transmitting when c-set c is used
U (c, w) set of nodes that receive signal from w ∈ W(c)
C selected subfamily of Ĉ
C(a) subset of c-sets in C broadcasting over arc a C(a) = C(b(a), e(a))
D(s) set of destination nodes of sensor s (D(s) ⊆ D)
B(s) multicast routing tree rooted at s with leaves D(s)
V(s),A(s) set of nodes and arcs, respectively, of B(s)
B,Z,R+ B = {0, 1}, Z integers, R+ non-negative real numbers

The considered WSN is modeled by means of a directed graph G = (V ,A), where
V is the set of nodes and A ⊆ V × V \ {(v, v) : v ∈ V} is the set of directed links (arcs).
The beginning of arc a will be denoted by b(a), while its end by e(a). We assume that
(w, v) ∈ A if, and only if, node v is in the transmission range of node w, i.e., when the
signal-to-noise-ratio (SNR) condition is satisfied at node v when node w is transmitting and
no other node is transmitting at the same time. Such a condition can be formally expressed
by the following formula: p(w,v)

η ≥ γ(m), where p(w, v) is the power of signal transmitted
by node w and received by node v, η is the noise power, m ∈ M is a modulation and
coding scheme (MCS) used by node w (M = {1, 2, . . . , M} denotes the set of available
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MCSs), and γ(m) > 1 is the assumed power ratio threshold for a given MCS m. Besides
the power ratio threshold γ(m), each MCS m is also characterized by the transmission
rate B(m) that is expressed in Mbps. Note that, because MCSs have different power ratio
threshold, the transmission range of a given node depends on a MCS used by this node.
For a more detailed description of the radio parameters, the reader is referred to Section 7.1.
The set of neighboring nodes connected to v by the arcs outgoing from v is denoted by
δ+(v) := {w ∈ V , (v, w) ∈ A}. Similarly, the set of neighboring nodes connected by the
arcs incoming to v is denoted by δ−(v) := {w ∈ V , (w, v) ∈ A}.

We assume that the network nodes are divided into three pairwise disjoint subsets:
sensors S , destinations D, and purely transit nodes Q. Each sensor s ∈ S is the source
of packets (for example, containing measurement data that the sensor collect from the
environment) that are to be delivered to multiple destinations specified by the set of
destinations D(s) ⊆ D. We assume that the sensors are capable of both generating and
transiting packets, while the destination nodes only terminate traffic, i.e., they are not able
to transit packets; clearly, the transit nodes do not generate or terminate packets, and only
transit them.

The packets that are generated by sensor s are transmitted to their destinations along
paths of a multicast tree B(s) = (V(s),A(s)), where V(s) ⊆ V is the set of its nodes while
A(s) ⊆ A is the set of its arcs (|A(s)| = |V(s)| − 1). Clearly, such a tree is routed at s and
D(s) are its leaves. Note that, at each node v of the multicast tree B(s) (except for the
leaves), the packets are, in general, transferred to more than one neighboring node, and
this is the place when we take advantage of the broadcast nature of radio transmissions,
since the packet broadcast from a node v reaches all of the nodes within its transmission
range of the node v anyway.

We consider TDMA-based WSNs, which means that the packets are transmitted within
equally long time slots that are grouped into consecutive TDMA frames of T time slots
each. We assume that each sensor sends out the measurement data at the beginning of
each consecutive frame. The frames are repeated periodically and, hence, the transmission
patterns that are applied in the consecutive frames are identical, i.e., the set of broadcasting
nodes as well as the set of receiving nodes in tth slot (t = 1, 2, . . . , T) of each frame
are the same. A pair composed of the set of (simultaneously) broadcasting nodes and
the sets of simultaneously receiving nodes defined for each broadcasting node will be
called compatible set (c-set in short) and they will be denoted by c. In the following, Ĉ
will denote the family of all c-sets for a given network (note that the size of this family
grows exponentially with the network size), and C a selected subfamily of Ĉ. The set of
nodes broadcasting in c-set c will be denoted byW(c), m(c, w), w ∈ W(c) denotes MCSs
assignment, and the set of nodes receiving from node w ∈ W(c) in c-set c will be denoted
by U (c, w). Note that any c-set c is valid if, and only if, each of the nodes in U (c, w) can
decode the signal from w, i.e., the nodes receiving from w are not interfered by the signals
that are simultaneously broadcast from the nodes inW \ {w}. Such a condition can be
expressed in the following formula:

p(w, u)
η + ∑v∈W\{w} p(v, u)

≥ γ(m(c, w)), w ∈ W , u ∈ U (c, w). (1)

The above c-set description can by formally expressed by the set of linear inequalities
imposed on the variables that characterize the setsW(c) and U (c, w), MCS assignment
m(c, w), w ∈ W(c), and the transmission power of each node; such a formal definition will
be introduced in the following part of the article.

