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Treatment of ongoing autoimmune
encephalomyelitis with activated B-cell progenitors
maturing into regulatory B cells
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The influence of signals perceived by immature B cells during their development in bone

marrow on their subsequent functions as mature cells are poorly defined. Here, we show that

bone marrow cells transiently stimulated in vivo or in vitro through the Toll-like receptor 9

generate proB cells (CpG-proBs) that interrupt experimental autoimmune encephalomyelitis

(EAE) when transferred at the onset of clinical symptoms. Protection requires differentiation

of CpG-proBs into mature B cells that home to reactive lymph nodes, where they trap T cells

by releasing the CCR7 ligand, CCL19, and to inflamed central nervous system, where they

locally limit immunopathogenesis through interleukin-10 production, thereby cooperatively

inhibiting ongoing EAE. These data demonstrate that a transient inflammation at the

environment, where proB cells develop, is sufficient to confer regulatory functions onto

their mature B-cell progeny. In addition, these properties of CpG-proBs open interesting

perspectives for cell therapy of autoimmune diseases.
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B
lymphocytes exert complex functions in autoimmune

diseases. On the one hand they can promote these diseases,
as shown by the beneficial effects of B-cell depletion

therapies in rheumatoid arthritis or multiple sclerosis (MS)1–3.
On the other hand, their negative regulatory functions can
provide protection, as initially shown in models of ulcerative
colitis4, experimental autoimmune encephalomyelitis (EAE)5 and
collagen-induced arthritis6. More precisely, mice with an
interleukin (IL)-10 deficiency restricted to B cells developed a
severe chronic form of EAE, while those harbouring wild-type
(WT) B cells rapidly recovered from disease5. The unique
capacity of B cells to reduce the severity of autoimmune diseases
through provision of IL-10 has kindled enormous interest in the
identification of the responsible B-cell sub-populations, and the
signals controlling their expression of suppressive functions.
Several B-cell subsets can produce IL-10 on stimulation in vitro,
and protect recipient mice from autoimmune disease on adoptive
transfer. These include B10 cells with a CD5þCD1dhigh

phenotype, transitional type 2 (T2)-marginal zone precursors,
and CD5þ B-1 cells (refs 7–9). Moreover, analysis of the cells
producing IL-10 in a suppressive manner in vivo identified
CD138hi plasma cells residing either in spleen10 or LN11 as major
IL-10 producers during EAE. In addition, IL-35 (ref. 10) and
PD-L1 (ref. 12) were recently shown to mediate protection
against EAE displayed by B regulatory cells.

Toll-like receptor (TLR) agonists are particularly important in
this context because of their unique capacity to induce IL-10
expression in mature naive B cells, and the requirement
for intrinsic TLR signalling in B cells for recovery from EAE13.
Similarly, CD5þCD1dhigh B cells depend on activation by TLR-4
or -9 agonists to produce IL-10 in vitro14. In addition to intrinsic
TLR signalling, signals provided to B cells through the BCR
or CD40 are also necessary to achieve a fully protective
B-cell-mediated regulation5,15–19.

Human B cells can also produce IL-10, and evidence is
accumulating that they can subsequently behave as negative
regulators of immunity. Duddy et al.20 found that B cells from
MS patients produce lower amounts of IL-10 on activation than
their counterparts from healthy individuals, suggesting that MS is
facilitated by a defect in this regulatory circuit. This defective
IL-10 production was subsequently confirmed by Correale
and Farez21 who observed that helminth infections could
restore normal IL-10 production by B cells in this disease,
which correlated with an improvement of the disease course
compared with non-infected patients. These data suggest that
promoting B-cell-mediated regulation might help to reduce MS
progression. Of note, some MS treatments, such as interferon
(IFN)-b22 or glatiramer acetate23,24 have been shown to enhance
IL-10 secretion by B cells.

