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Abstract

Background: Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder and is a common
genetic cause of chronic renal failure in children and adults. The enzyme renin plays a key role in the RAAS cascade
and an important role in the development of hypertension and progression of renal disease in ADPKD. The present
study is aimed to investigate the potential modifier effect of REN gene polymorphisms on the progression of chronic
kidney disease (CKD) in ADPKD.

Methods: We analyzed 102 ADPKD patients and 106 healthy controls from the same geographic area. FRET-based
KASPar single-nucleotide polymorphism (SNP) genotyping assays for REN gene tag-SNPs (rs2887284, rs2368564,
rs1464816, rs7521667, rs10900555, rs6693954, rs6676670 and rs11571078) were performed. Cochran-Armitage trend test
was used to assess the potential associations between these polymorphisms and CKD stages. Haplotype frequencies and
LD measures were estimated by using the software Haploview. Mantel-Haenszel stratified analysis was used to explore
confounding and interaction effects of these polymorphisms.

Results: Of the eight tag-SNPs genotyped, the rs10900555 polymorphism deviated from the Hardy-Weinberg equilibrium
in controls. The presence of ADPKD in general was not significantly associated with the REN tag-SNPs included in this
study. Linkage disequilibrium analysis yielded three haplotype blocks and the haplotypes of the respective blocks are
not statistically different between ADPKD and controls. In multivariate analysis, the rs1464816 TG genotype showed a
significant association with the advancement of CKD in ADPKD (OR = 4.80; 95 % CI = 1.30–17.82; p = 0.019).

Conclusions: The present study provides evidence that the rs1464816 polymorphism in REN is associated with CKD
progression in ADPKD.
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Background
Autosomal dominant polycystic kidney disease (ADPKD)
is a monogenic disorder and a common genetic cause of
chronic renal failure in children and adults. It is character-
ized by the accumulation of fluid-filled cysts in both kid-
neys and other organs [1]. According to epidemiological
data, ADPKD affects at least 10 million individuals world-
wide. Around 10 % of the patients may develop end-stage

renal disease (ESRD) during the fourth and fifth decades
of their life and need renal replacement therapy by haemo-
dialysis or transplantation. ADPKD is genetically heteroge-
neous: mutations in PKD1 account for 85–90 % of cases
and mutations in PKD2 and undefined PKD3 account for
10–15 % of cases [2]. A striking feature of ADPKD is its
intrafamilial and interfamilial phenotypic variability. The
age of onset of renal disease progression in ADPKD has
been observed 15 years earlier in patients from PKD1-
linked families than patients from PKD2-linked families
[3]. Further, considerable renal disease variability has been
observed among individuals with the same PKD2 muta-
tions. This variability supports the notion that there are
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additional genetic, environmental and stochastic factors
that contribute to renal disease progression in ADPKD
[4]. The predictive links between severities of divergent
phenotypes in ADPKD have not been identified so far [5].
In about 60 % of ADPKD patients, hypertension can be
noticed before identifying any decrease in the glomerular
filtration rate and relates to progressive kidney enlarge-
ment in ADPKD [6]. In both male and female ADPKD
patients, a significant reduction in renal disease progres-
sion was associated with significantly lower mean arterial
pressure and increased use of angiotensin-converting
enzyme inhibitors (ACEIs) [7]. The activation of the intrar-
enal renin–angiotensin–aldosterone system (RAAS) plays a
major role in the pathogenesis of hypertension in ADPKD
[8]. Thus, the genes involved in the RAAS have an import-
ant role in the development of hypertension and progres-
sion of renal disease. The enzyme renin plays a key role in
the RAAS cascade by cleaving the precursor angiotensino-
gen to release angiotensin II from angiotensin I. Plasma
renin activity was found to be increased in hypertensive
ADPKD patients compared to control subjects [9–11]. The
gene coding for renin (REN) is located on chromosome
1q32, spans 12.5 kb in length and encodes the 406 amino
acid precursor of renin that includes a pre- and a pro-
segment carrying 20 and 46 amino acids, respectively.
Mature renin contains 340 amino acids and has a mass of
37 kDa [12]. Studies concerned with REN polymorphisms
and essential hypertension revealed inconsistent results
[13, 14]. The present study is aimed at unraveling the po-
tential modifier effect of the REN gene tag-SNP on the
progression of chronic kidney disease (CKD) in ADPKD.