4. Problem Formulation

As already mentioned, the paper deals with packet throughput maximization, which
in the considered network setting is equivalent to the problem of finding a TDMA frame
of minimum size such that the network is capable to deliver all packets generated by
sensors to all their destinations with a finite delay. This is because the packets are generated
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at the beginning of each consecutive frame, thus the shorter the frame the greater the
packets arrival intensity. In the paper we will maximize traffic throughput by means of
this equivalence.

In order to formally formulate the above characterized optimization problem we use
a mixed-integer programming formulation using the following sets of variables:

• hswc, s ∈ S , w ∈ V , c ∈ C, non-negative continuous, expresses the amount od data
from stream s to be broadcast from node w when c-set c is applied,

• Tc, c ∈ C, integer, denotes the number of slots in the frame in which c-set c is active.

In order to ensure stable delivery (i.e., with a finite delay) of the packets to their
destinations, the following constraints are imposed:

∑c∈C(a) hsb(a)c ≥ n(s)y(s, a), s ∈ S , a ∈ A (2a)

∑s∈S hswc ≤ B(m(c, w))Tc, c ∈ C, w ∈ W(c), (2b)

where C(a) denotes the set of c-sets in C containing arc a, n(s) denotes data volume (ex-
pressed in Mb) generated at s at the beginning of each consecutive frame, and y(s, a)
is a given parameter equals 1 if, and only if, arc a belongs to the routing tree B(s).
Constraint (2a) ensures that data from a given stream will be transmitted over all arcs
belonging to its routing trees within a single frame, while constraint (2b) ensures that the
number of slots Tc is sufficient to realize all scheduled broadcasts.

Note that the above constraints assume fixed (predefined) routing trees. However, if
TPC and dynamic MCSs assignment are to be embedded in the frame minimization problem
it is essential to optimize the routing trees as well (since adjusting the transmitting power
and MCS used by a node influences the signal range, and in consequence the predefined
routing trees can easily exclude some power levels or MCSs from the feasible solutions).
This can be achieved by treating the parameters y(s, a) as binary variables (denoted by ysa)
and adding flow variables zswa, s ∈ S , w ∈ D(s), a ∈ A. The flow variables corresponding
to a given sensor s ∈ S specify the paths from s to its destinations in D(s): the set of
arcs forming the selected path from s to w ∈ D(s) is determined as {a ∈ A : zswa = 1}.
Certainly, the flow variables depend on variables ysa, a ∈ A, that define the routing tree
B(s) (with A(s) = {a ∈ A : ysa = 1}). The final form of the frame minimization problem
(FMP), formulated by adding additional constraints imposed on the new variables and an
objective function is as follows:

FMP(C): min T = ∑c∈C Tc (3a)

∑c∈C(a) hsb(a)c ≥ n(s)ysa, s ∈ S , a ∈ A (3b)

∑s∈S hswc ≤ B(m(c, w))Tc, c ∈ C, w ∈ W(c) (3c)

∑a∈δ−(v) zswa + I(s, w, v) = ∑a∈δ+(v) zswa,

s ∈ S , w ∈ D(s), v ∈ V (3d)

zswa ≤ ysa, s ∈ S , w ∈ D(s), a ∈ A (3e)

ysa ∈ B, s ∈ S , a ∈ A (3f)

zswa ∈ R+, s ∈ S , w ∈ D(s), a ∈ A (3g)

hswc ∈ R+, s ∈ S , c ∈ C, w ∈ W(c); Tc ∈ R, c ∈ C. (3h)

Constraints (3d) and (3e) are the new constraints that ensure correctness of the con-
structed routing trees (indicator I(s, w, v) used in (3d) equals 1 for v = s, and −1 for
v = w). Finally, the objective function (3a) minimizes the total numbers of time slots used
by the frame, i.e., it minimizes the sum of the numbers of time slots assigned to the c-sets
actually used in the frame. The so described formulation was originally presented in [17].
It should also be emphasized that the frame minimization problem represented by the
above formulation is NP-hard, since, its basic version is already NP-hard [14].
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Note that the above formulation provides an optimal solution only for a given family
of c-sets C (and not for the whole c-sets family), and it does not consider power control.
Both of these aspects will be addressed during solution process.

5. Price-and-Branch FMP Solution Algorithm

In this section we describe the algorithm we propose to solve the problem considered
in the article and provide a complexity analysis of the algorithm.