Although our knowledge of the peripheral B-cell subsets
implicated in immune regulation, and the signals controlling their
regulatory activity has greatly improved, we still have little data
on whether B-cell development in bone marrow (BM) might
influence the subsequent capacity of mature B cells to negatively
regulate immunity in periphery. We recently gained some
evidence of this by showing that proB cells emerging from BM
cell cultures transiently stimulated with the TLR-9 agonist CpG
prevented type 1 diabetes in NOD mice on adoptive transfer25.
These cells, which we termed as CpG-proB cells, differentiated
into various more mature B-cell subsets in recipient mice. We
could demonstrate that they provided protection by reducing
pathogenic IL-21 secretion by T cells, and by promoting
apoptosis of T-effector cells25. However, it was difficult to
further analyse how the administered CpG-proBs protected
recipient mice from disease in this model due to the lack of
mutant mouse strains on the NOD background. We therefore

addressed the question, whether a similar subset emerged in the
C57BL/6 mouse strain. To this end, we used the myelin
oligodendrocyte glycoprotein (MOG)35–55-induced EAE model
in which B-cell-mediated regulation has been extensively studied.
So far described regulatory B-cell subsets only acted at the
initiation phase of the disease, except PD-L1hi mature splenic B
cells of which 1 million cells injected at day 7 after immunization
provided protection against EAE12, albeit milder than when
injected at day 0. However, we find that a single injection of only
60,000 CpG-proB cells at the onset of EAE clinical signs markedly
reduces disease progression in recipient mice. In contrast,
adoptive transfer of control non-stimulated proBs does not
influence the disease course in recipient mice. This suppression
requires the differentiation of the administered CpG-proB cells
into mature B cells in the periphery and in the central nervous
system (CNS). Collectively, these results shed light on the
importance of the BCR-independent signals that B-cell
progenitors receive in the BM environment to develop into
mature B cells with regulatory rather than inflammatory
functions. In addition, these properties of CpG-proBs open
interesting perspectives for cell therapy of autoimmune diseases.

Results
ProB cells exposed to CpG protect against ongoing EAE. We
previously found that on short-term incubation with CpG-1668
(CpG-B), BM cells from NOD mice gave rise to a population of
pro-B cells that protected recipient mice from diabetes on
adoptive transfer25. To assess whether a similar process took place
in a strain of mice which are more amenable to genetic studies,
we evaluated the effect of CpG-B on BM cells from C57BL/6J
mice. This treatment led to emergence of cells expressing a
c-kitþSca-1þB220þ IgM� phenotype, and heterogeneous in
terms of PDCA-1 expression (Fig. 1a and Supplementary Fig. 1).
A similar BM population was observed in vivo in mice after i.p
injection of CpG-B, validating the use of in vitro cultures
(Supplementary Fig. 2). The bright B220þ cells are gated out
since they correspond to the more mature B cells contaminating
the c-kitþ magnetically sorted cells. Moreover, since TLR-9
stimulation has been shown to promote deviation of
hematopoiesis away from the B-cell lineage towards the PDCA-
1þ plasmacytoid dendritic cell lineage26, B-cell precursors were
further sorted by excluding the PDCA-1þ fraction (Fig. 1a). The
resulting PDCA-1� population was closely related to the pro-B
cell stage of differentiation, being CD19þCD24þ IgM�CD11b�

CD11c� , as well as expressing the IL-7Ra chain (CD127), CD43
and the transcription factor Pax5 (Fig. 1b and Supplementary
Fig. 3a) characterizing B-cell lineage commitment. They all
expressed CD1d, but were negative for CD5 (Fig. 1b). It is
noteworthy that this effect was not restricted to TLR-9 agonists,
because agonists of TLR-2, -4, -5, -6 and -7 induced development
of a similar population, unlike agonists of TLR-1 and -3 (Fig. 1c).
As expected, these cells did not appear in BM cell cultures from
MyD88-deficient mice after incubation with CpG-B (Fig. 1c).
Collectively, these data suggest that TLR agonists induce in vitro
and in vivo the formation of a unique population of proB cells in
BM from C57BL/6 mice, as previously found in NOD mice25.