Methods
Subjects
A total of 102 south Indian patients with ADPKD, 55.88 %
of whom are men, were recruited from the Department of
Nephrology of Sri Ramachandra University, Chennai, be-
tween February 2000 and June 2014. The diagnosis of
ADPKD was done based on previously described Ravine
ultrasound criteria [15]. From serum creatinine levels of
each patient, estimated glomerular filtration rate (eGFR)
was calculated using the Modification of Diet in Renal Dis-
ease (MDRD) study formula. Further among the ADPKD
patients, chronic kidney disease was defined according to
the Kidney Disease Outcomes Quality Initiative (KDOQI)
criteria for stages of CKD and patients were divided into
different stages - early stages (CKD stages 1–3) and ad-
vanced stages (CKD stages 4 and 5) by using eGFR [16]. A
total 106 healthy unrelated individuals without any kidney
related disease (60.38 % of whom are men) from the same
geographic location were included as controls. The study
was approved by the Institutional Ethical Committee of Sri
Ramachandra University, Chennai, India. After obtaining
written informed consent, three mL peripheral blood

sample was obtained from all subjects. Genomic DNA was
isolated according to the standard procedure [17].

Genotyping
REN tag-SNPs (rs2887284, rs2368564, rs1464816,
rs7521667, rs10900555, rs6693954, rs6676670 and
rs11571078) ascertained from genotyped SNPs in a Gujarati
Indians in Houston population (GIH) in phase II of the
HapMap Project with a minor allele frequency
(MAF) ≥0.05 and linkage disequilibrium patterns with
r2 ≥ 0.8 were used as a cutoff (www.hapmap.org). The
KASPar SNP Genotyping Method (KBioscience, Herts.,
UK) that uses Fluorescent Resonance Energy Transfer
(FRET) was adopted for genotyping [18]. For developing
two allele specific forward primers and one common
reverse primer, 50 bp upstream and 50 bp downstream
flanking sequences around the SNP were used (Additional
file 1: Table S1). KASPar assays were carried out in 5 μL
reactions containing 10–20 ng of genomic DNA,
0.07 μL of assay mix, 2.5 μL of 1x KASP reaction
mix and 0.43 μL of distilled water. The PCR reaction
was performed as follows: 15 min at 94 °C; 10 touch-
down cycles of 20s at 94 °C and 60s at 65 to 57° C;
and 26–35 cycles of 20s at 94 °C and 60s at 57 °C. Fluores-
cence detection of the reaction was performed on an
ABI7900HT and the scatter plot of the allele call data was
viewed using SNPViewer (http://www.lgcgenomics.com).

Statistical analysis
The Hardy-Weinberg equilibrium was tested for each of
the SNPs based on the genotyping of ADPKD patients and
healthy controls. Genotypic associations of SNPs between
ADPKD and controls were tested using the Cochran-
Armitage trend test. Pairwise linkage disequilibrium (LD)
measures (D’ and r2) and haplotype blocks were assessed
under the default settings of the Haploview software [19].
Among the ADPKD patients, the Cochran-Armitage trend
test was used to assess the potential associations between
these polymorphisms and CKD stages. Further, multivari-
ate logistic regression analysis was performed to adjust for
the multiple risk factors. The Mantel-Haenszel χ2 test was
performed to evaluate the influence of different genotypes
on the relationship between different CKD stages and
hypertension. All statistical analyses were performed using
SPSS (version 16.0 for Windows, SPSS Inc, Chicago, IL).

Results
The mean age of the control group was 53.27 ± 12.43 years
and the ADPKD group was 46.89 ± 11.38 years. All tag-
SNPs of the REN gene are polymorphic in both ADPKD
and control groups and their distribution is documented in
Table 1. Except for rs10900555, all tag-SNPs followed the
Hardy–Weinberg Equilibrium in both control and ADPKD
groups. The Cochran-Armitage trend test revealed that the
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distribution of the REN genotypes was not significantly dif-
ferent between control and ADPKD groups (Table 1). Re-
sults of pair-wise linkage disequilibrium (LD) analysis with

these 8 SNPs are shown in Fig. 1. We observed three small
haplotype blocks; first composed of rs2887284 and
rs2368564; second of rs7521667 and rs10900555 and third