5.1. Algorithm Description

As already mentioned, the size of family Ĉ, i.e., the number of all valid c-sets, increases
exponentially with respect to the network size. That is why the formulation of FMP(C) is
non-compact, with the number of variables and constraints growing exponentially with
the network size. Thus, to find a globally optimal solution of FMP, i.e., when all c-sets in
Ĉ are considered, we need a way for generating the c-sets needed for achieving such a
solution. Our approach is to apply the column and constraint generation method to the
liner relaxation of the MIP formulation (3) of FMP(C). Such a linear relaxation is obtained
from formulation (3) by relaxing variables ysa and Tc, i.e, by letting them to be continuous.
(Note that in this relaxation constraint ysa ≤ 1 has not be added since in optimal solutions
this condition will be fulfilled.) The problem dual to the considered relaxation is as follows.

DFMP(C): max W = ∑s∈S ∑w∈D(s)(ϕsws − ϕsww) (4a)

∑w∈D(s) σswa ≤ n(s)λsa, s ∈ S , a ∈ A (4b)

ϕswb(a) − ϕswe(a) ≤ σswa, s ∈ S , w ∈ D(s), a ∈ A (4c)

∑w∈W(c) B(m(c, w))πcw = 1, c ∈ C (4d)

∑v∈U (c,w) λs(w,v) ≤ πcw, s ∈ S , c ∈ C, w ∈ W(c) (4e)

ϕswv ∈ R, s ∈ S , w ∈ D(s), v ∈ V (4f)

σswa ∈ R+, s ∈ S , w ∈ D(s), a ∈ A (4g)

λsa ∈ R+, s ∈ S , a ∈ A (4h)

πcw ∈ R+, c ∈ C, w ∈ W(c), (4i)

where the dual variables ϕswv, σswa, λsa, πcw correspond, respectively, to the primal con-
straints (3b)–(3e).

At this point we note that, as it commonly happens in the case of dual problems,
DFMP and in particular its objective function (4a), can hardly be interpreted in a rigid
but understandable way. Thus, although some helpful intuition could be developed, it is
virtually impossible to explain the interpretation of DFMP in a compact manner.

Suppose that λ = (λ∗sa)s∈S ,a∈A is a vector of optimal values of dual variables λsa and
consider the following expression:

P(c, λ∗) := minπ≥0, ∑w∈W(c) B(m(c,w))πw=1 Q(π; c) (5)

where π = (πw)w∈W(c) and

Q(π; c) :=

∑w∈W(c) ∑s∈S max
{

0, ∑u∈U (c,w) λ∗s(w,u) − πw
}

.
(6)

Now consider the (dual) polytope of DFMP(C ∪ {c}), i.e., the domain of DFMP(C ∪
{c}), for a given c-set c ∈ Ĉ \ C. Observe that P(c) expresses the sum of violation of the
constraints (4e) corresponding to c in this polytope by the vector λ∗ which is optimal for
DFMP(C). (Note that the rest of the constraints are not violated in the new polytope.)

Finally, let c∗ ∈ Ĉ \ C be a c-set that solves the so called pricing problem (PP):
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PP(λ∗): Find a c-set c in Ĉ \ C that maximizes the value of P(c, λ∗) defined in (5).

Note that when P(c∗, λ∗) = 0 then no constraint is violated in DFMP(C ∪ {c∗}) and
optimal solutions of DFMP(C) are also optimal for DFMP(Ĉ), and the same holds for the
considered linear relaxation of FMP(C). Otherwise, adding c∗ to DFMP, i.e., to C, will in
general decrease the maximum of W in (4a) because the dual polytope of DFMP(C ∪ {c∗})
is a proper subset of the polytope of DFMP(C) (because those solutions of the latter problem
that contain λ∗ do not belong to the polytope of DFMP(Ĉ)). Thus, since for a given C, the
optimum W∗ of the dual is equal to the optimum T∗ of the linear relaxation of FMP, adding
c∗ to FMP will in general decrease the optimum of FMP.

To summarize, the following c-set generation algorithm can be used in order to solve
the linear relaxation of FMP for the full list of c-sets.

CGA: c-set generation algorithm

Step-1: Define an initial feasible list C of c-sets.

Step-2: Solve the dual master problem DMP(C) using an LP solver to obtain optimal dual
variables λ∗.

Step-3: Solve the pricing problem PP(λ∗) using a MIP solver. If the maximum of the
objective function P∗ = P(c∗, λ∗) is strictly greater than 0, then add the resulting c-set c∗ to
the c-set list C (C := C ∪ {c∗}) and go to Step-2.

Step-4: Otherwise stop: the resulting c-set list C∗ is sufficient to solve the linear relaxation
of FMP to global optimality.