We next examined whether these cells could protect recipient
mice from EAE on adoptive transfer. Remarkably, a single
injection of only 60,000 CpG-proBs (Fig. 1d) isolated either from
in vitro BM cell culture activated with CpG (Fig. 1e, Table 1) or
from BM of CpG-injected donors (Fig. 1f) to mice at the time of
EAE onset (d12 after immunization) resulted in a marked
attenuation of the disease course, relative to control mice that
received only phosphate-buffered saline (PBS). Conversely,
neither control pro-B cells isolated using their typical markers
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Figure 1 | Phenotypic analysis of CpG-induced c-kitþSca-1þB220þPDCA-1� IgM� BM cells and assessment of disease protection against ongoing

EAE. (a) BM cells incubated for 18 h with CpG-B (1 mg ml� 1), were magnetically selected for c-kitþ cells, further labelled for Sca-1, B220, PDCA-1 and IgM

and electronically sorted into small-size (FSClowSSClow) c-kitþSca-1þB220þPDCA-1� IgM� cells. (b) Flow cytometry analysis of indicated B-cell markers

expression by CpG-proB cells after cell-sorting as in a. (a,b) Cells were stained with specific antibodies (open histograms) or isotype controls (filled

histograms). (c) Frequency of c-kitþSca-1þB220þPDCA-1� IgM� cells emerging among BM cells after 18 h of incubation with different TLR agonists.

CpG-B was tested in BM cell cultures of both WT and MyD88� /� C57BL/6J mice. Results are expressed as means±s.e.m. from three experiments.

*Po0.05, **Po0.005 when comparing stimulated and unstimulated BM cells, using non-parametric Mann–Whitney’s t-test. (d) Experimental protocol for

MOG35–55 EAE disease induction and intravenous progenitor cell transfer (60,000 cells per mouse) at day 12 post-immunization. (e,f) EAE clinical scores

(mean±s.e.m.) over 35 days of the indicated groups of mice. (e) n¼ 30 mice per group, except for PBS-ProB-recipient group in which n¼4 mice.

(f) n¼ 10 mice per group; ***Po0.001 when comparing control mice injected with PBS and recipients of WT CpG-proBs by two-way repeated measures

ANOVA test. **Po0.005, between mice injected with in vivo prepared CpG-proBs and other groups, non significant between all other groups.

Table 1 | Adoptive transfer of CpG-proB cells but not of control pro-B cells inhibits ongoing EAE.

Group Mice Mean maximum score±s.e.m. Day of onset±s.e.m. Disease incidence

Control 30 3.51±0.89 13.56±1.40 100%
WT CpG-proBs 30 1.56±1.26** 14.50±2.22 76.7%*
Control ProBs 20 3.57±0.92 13.30±2.22 100%
PBS-proBs 4 3.50±0.05 12.00±0.00 100%

Clinical parameters from data in Fig. 1e, including the maximum clinical score (mean±s.e.m.) of each treatment group and the day of disease onset (mean±s.e.m.) among mice with EAE as well as the
disease incidence over the entire observation period (35 days). Control mice received PBS injection instead of progenitor injection. Significant differences between CpG-proB recipients versus control
mice are indicated; *Po0.05, **Po0.005, assessed by non-parametric Mann–Whitney’s t-test.
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CD24 and CD43, from fresh non-stimulated BM, as c-kitþ

Sca1�B220þCD24hiCD43hi cells (Fig. 1e and Supplementary
Fig. 3b), nor cells detected within BM culture with PBS over 18 h
exhibiting the same phenotype as CpG-proB cells but at a
6–10-fold less frequency, termed PBS-proBs, had any effect in
recipient mice (Fig. 1e). Therefore transient in vitro and in vivo
TLR-9-dependent activation within the BM confers protective
properties onto proB cells against ongoing EAE. A dose–response
study (Supplementary Fig. 4) showed that injection of 60,000
CpG-proBs was optimal for protection against EAE. Neither
25,000 nor 90,000 injected cells provided significant protection,
the latter possibly resulting from cell aggregation or, alternatively,
from hindrance in access of cells into the hematopoietic niche of
non-irradiated recipients.

CpG-proB cells modify immune cell response and distribution.
To characterize the protective effect of the injected progenitors on
encephalitogenic T cells, we analysed the expression of pro-
inflammatory cytokines by CD4þ T cells in treated mice at the
peak of the disease (d18–d21). In spinal cord, which is a major
target organ in EAE, mice treated with CpG-proB cells had
reduced numbers of CD4þ T cells producing all pathogenic
cytokines tested, namely GM-CSF, IL-17 and IFN-g (Fig. 2a,c). In
LN, production of GM-CSF by CD4þ T cells was reduced,
whereas expression of IL-17 and IFN-g were not affected in
treated mice compared with controls (Fig. 2b,c). In addition,
production of the anti-inflammatory cytokine IL-10 by CD4þ

T and B220þ B cells was enhanced in treated mice in both tissues
(Fig. 2d–g), which was paralleled by an increased frequency of
CD4þFoxp3þ regulatory T cells (Fig. 2h,i), showing a modestly
enhanced Foxp3 expression (Fig. 2j).