Table 1 Genotype distribution of REN gene tag-SNPs between control and ADPKD patients

Gene Genotype Control n (%) ADPKD n (%) OR (95 % CI) p-Value (df-2)

rs2887284 CC 70 (66) 58 (56.8) Reference

CA 33 (31.1) 38 (37.2) 1.39 (0.78–2.49)

AA 3 (2.83) 6 (5.8) 2.41 (0.58–10.08) 0.301

MAF 18.4 24.5

HWE-p 0.703 0.945

rs2368564 CC 65 (61.3) 54 (52.9) Reference

TC 38 (35.8) 42 (41.1) 1.33 (0.75–2.35)

TT 3 (2.83) 6 (5.8) 2.41 (0.58–10.08) 0.343

MAF 20.75 26.47

HWE-p 0.355 0.559

rs1464816 GG 58 (54.7) 56 (54.9) Reference

TG 40 (37.7) 41 (40.2) 1.06 (0.60–1.88)

TT 8 (7.5) 5 (4.9) 0.65 (0.20–2.10) 0.718

MAF 26.4 25

HWE-p 0.762 0.467

rs7521667 GG 85 (80.2) 76 (74.5) Reference

TG 20 (18.8) 26 (25.5) 1.45 (0.75–2.81)

TT 1 (0.94) 0 - 0.430

MAF 10.38 12.75

HWE-p 0.882 0.14

rs10900555 TT 52 (49.0) 43 (42.1) Reference

TC 35 (33.0) 46 (45.1) 1.59 (0.88–2.89)

CC 19 (17.9) 13 (12.7) 0.83 (0.37–1.87) 0.836

MAF 34.4 35.3

HWE-p 0.005 0.898

rs6693954 TT 56 (52.8) 48 (47.0) Reference

TA 46 (43.4) 46 (45.1) 1.17 (0.67–2.05)

AA 4 (3.7) 8 (7.8) 2.33 (0.66–8.23) 0.283

MAF 25.47 30.3

HWE-p 0.14 0.505

rs6676670 GG 73 (68.8) 77 (75.5) Reference

TG 28 (26.4) 22 (21.6) 0.75 (0.39–1.42)

TT 5 (4.7) 3 (2.94) 0.57 (0.13–2.47) 0.171

MAF 17.9 13.7

HWE-p 0.292 0.367

rs11571078 CC 76 (71.7) 71 (69.6) Reference

TC 28 (26.4) 28 (27.4) 1.07 (0.58–1.98)

TT 2 (1.89) 3 (2.94) 1.61 (0.26–9.89) 0.659

MAF 15.09 16.67

HWE-p 0.753 0.905

RR: Relative risk; CI: confidence interval; MAF: minor allele frequency; HWp: Hardy-Weinberg p value; * p-values for the Cochran-Armitage trend test
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block of rs6693954, rs6676670 and rs11571078. However,
the SNP rs1464816 remained outside the haplotype blocks.
Haplotype frequencies from each haplotype block were not
significantly different between ADPKD and control groups
(Fig. 1).
Among ADPKD patients, 53 % showed early CKD stage

with 51.8 ± 4.8 years of age while 47 % showed advanced
CKD stage with a mean age of 35.8 ± 6.6. Univariate ana-
lysis showed that the distribution of REN tag-SNPs is not
significantly different between early and advanced CKD
groups (Table 2). None of the REN gene polymorphisms
exhibited a confounding effect on the relationship between
CKD progression and hypertension (Table 3). In multivari-
ate analysis, the SNP rs1464816 showed significant associ-
ation with increased CKD risk (TG vs. GG: OR = 4.80;
95 % CI = 1.30–17.82; p = 0.019) (Table 4), when corrected

for traditional risk factors viz. age, hypertension and family
history of diabetes mellitus.