For completeness, Algorithm 1 shows the pseudocode of CGA, where the following
functions are used:

• de f ine_initial_ f easible_cSets_list()—the function that generates and returns an initial
feasible list C of c-sets

• solve_DMP(C)—the function that solves the dual master problem DMP(C) and re-
turns optimal dual variables λ∗

• solve_PP(C)—the function that solves the pricing problem PP(λ∗) and returns a c-
set c∗

Algorithm 1 CGA: c-set generation algorithm

1: procedure CGA

2: C := de f ine_initial_ f easible_cSets_list();

3: new_cSet_generated := true;

4: while (new_cSet_generated = true) do

5: λ∗ := solve_DMP(C);
6: c∗ := solve_PP(λ∗);

7: if P(c∗, λ∗) > 0 then

8: C := C ∪ {c∗};
9: else

10: new_cSet_generated := f alse;

11: end if

12: end while

13: end procedure

A simple feasible initial c-set list (i.e., a list C for which FMP(C) is feasible) that can
be used for Step-1 is the family of all c-sets with only one node broadcasting to all its
neighbors, with a fixed transmission power level.
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Finally, for solving the main problem, we use the so called price-and-branch method
(see [36]), i.e., we first apply CGA and then solve the basic MIP formulation (3) for the
family C∗ obtained from CGA. For that, we apply a MIP solver.

5.2. Algorithm Complexity

Recall that the algorithm we proposed consists of two phases:

Phase 1: solving the linear relaxation of FMP.
Phase 2: solving the MIP version of FMP with the c-sets generated in the first phase.

In the first phase, we consider the linear relaxation of FMP and, since its formulation
is non-compact, we have to solve it by means of the column and constraint generation
technique, i.e., we generate the c-sets that are essential to reach optimality of the linear
relaxation of FMP. Because the number of all c-sets grows exponentially with the network
size, we cannot guarantee that the number of c-sets generated during the process grows
polynomially, and not exponentially. Thus, in practice, the number of steps in this phase
can grow exponentially with the network size. In each such step, we solve the dual
master problem DMP and the pricing problem PP. We solve DMP by means of the simplex
algorithm, which is very effective. PP is an NP-hard MIP problem [14] that is solved with
branch-and-bound (B&B) algorithm whose complexity is exponential [37].

In the second phase of the algorithm, we use the B&B algorithm to solve the MIP
version of FMP for the c-sets that are generated in the first phase (recall that, similarly to
PP, this problem is also NP-hard). Thus, the complexity of this phase is also exponential.

However, although the complexity of the proposed algorithm is exponential, the
algorithm is capable of solving, as illustrated in Section 7, medium sized problem instances
in a reasonable time.

6. Pricing Problems

In this section, we present MIP formulations of the pricing problem (PP) for three
different cases: no power control, discrete power control, and continuous power control.
These formulations are used in Step-3 of CGA. Note that the pricing problem for the case
with no power control was already presented in [17]; yet, we present this version of PP
below, because it was used in the numerical study for comparison purposes. The derivation
of PP without power control can be found in [17], and derivations of the two remaining
cases are analogous.

6.1. No Power Control

In the case when the network nodes transmit with a fixed and predefined transmission
power level, the appropriate PP is as follows:

PP(λ∗): max P =

− f + ∑s∈S ∑w∈V ∑v∈δ+(w) λ∗s(w,v)Uswv (7a)

Xw ≥ Ywu, w ∈ V , u ∈ δ+(w) (7b)

Xw ≤ ∑u∈δ+(w) Ywu, w ∈ V (7c)

Xw + ∑u∈δ−(w) Yuw ≤ 1, w ∈ V (7d)

∑m∈M zm
w = Xw, w ∈ V (7e)

p(w, u) + M(w, u, m)(1−Ywu) ≥
γ(m)zm

w η + γ(m)∑v∈V\{w,u} p(v, u)Zm
wv), w ∈ V , u ∈ δ+(w), m ∈ M (7f)

Zm
wv ≤ zm

w , Zm
wv ≤ Xv, Zm

wv ≥ zm
w + Xv − 1, m ∈ M, w ∈ V , v ∈ V \ {w} (7g)

Uswv ≤ gsw, Uswv ≤ Ywv, Uswv ≥ gsw + Ywv − 1, w ∈ V , s ∈ S , v ∈ δ+(w) (7h)

∑s∈S gsw ≤ ∑m∈M B(m)Fm
w , w ∈ V ; gsw ≤ 1, s ∈ S , w ∈ V (7i)

Fm
w ≤ |S|zm

w , Fm
w ≤ f , Fm

w ≥ f − |S|(1− zm
w), m ∈ M, w ∈ V . (7j)

Ywu ∈ B, w ∈ V , u ∈ δ+(w); Xw ∈ B, w ∈ V (7k)
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zm
w ∈ B, w ∈ V , m ∈ M; Zm

wv ∈ B, w ∈ V , V ∈ V \ {w}, m ∈ M (7l)

f ∈ R; Fm
w ∈ R, m ∈ M, w ∈ V ; gsw ∈ R+, s ∈ S , w ∈ V . (7m)