To further delineate how the transferred CpG-proBs protected
from EAE, we analysed immune cell distribution in recipient
mice, in comparison with control mice with EAE. Remarkably,
mice treated with CpG-proB cells displayed increased cell
numbers and particularly CD4þ T cells in LN, while having
markedly fewer total and CD4þ T cells in spinal cord compared
with controls (Fig. 2k).

In sum, these data show that the administered B cells impact
on the disease process both at the level of the CNS and LN.

CpG-proB cells migrate and differentiate into mature Bregs.
To trace the migration and follow the differentiation of the
administered CpG-proB immature cells, we injected 60,000
CpG-proB cells prepared from BM of congenic CD45.1 mice into
CD45.2 recipient mice at day 12 after EAE induction (Fig. 3a). On
day 9 after transfer, CD45.1þ cells were mainly found in reactive,
cervical, axillary and inguinal, but not mesenteric, lymph nodes
(LNs; 113,900±3,500 cells, mean±s.e.m.), and spinal cord
(27,880±3,218 cells), with only few cells present in spleen
(5,000±1,098 cells; Fig. 3b). It is noteworthy that the total
number of donor-derived cells was about threefold higher in
recipients than the number of injected cells, indicating that they
expanded in vivo. Using different B-cell and other lineage mar-
kers, we assessed that the transferred CpG-proBs differentiated
exclusively into the B-cell lineage (Fig. 3c,d). In LN, the recovered
CD45.1þ cells displayed a B220þCD19þ IgMþ IgDþ IgG�

CD1dþCD21þCD23hi phenotype typical of transitional B cells
(Fig. 3c). This population was, however, heterogeneous, com-
prising about 70% of CD11bþCD11c� , and 20% of CD5þ cells
(Fig. 3c). In spinal cord, donor-derived B cells were comparable to
their LN counterparts in their B220þCD19þ IgMþ IgDþ IgG�

phenotype (Fig. 3d) but with lower levels of CD21 and CD23 than
in LNs and exclusively CD1dþCD5þCD11bþ , therefore similar
to B10 cells. While the CD45.1þ B-cell progeny of injected

progenitors represented only 0.77±0.14% of B cells in the LNs,
they represented nearly eightfold more, that is, 5.97±1.32% of B
cells, in the spinal cord (Fig. 3e,f). Remarkably, CD45.1þ B cells
produced the anti-inflammatory cytokine IL-10 in spinal cord,
but not in LN (Fig. 3g).

These data demonstrate that the transferred CpG-proB cells
give rise to more mature B cells that accumulate in reactive—
cervical and inguinal—LN and inflamed CNS during EAE.

To assess whether such differentiation of CpG-proB cells into
more mature B cells was required for protection against EAE,
CpG-proB cells from CD45.1þRag2� /� mice (prepared as in
Supplementary Fig. 5) whose differentiation into mature B
lymphocytes is blocked, were adoptively transferred. They had
no effect on the disease course (Fig. 4a). Injected cells from
CD45.1þRag2� /� donors could not be found in LNs or spinal
cord at 3, 5 or 7 days after injection, in contrast to CpG-proB cells
from WT donors, suggesting that their reduced lifespan as
progenitors hampered them to confer protection against EAE.
Therefore, transient treatment of BM cells with TLR-9 agonist
generates proB cells that differentiate into more mature B cells
with protective function in EAE. Remarkably, CpG-proB cells
from Rag2� /� mice had no effect on cell numbers in LN
and CNS (Fig. 4b), suggesting that this alteration of cell
distribution directly contributed to the beneficial effect afforded
by CpG-proB cells.