Discussion
Analysis of eight tag-SNPs within the REN gene did not
show any significant association with ADPKD. Linkage
disequilibrium analysis yielded three haplotype blocks and
the haplotypes of the respective blocks are not statistically
different between ADPKD and controls. However, the
rs1464816 TG genotype showed a significant association
with increased CKD risk in ADPKD in multivariate ana-
lysis. Earlier studies observed that the level of inactive
renin found in normal plasma was significantly higher in
uncomplicated diabetes mellitus and greatly increased in
diabetic nephropathy [20, 21]. Further, the plasma of indi-
viduals with diabetic nephropathy showed increased levels

Fig. 1 Pairwise linkage disequilibrium between the tag-SNPs of the REN gene. Pairwise LD measures (D and r2) were shown by the LD map. Square
background color represents the D’/LOD and the values in cells are r2 values (multiplied by 100). The REN gene haplotypes distribution in control and
ADPKD patients was shown in the bottom
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of acid activated renin [22]. Furthermore, mice treated
with direct renin inhibitor showed adipocyte differenti-
ation and improved insulin sensitivity [23]. Plasma renin
levels were decreased in the elderly regardless of the pres-
ence or absence of an inverse relationship with blood
pressure [24]. In healthy subjects, beginning at puberty
mean plasma renin activity and its levels decline with wide
variations in individual values, and reach their lowest
levels during the sixth decade of life [25].
Studies using animal models have clearly demonstrated

the involvement of the renin gene in the development of
hypertension [26, 27]. The hypertensive patients with
polycystic kidney disease showed significantly higher
plasma renin activity than patients with only essential
hypertension [28]. Several polymorphisms within the
renin gene or its flanking sequences that were studied for
hypertension yielded inconsistent results [29–33]. The
rs2368564 of the REN gene failed to show a significant as-
sociation with hypertension in a Japanese population [13].
In contrast to this, the rs6693954 polymorphism showed
higher plasma renin activity levels and was found to be

associated with hypertension in the HyperPath cohort of
Caucasian subjects [34].
Using renin antiserum and an immunoperoxidase

method in nephrectomy and autopsy specimens of adult
polycystic kidneys, the distribution of renin-containing
cells was identified in residual normal kidneys, scarred
renal parenchyma and areas of fibrous tissue [35]. As the
juxtaglomerular apparatus is the main source of renin,
abnormal distribution of renin-containing cells were
identified in the juxtaglomerular apparatuses (JGAs) of
nephrectomy and autopsy specimens. Further, hyperplasia
of these cells in JGAs of untreated autopsy cases was doc-
umented [35]. Furthermore, synthesis of renin by tubulo-
cystic epithelia was confirmed by different techniques
[36]. ADPKD cyst-derived cells in culture revealed that
the renin is expressed primarily in cysts of distal tubule
origin and in cyst-derived cells with distal tubule charac-
teristics [10]. In addition, radiolabelling of renin and
mRNA for renin has been detected in cyst wall epithelia
and cyst fluids [37]. Higher levels of plasma renin activity
are associated with greater rates of CKD in hypertensive

Table 2 Effects of REN gene polymorphisms on CKD stages in ADPKD

Gene Genotype CKD stages p-value*

Early stage (n = 53) Advance stage (n = 49)

rs2887284 CC 30 (56.6) 28 (57.1)

CA 18 (33.9) 20 (40.8)

AA 5 (9.4) 1 (2.0) 0.509

rs2368564 CC 28 (52.8) 26 (53.0)

TC 20 (37.7) 22 (44.9)

TT 5 (9.4) 1 (2.0) 0.525

rs1464816 GG 33 (62.2) 23 (46.9)

TG 18 (33.9) 23 (46.9)

TT 2 (3.7) 3 (6.1) 0.131

rs7521667 GG 41 (77.3) 35 (71.4)

TG 12 (22.6) 14 (28.5)

TT 0 (0) 0 (0) 0.492

rs10900555 TT 25 (47.1) 18 (36.7)

TC 23 (43.3) 23 (46.9)

CC 5 (9.4) 8 (16.3) 0.199

rs6693954 TT 25 (47.1) 23 (46.9)

TA 21 (39.6) 25 (51.0)

AA 7 (13.2) 1 (2.0) 0.380

rs6676670 GG 43 (81.1) 34 (69.3)

TG 10 (18.8) 12 (24.4)

TT 0 (0) 3 (6.1) 0.076

rs11571078 CC 34 (64.1) 37 (75.5)

TC 16 (30.1) 12 (24.5)

TT 3 (5.6) 0 (0) 0.105

HT: Hypertension; FH-DM: Family history of diabetes mellitus; OR: odds ratio; CI: confidence interval. * p-values for the Cochran-Armitage trend test
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patients of an ethnically diverse population in southern
California [38]. However, no study has been conducted to
ensure the association of these polymorphisms with
hypertension in ADPKD.