Note that inequalities (7b)–(7f) define a valid c-set. Constraints (7b) and (7c) force the
node to broadcast (Xw = 1) if its broadcast signal is to be received by any of its neighbors
(Ywu = 1); otherwise, Xw is forced to be zero. Next, constraint (7d) ensures that, if a node
is transmitting, then it cannot receive, and if a node is not transmitting, then it can be
receiving, but from, at most, only one neighboring node. Constraint (7e) assures that only
one MCS can be used (zm

w = 1) by each broadcasting node. Finally, constraint (7f) expresses
the signal-to-interference-to-noise ratio (SINR) condition. The second term of the left-hand
side of (7f) is added to cancel the constraint whenever Ywu = 0 using a "big M” constant
i.e., the upper bound on the right-hand side of (7f).

6.2. Discrete Power Control

In the discrete power control case, we assume that, in each time slot, each network
node can transmit with the transmission power level from a discrete set of available power
levels that are denoted by P . Because the transmission power of each node is defined per
time slot, we can embed the problem of power assignment into PP, which, in this case,
takes the following form:

max P = − f + ∑s∈S ∑w∈V ∑v∈δ+(w) λ∗s(w,v)Uswv (8a)

Xw ≥ Ywu, w ∈ V , u ∈ δ+(w) (8b)

Xw ≤ ∑u∈δ+(w) Ywu, w ∈ V (8c)

Xw + ∑u∈δ−(w) Yuw ≤ 1, w ∈ V (8d)

∑m∈M zm
w = Xw, w ∈ V (8e)

∑p∈P hp
w = Xw, w ∈ V (8f)

∑p∈P hp
wP(p)G(w, u) + M(w, u, m)(1−Ywu) ≥

γ(m)zm
w η + γ(m)∑v∈V\{w,u} ∑p∈P P(p)G(v, u)Zmp

wv , (w, u) ∈ A, m ∈ M (8g)

Zmp
wv ≤ zm

w , Zmp
wv ≤ hp

v , Zmp
wv ≥ hp

v + zm
w − 1, m ∈ M, w ∈ V , v ∈ V \ {w}, p ∈ P (8h)

Uswv ≤ gsw, Uswv ≤ Ywv, s ∈ S , w ∈ V , v ∈ δ+(v) (8i)

∑s∈S gsw ≤ ∑m∈M B(m)Fm
w , w ∈ V ; gsw ≤ 1, s ∈ S , w ∈ V (8j)

Fm
w ≤ |S|zm

w , Fm
w ≤ f , Fm

w ≥ f − |S|(1− zm
w), m ∈ M, w ∈ V (8k)

Ywv ∈ B, w ∈ V , v ∈ δ+(w); Xw ∈ B, w ∈ V (8l)

zm
w ∈ B, m ∈ M, w ∈ V ; hp

v ∈ B, p ∈ P , v ∈ V (8m)

f ∈ R; gsw ∈ R+, s ∈ S , w ∈ V Fm
w ∈ R, m ∈ M, w ∈ V (8n)

Zmp
wv ∈ B, m ∈ M, p ∈ P , w ∈ V , v ∈ V \ {w}; Uswv ∈ R+, s ∈ S , w ∈ V , v ∈ δ+(w). (8o)

As compared with formulation (7), now a new set of binary variables is used, namely
hp

w, p ∈ P , w ∈ V , where hp
w equals 1 if, and only if, node w transmits with the power

level p, and 0 otherwise. Subsquently, new constraint (8f) is introduced to ensure that each
transmitting node is assigned exactly one transmitting power level from P . Finally, the
SINR constraint is modified in the following way: p(w, v) is replaced by multiplying the
power P(p) (corresponding to the power level p assigned to node w that is identified by
variable hp

w) by the path gain denoted by G(w, v). Finally, binary variables Zmp
wv ∈ B, m ∈

M, p ∈ P , w ∈ V , v ∈ V \ {w}, together with additional constraints (8h), are introduced to
eliminate bi-linearities that otherwise occur because of the multiplication hp

v zm
w .
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6.3. Continuous Power Control

Contrary to the discrete power control case, in the continuous power control the
transmitting power that is applied by the nodes can change continuously. To express this,
PP is modified in the following way:

max P = − f + ∑s∈S ∑w∈V ∑v∈δ+(w) λ∗s(w,v)Uswv (9a)

Xw ≥ Ywu, w ∈ V , u ∈ δ+(w) (9b)

Xw ≤ ∑u∈δ+(w) Ywu, w ∈ V (9c)

Xw + ∑u∈δ−(w) Yuw ≤ 1, w ∈ V (9d)