Roles of IL-10 production by donor-derived B cells. Since IL-10
is generally a key mediator of B-cell-mediated regulation,
we assessed its importance for the suppressive function of
CpG-proB cells. IL-10 was necessary for the protective function
of CpG-proB cells, because mice treated with IL-10-deficient
CpG-proBs (prepared as in Supplementary Fig. 5) were not
protected against disease (Fig. 4c), and production of pathogenic
cytokines by CD4þ T cells in spinal cord was not decreased
(Fig. 4d,e). However, IL-10-deficient CpG-proBs still promoted
CD4þ T cell accumulation in the reactive LN and reduced their
numbers in spinal cord (Fig. 4f) suggesting the involvement of an
additional mechanism in this latter effect.

Altogether, these data show that an efficient control of disease
by CpG-proBs requires IL-10 production by their mature B-cell
progeny. IL-10 produced by these cells is important to reduce
inflammation locally in spinal cord, while trapping of immune
cells in reactive LN is achieved via an IL-10-independent
mechanism.

Role of IFN-c in LN entrapment of T cells by CpG-proBs.
To identify the IL-10-independent mechanism involved in the
accumulation of immune cells in the reactive LN of CpG-proB
cells-treated mice, we analysed cytokine production by these cells
(Fig. 5a,b) in a comprehensive manner, because B cells primarily
inhibit immunity through cytokine production5,10. Remarkably,
freshly prepared CpG-proB cells did not produce IL-10 (Fig. 5a,b)
or IL-35 (Fig. 5b), but produced abundant amounts of IFN-g,
with levels about 30 times higher than those detected for the
other cytokines, following stimulation for 5 h with PMA plus
ionomycin (Fig. 5a). Expression of IFN-g by these cells was also
confirmed by flow cytometry (Fig. 5b) and was not significantly
different in WT and IL-10-deficient CpG-proBs (Supplementary
Fig. 6). Moreover, the WT CD45.1þ B-cell progeny recovered
from reactive LN and from the spinal cord still produced IFN-g,
although less in spinal cord than in LN, as measured by
qRT–PCR analysis (Fig. 5c) and intracellular flow cytometry
(Supplementary Fig. 7). Since IFN-g has protective functions in
EAE27,28, this prompted us to investigate whether IFN-g played a
role in the protective function of CpG-proB cells against EAE.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12134

4 NATURE COMMUNICATIONS | 7:12134 | DOI: 10.1038/ncomms12134 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


We tested the role of IFN-g using CpG-proBs prepared from
IFN-g-deficient mice. IFN-g-deficient CpG-proB cells did not
protect recipient mice against EAE on adoptive transfer (Fig. 5d).
Moreover, although the cells derived from IFN-g-deficient
CpG-proBs actually reached the spinal cord, where they released
as much IL-10 as the WT progeny (Supplementary Fig. 7), they
also produced there fivefold more GM-CSF than the WT
progeny. They failed to reduce the encephalitogenic cytokines
production by CD4þ T cells and to enhance IL-10-producing
CD4þ and B220þ cells in spinal cord (Supplementary Fig. 8).
Similarly, they failed to drive an accumulation of CD4þ T cells in
reactive LN of recipient mice, in contrast to WT CpG-proBs
(Fig. 5e). This suggested to us that IFN-g produced by
donor-derived B cells contributed to protection from disease
not only by limiting encephalitogenic cytokine production
within the spinal cord, but also by retaining encephalitogenic
T cells in reactive LN, thereby preventing their accumulation in
the CNS.

To characterize how IFN-g produced by donor-derived B cells
controlled T-cell accumulation in reactive LN, we examined its
effect on expression by T cells of the chemokine receptor CCR7
known to control T-cell localization within LN29, and to be
implicated in neuro-inflammation30,31. CCR7 expression was
reduced in LN CD4þ and CD8þ T cells of the CpG-proB-
treated group relative to controls (Fig. 5f,g). Remarkably,
CpG-proBs derived from IFN-g-deficient mice, barely affected
CCR7 staining on CD4þ T cells (Fig. 5f,g), contrasting with
those derived from IL-10-deficient mice that were as efficient
as WT CpG-proBs at retaining CD4þ T cells within LNs
(Supplementary Fig. 9). When we performed a short acid wash
(0.2 M acetic acid, 0.5 mM NaCl), known to eliminate bound
ligands from their receptor32, before CCR7 staining, the reduction
in CCR7 staining in LN T cells from CpG-proB recipients relative
to controls was no longer observed (Fig. 5h,i). This suggested that
increased local chemokine concentrations in LNs of CpG-proB
recipients bound to CCR7 and prevented antibody binding,
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as shown by Britschgi et al.33. Therefore, the IFN-g-dependent
release of CCR7 ligands by CpG-proBs may play a role in
inducing the retention of T cells in reactive LN in recipient mice.