Conclusion
In summary, our case–control study provides evidence
that the polymorphism rs1464816 in REN gene is associ-
ated with CKD progression in ADPKD. The potential of
the present study is limited, as we have not analyzed varia-
tions in PKD1 and PKD2 for ADPKD subjects although

they were recruited based on clinical criteria. Therefore,
further functional validation of these observational find-
ings needs to be conducted. In addition, the nested study
strategy adopted in this study may introduce selection bias
and the small sample size used in this study is another
limiting factor of statistical power. Lastly, the plasma renin
activity levels were not determined and correlated with
the progression of CKD as well as REN variants.
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Table 3 Association between CKD stages and hypertension
stratified by REN genotypes

Gene Genotype OR (95 % CI for HT) p-Value*

rs2887284 CC 3.0 (0.29–30.69)

CA 5.73 (1.00–32.67)

AA 0.75 (0.43–1.32) 0.36

M-H Combined 3.42 (0.97–12.07)

rs2368564 CC 1.92 (0.16–22.56)

TC 6.67 (1.21–36.74)

TT 0.75 (0.43–1.32) 0.286

M-H Combined 3.42 (0.97–12.07)

rs1464816 GG 3.94 (0.76–20.30)

TG 3.0 (0.48–18.65)

TT 0.828

M-H Combined 3.52 (1.04–11.90)

rs7521667 GG 2.83 (0.53–15.02)

TG 8.4 (1.27–55.39)

TT 3.66 (1.10–12.13) 0.394

M-H Combined 4.47 (1.28–15.58)

rs10900555 TT 1.09 (0.16–7.31)

TC 11.73 (1.33–103.79)

CC 4.67 (0.30–73.38) 0.227

M-H Combined 3.80 (1.16–12.48)

rs6693954 TT 1.91 (0.16–22.63)

TA 4.60 (0.82–22.88)

AA 0.83 (0.58–1.19) 0.502

M-H Combined 2.84 (0.77–10.51)

rs6676670 GG 3.55 (0.90–13.96)

TG 2.75 (0.21–35.84)

TT 0.863

M-H Combined 3.37 (1.01–11.26)

rs11571078 CC 3.75 (0.70–20.03)

TC 2.27 (0.36–14.45)

TT 0.594

M-H Combined 3.01 (0.88–10.37)

HT: Hypertension; M-H: Mantel-Haenszel
*Homogeneity test p value

Table 4 Adjusted effects of risk factors on CKD stages

Factors OR (95 % CI)a p value*

HT: Yes vs No 6.63 (1.38,31.81) 0.018

SEX: M vs F 0.45 (0.16,1.24) 0.123

Age: (40,60 year) vs, ≤40 year 6.71 (1.99,22.62) 0.002

Age: (60,90 year) vs, ≤40 year 15.3 (2.44,96.06) 0.004

FH-DM: Yes vs No 7.67 (2.54,23.14) 0.001

rs2887284:CA vs CC 2.41 (0.12–47.68) 0.563

rs2887284:AA vs CC - -

rs2368564: TC vs CC 0.68 (0.00–62.02) 0.87

rs2368564: TT vs CC - -

rs1464816: TG vs GG 4.80 (1.30–17.82) 0.019

rs1464816: TT vs GG 3.52 (0.25–48.93) 0.347

rs7521667: TG vs GG 5.00 (0.02–1004.64) 0.551

rs7521667: TT vs GG - -

rs10900555: TC vs TT 0.52 (0.73–3.80) 0.525

rs10900555: CC vs TT 0.13 (0.00–9.21) 0.352

rs6693954: TA vs TT 2.58 (0.62–106.83) 0.618

rs6693954: AA vs TT - -

rs6676670: TG vs GG 2.87 (0.38–21.60) 0.305

rs6676670: TT vs GG - -

rs11571078: TC vs CC 0.60 (0.00–51.79) 0.822

rs11571078: TT vs CC - -
aAdjusted for age, sex, hypertension (HT) and family history of
diabetes (FH-DM)
OR: odds ratio; CI: confidence interval; **Wald test p value
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