∑m∈M zm
w = Xw, w ∈ V (9e)

pwG(w, u) + M(w, u, m)(1−Ywu) ≥
γ(m)zm

w η + γ(m)∑v∈V\{w,u} G(v, u)Pm
wv, (w, u) ∈ A, m ∈ M (9f)

PminXw ≤ pw ≤ PmaxXw, w ∈ V (9g)

Pm
wv ≤ Pmaxzm

w , m ∈ M, w ∈ V , v ∈ V \ {w} (9h)

Pm
wv ≤ pv, m ∈ M, w ∈ V , v ∈ V \ {w} (9i)

Pm
wv ≥ pv − (1− zm

w)Pmax, m ∈ M, w ∈ V , v ∈ V \ {w} (9j)

Uswv ≤ gsw, Uswv ≤ Ywv, s ∈ S , w ∈ V , v ∈ δ+(v) (9k)

∑s∈S gsw ≤ ∑m∈M B(m)Fm
w , w ∈ V ; gsw ≤ 1, s ∈ S , w ∈ V (9l)

Fm
w ≤ |S|zm

w , Fm
w ≤ f , Fm

w ≥ f − |S|(1− zm
w), m ∈ M, w ∈ V (9m)

Ywv ∈ B, w ∈ V , v ∈ δ+(w); Xw ∈ B, w ∈ V (9n)

zm
w ∈ B, m ∈ M, w ∈ V ; pw ∈ R+, w ∈ V ; Pm

wv ∈ R+, m ∈ M, w ∈ V , v ∈ V \ {w} (9o)

f ∈ R; gsw ∈ R+, s ∈ S , w ∈ V ; Fm
w ∈ R, m ∈ M, w ∈ V (9p)

Uswv ∈ R+, s ∈ S , w ∈ V , v ∈ δ+(w). (9q)

Instead of binary variables hp
w used in the previous formulation, the continuous

variables pw, w ∈ V are now introduced to express the actual power that is applied at
node w. These variables are used in the SINR constraint modified analogously to the
discrete case. It is assumed that the value of pw cannot be smaller than the minimum power
Pmin (a parameter), and it cannot exceed the maximum power Pmax—this is assured by
the constraints (9g). Variables Pm

wv, together with constraints (9h)–(9j), are the auxiliary
constraints used to get rid of bi-linearities that otherwise appear in the SINR constraint
because of the multiplication zm

w pv.

7. Numerical Study

Below, we present the numerical results that were obtained by means of the optimiza-
tion approach described in the previous sections. We first consider the primary aim of the
study, i.e., answering the question to what extent network traffic throughput can be in-
creased through joint MCSs assignment and TPC. For that, discrete and continuous power
control are both considered in the study. Later, on top of that, we discuss the computation
time efficiency of the considered optimization approach.

All of the optimization problems considered in the paper were implemented and
solved by means of C# and CPLEX 12.9.0, respectively. All of the computations were
executed on an Intel Core i7-8550U CPU (four cores, each up to 4 GHz) with 16 GB RAM.

7.1. Network Setting

In the study, we consider irregular networks that were generated by [38] of three
different sizes: small networks with 18 nodes, medium networks with 24 nodes, and
large networks with 30 nodes. In each network, the nodes were placed in a given square
area according to the uniform distribution. The size of the network area is equal to
220 m × 220 m, 250 m × 250 m, and 280 m × 280 m, respectively, for small, medium, and
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large networks. Each small networks has two sensors and 10 destinations, each medium
network has four sensors and 16 destinations, while each large network has six sensors and
22 destinations; all of the remaining nodes in each network serve as purely transit nodes.
Figures 1–3 show the example networks. The sensor nodes are depicted in red, destinations
in blue, and transit nodes in white.

Figure 1. A small network example.

Figure 2. A medium network example.

Figure 3. A large network example.
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In the study, we assume that the noise power η is equal to −101 dBm and that the
network nodes are operating in 5 GHz band. The power that is received at the nodes is
calculated by means of the simplified path-loss model from [39]:

p(w, u) = P · G(w, u) = P
( λ

4πd0

)2(d0

d

)α
, (10)

where p(w, u) (as expressed in mW) is the power that is received by node u when node w
is broadcasting, P is the transmission power of node w, d0 (in m) is a reference distance,
d (in m) is the distance between w and u, λ (in m) is the signal wavelength, and α is the
path-loss exponent. In the study, we assume d0 = 10 m and α = 4. As mentioned above,
the transceivers are operating in 5 GHz band and, thus, λ = 0.06 m.

Clearly, the maximum transmission range depends on the transmission power and the
MCS used by the broadcasting node. In the following, we assume that the set of available
MCSsM is composed of three MCSs: BPSK 3/4, 16-QAM 1/2, and 16-QAM 3/4. The
power ratio thresholds γ(m) and transmission rates B(m) of these MCSs are, respectively,
equal to 6.5 dB and 12 Mbps, 12.8 dB and 18 Mbps, and 16.2 dB and 24 Mbps [34]. The
maximum transmission range equals 170 m for the assumed MCS and the maximum
transmission power considered in this study that is equal to 130 mW.