Role of CCL19 in T-cell entrapment and disease protection.
The protection afforded by B-cell-derived IFN-g identifies a new
mechanism of B-cell-mediated regulation in EAE. We sought to
gain further insight into this mechanism. Given that IFN-g
can modulate chemokine expression27, we evaluated whether
CpG-proB cells and/or their progeny themselves might be a
source of CCL19 and/or CCL21 via a mechanism controlled by
IFN-g. To this end, we first quantified Ccl19 and Ccl21 mRNA in
WT CpG-proBs, IFN-g-deficient CpG-proBs, and IFN-g-
deficient CpG-proBs cultured in presence of IFN-g. We found
that WT CpG-proB cells produced both CCL19 and CCL21
(Fig. 6a). The production of these chemokines was reduced in

IFN-g-deficient CpG-proBs, and this defect could be erased by
exogenous addition of IFN-g (Fig. 6a). Remarkably, in LN, the
mature B-cell progeny generated from CpG-proBs in recipients
expressed markedly higher levels of Ccl21, and even more Ccl19
than they do in spinal cord and both expressions were higher
than in the originally administered CpG-proB cells (Fig. 6b).
CCL19 has been shown to induce CCR7 internalization more
efficiently than CCL21 (ref. 33). In addition, CD4þ and CD8þ

LN T cells from mice that received WT but not Ccl19-deficient
CpG-proBs displayed reduced cell surface expression of CCR7
(Fig. 6c,d).

Moreover, CpG-proBs sorted from Ccl19-deficient mice neither
restrained immune cells in reactive LN (Fig. 6e), nor provided
protection against EAE (Fig. 6f), confirming that CCL19
production by CpG-proB cells was essential for T-cell sequestra-
tion inside the LN and protection against disease. From these
data, we conclude that CCL19 produced by CpG-proB-derived B
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cells in response to autocrine IFN-g induces sequestration of
T cells via CCR7 in the reactive LN, subsequently limiting their
accumulation in the CNS and improving the disease course.

Discussion
In adults, immature B cells develop in BM and then seed
secondary lymphoid organs, where they can acquire diverse
effector functions depending on their mode of activation. Here,
we show that signals perceived by immature B cells in a
BCR-independent manner can determine their subsequent
effector functions as mature B cells. Indeed, we demonstrate that
a transient stimulation of BM cells via TLR-9 is sufficient to divert
the differentiation of pro-B precursors towards suppressive B
cells. In brief, adoptive transfer of as little as 60,000 pro-B cells

recovered from BM cultures shortly stimulated with CpG-B or
from the BM of CpG-injected mice markedly reduced the severity
of EAE in recipient mice, while unstimulated pro-B cells had no
effect even though they encountered the same inflammatory
environment in recipient mice. Donor-derived mature B cells
mediated this protection because the latter depended on RAG
expression.

The protection from disease mediated by the transferred
CpG-proB cells involved two complementary mechanisms, one
limiting local inflammation in CNS through IL-10 production,
and the other restraining encephalitogenic T cells in reactive LN.
The latter was achieved through LN retention of T cells, which
was mediated by increased CCL19 production by CpG-proB-
derived B cells under IFN-g autocrine control. None of these
effects were observed with control unstimulated pro-B cells.
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(n¼ 3 mice per group). *Po0.05 (Students’t-test).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12134 ARTICLE

NATURE COMMUNICATIONS | 7:12134 | DOI: 10.1038/ncomms12134 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


These data demonstrate that transient changes in the BM
environment of pro-B cells can markedly influence their
subsequent effector functions as mature B cells in periphery,
favouring their anti-inflammatory activities.