7.2. Joint Modulation and Coding Schemes Assignment and Transmission Power Control

In this section, we are going to answer the main research question that is posed in this
article. For the generated network instances, we analyze to what extent traffic throughput
can be increased by joint MCSs assignment and TPC. Because the impact of the MCSs
assignment is comprehensively discussed in [17], in this study we skip the analysis of all
possible MCSs subsets combinations and focus on the following four cases differing in the
number of MCSs available for each node and the type of TPC applied:

• A—one MCS from the set of available MCSsM, namely BPSK 3/4, and no TPC; the
transmission power of each node equals 90 mW,

• B—all three MCSs from the set of available MCSsM and no TPC; the transmission
power of each node equals 90 mW,

• C—all three MCSs from the set of available MCSsM and discrete TPC; the transmis-
sion power of each node can take the value from set {50 mW, 90 mW, 130 mW},

• D—all three MCSs from the set of available MCSs M and continuous TPC; the
transmission power of each node can take the values from range [50 mW, 130 mW].

The results, i.e., the frame sizes, which were obtained for the considered cases are
presented in Tables 2–4, respectively, for small, medium, and large networks. Each table
contains results for ten randomly generated networks of a given size as well as the results
that are averaged over all ten network instances. All of the frame sizes reported in this
section are expressed in the number of time slots. The averaged results are then illustrated
in Figure 4.

The presented results show that the significant gain can be achieved by applying all
three available MCSs. As far as the averaged results are concerned, the value of this gain
is equal to 32.5%, 33.5%, and 19.9% for small, medium, and large networks, respectively.
The frame size can be then significantly decreased by applying TPC; however, it is not the
most essential whether it is discrete or continuous TPC. For small networks, the average
frame size after applying discrete TPC is further decreased by 22.2%, and the difference
between discrete TPC and continuous TPC only equals 1%. Note that, in nine out of
ten small networks, it does not matter which type of TPC we choose—a difference only
exists for Network 7. The difference is also not very significant when it comes to the
medium networks. When compared to case B, the averaged frame size can be decreased by
19.2% by applying discrete TPC and by 21.3% applying continuous. However, contrary to
the previous case, small differences between discrete TPC and continuous TPC exist for
most networks. The similar, again not very significant, difference between discrete and
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continuous TPC is for large networks. In this case, the averaged frame size is decreased
by 23.1% by applying discrete TPC and by 25.1% when continuous TPC is used. Note
that these values applied to the averaged results; however, it should be noticed that the
influence of the TPC strongly depends on the network topology (compare, for example,
Network 8 and Network 9). Finally, we should highlight the substantial different between
case A (no power control with single MCS) and case D (continuous power with multiple
MCSs), which is equal to 48.1%, 47.7%, and 40.1% for small, medium, and large networks
when it comes to the averaged results.

Table 2. Optimized frame sizes for small networks

A B C D

Network 1 54 35 31 31
Network 2 41 19 14 14
Network 3 41 31 32 32
Network 4 68 50 33 33
Network 5 68 43 31 31
Network 6 95 70 41 41
Network 7 41 25 23 20
Network 8 70 43 36 36
Network 9 28 21 14 14
Network 10 41 32 32 32

Avg 54.7 36.9 28.7 28.4

Table 3. Optimized frame sizes for medium networks.

A B C D

Network 1 110 84 79 78
Network 2 97 84 63 63
Network 3 109 64 52 51
Network 4 176 132 98 97
Network 5 121 64 51 50
Network 6 95 49 44 44
Network 7 110 62 52 50
Network 8 148 100 63 61
Network 9 122 91 95 88
Network 10 135 83 60 58

Avg 122.3 81.3 65.7 64

Table 4. Optimized frame sizes for large networks.

A B C D

Network 1 162 133 118 116
Network 2 242 194 122 121
Network 3 149 107 108 107
Network 4 188 141 124 119
Network 5 215 194 125 121
Network 6 202 126 114 111
Network 7 190 137 125 121
Network 8 254 218 144 144
Network 9 175 239 105 101

Network 10 281 258 177 173
Avg 205.8 164.7 126.2 123.4
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Figure 4. Frame size as a function of the network size.

7.3. Time Efficiency of the Optimization Model

In this section, we analyze computation times of the solution algorithm applied in our
optimization model based on the CPLEX solver. Table 5 summarizes the notations that are
used in this section.

Table 5. Numerical results—explanation.

Notation Description

TLR optimal frame size obtained from the linear relaxation of the problem after the c-sets
generation process

TMIP optimal frame size obtained from frame size minimization
|C| number of generated c-sets
tMP total computation time of solving master problem during c-sets generation process
tPP total computation time of solving pricing problem during c-sets generation process
tMIP computation time of solving the final MIP version of the problem

Tables 6–8 present the averaged results illustrating time efficiency of the optimization
model for small, medium, and large networks. The meaning of the letters A, B, C, and D in
the columns’ headers is the same as in the previous section. Additionally, the unit of the
frame size remains the same, i.e., all of the frame sizes are expressed in the number of time
slots (note that, in the case of the linear relaxation of the problem, the number of time slots
does not have to be integer).

Table 6. Optimization model efficiency-small networks.

A B C D

TLR 42.4 30.2 21.2 21.1
TMIP 54.7 36.9 28.7 28.4
|C| 13.4 24.7 42.2 41.3
tMP 1.6 s 2.9 s 6.2 s 6.1 s
tPP 4.5 s 51.1 s 9 m 49 s 2 m 48 s

tMIP 0.4 s 0.5 s 0.6 s 0.7 s
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Table 7. Optimization model efficiency-medium networks.

A B C D

TLR 91.09 65.89 50.50 49.86
TMIP 122.3 81.3 65.7 64
|C| 28.4 62.2 61.6 71.3
tMP 22.4 s 47.7 s 563 s 1 m 6 s
tPP 30.2 s 6 m 56 s 16 m 57 s 14 m 44 s

tMIP 4 m 21 s 3 m 37 s 1 m 46 s 4 m 44 s

Table 8. Optimization model efficiency-large networks.

A B C D

TLR 167.92 140.82 101.43 100.32
TMIP 205.8 164.7 126.2 123.4
|C| 41.5 79.8 86 103.7
tMP 1 m 7 s 2 m 17 s 2 m 52 s 3 m 35 s
tPP 41 s 12 m 21 s 23 m 51 s 25 m 15 s

tMIP 12 m 42 s 4 m 44 s 12 m 47 s 13 m 47 s

We first note that each problem variant, even for large networks, was solved in
a reasonable time. However, the time that is needed to solve the problem increases
significantly with the network size. Second, including MCSs assignment and TPC leads
to a substantial increase of the number of generated c-sets. This suggests that it is the
increased number of simultaneous transmissions possible that lead to the gain in traffic
throughput discussed in the previous section. Finally, the quality of linear relaxation is
not too high (contrary to the basic optimization model from [14]). This issue should be
addressed in the future work, since it affects the effectiveness of the branch-and-bound
(B&B) algorithm underlying the CPLEX solver.

8. Remarks

There are several aspects that are out of the scope of this paper that we believe the
reader should know about. All of these aspects will be discussed in this section.

First, although three different network sizes have been considered in this paper, it is
important to also analyze different networks topologies. In fact, our model is topology-
agnostic in the sense that it works for general directed graph structure. However, for
the particular topologies that are encountered in such networks as scale-free networks
or small-world networks that possess certain specific properties (see [40]), it would be
interesting to analyze these kind of networks in order to take advantage of the properties
of their topologies to improve the general solution algorithm proposed in this paper.

Second, as previously stated, our aim is to provide a rigid exact mathematical model
for the considered problem (recall that the problem is NP-hard). This assumption is not
without its consequences. Namely, in general, we cannot expect to solve large problem
instances (of, say, hundreds or more nodes) in an acceptable time since the model is
developed within the integer-programming optimization framework that uses B&B as the
basic solution approach. In such a case, appropriate heuristics should be considered.

Finally, we would like to give some additional remark on the time efficiency of the
proposed solution algorithm. As the reader may have noticed, the solution time is mainly
determined by the time that is needed to solve the MIP problems PP and FMP, and this time
grows significantly with the network size. Nevertheless, despite the algorithm complexity,
the proposed medium sized examples were solved in a reasonable time.
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9. Conclusions

In the paper, we have presented an extension of the optimization model introduced
in [14]. The extension makes it possible to deal with the complex problem of including
transmission power control into throughput optimization in WSNs with dynamic MCSs
assignment that serve multicast traffic. The numerical results that were obtained by
implementing the optimization model show that adding TPC on top of dynamic MCSs
assignment leads to a significant gain in traffic throughput. This gain is considerable for
both discrete and continuous TPC, and the difference between those two cases is usually
negligible. The main appplication scenario of the introduced optimization model is to use
it as a benchmark while designing new algorithms and protocols that are intended for
WSNs. As far as the ongoing and future work is concerned, we are extending our model
by introducing multi-criteria optimization in order to jointly minimize the frame size and
energy consumption. Finally, the quality of the linear relaxation needs to be addressed.
All of these issues are already under consideration within the grant mentioned in the
acknowledgement.
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