The production of IL-10 is a key mechanism, by which B cells
can suppress autoimmune diseases4–6,11. CpG-proBs did not
produce IL-10 themselves, but their mature progeny became
IL-10-competent strictly in spinal cord of recipient mice.
Although CpG-proBs from IL-10-deficient mice normally
retained immune cells in reactive LN, this was insufficient to
provide protection against EAE since at the onset of clinical signs,

pathogenic cells have already reached the CNS and triggered
neuro-inflammation. We propose that IL-10 produced by
donor-derived B cells is particularly important in the CNS in
our model. In addition, the prevalence of IL-10 over GM-CSF
production in the spinal cord by the progeny of CpG-proBs may
be essential to control neuro-inflammation, as shown in
Supplementary Fig. 7. The enhanced production of IL-10 by
host CD4þ T cells and B220þ B cells in CNS of mice treated with
WT CpG-proB might further help to control local inflammation
in the target organ. In addition, mice treated with WT CpG-proB
cells displayed an increased expansion of Tregs, suggesting that
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CD4þ and CD8þ cells out of four experiments (g). (h,i) Expression of CCR7 analysed by flow cytometry either in untreated cells or after an acid wash and

shown in a representative experiment (h) and as the mean±s.e.m. of the percentages of CCR7-positive CD4þ and CD8þ cells out of three experiments
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host Tregs are also involved in the protective effect of the
transferred B cells, in line with results from other studies15,19,34,35.

An important finding of this study is the identification
of a novel mechanism of B-cell-mediated immune regulation
involving IFN-g production by B cells. Looking for other non
IL-10 possible mediators for the protective effects of CpG-proBs
against EAE, we found that both CpG-proBs and their LN but not
spinal cord progeny displayed a massive production of IFN-g,
a cytokine considered pro-inflammatory but that has also
been credited with possible regulatory functions. In EAE,
both IFNg� /� and IFNgR� /� mice suffer from a more
severe disease in both chronic and Remitting-Relapsing-EAE

models27,28. The capacity to produce IFN-g has been reported for
B cells at different levels of maturation and in various activation
conditions. Thus BM immature B cells constitutively produce
IFN-g at low levels36–38, whereas mature follicular and marginal
zone B cells produce massive amounts of IFN-g on
TLR-activation that condition the Th1 response to Salmonella
enterica infection39. Co-culture with Th1 cells emerging in
pathogen-infected animals give rise to so-called Be1 effector B
cells producing large amounts of IFN-g that subsequently polarize
T cells towards a type 1 immune response40. Bao et al.41 recently
reported that innate B cells with a CD11ahi CD16/32hi phenotype
that emerged from follicular B cells on bacterial and viral
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compared with levels in WT CpG-proBs. Data are expressed as mean±s.e.m. from 3–5 experiments. *Po0.05 (Students’t-test). (c,d) CCR7 expression

analysis in CD4þ and CD8þ T cells from reactive LN of control mice (black line) and mice transferred with WT-CpG-proBs (red line) or CCL19-KO CpG-

proBs (blue line), after staining with a specific anti-CCR7 antibody (open histograms) or with an isotype control (filled histogram) of intact and

permeabilized cells. A representative experiment is shown in c and the mean±s.e.m. out of three experiments in d. (e) Control mice or mice injected at day

12 with CpG-proBs derived from WT or CCL19-deficient donors were killed on day 21 of the disease and reactive LN and spinal cord cells counted. Shown

are total cell counts and percentage of CD4þ T cells recovered per organ, *Po0.05, **Po0.005 (Students’ t-test). (f) EAE clinical scores (mean±s.e.m.)

in control mice (n¼ 10) or mice injected either with WT (n¼ 10) or CCL19-deficient CpG-proBs (n¼ 10). ***Po0.001, between controls or CCL19� /� and

WT CpG-proB recipients, non significant between controls and CCL19� /� CpG-proB-treated mice, using the two-way repeated measures ANOVA test.
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infections, produced as much IFN-g as NK cells when
re-stimulated ex vivo with anti-CD40. Their provision of IFN-g
was required for protection against L. Monocytogenes infection.
Conversely, Olalekan et al.42 reported that IFN-g production by
B cells was essential for the development of autoimmune
experimental arthritis. Therefore, IFN-g production by CpG-
proBs as well as other described B cells have functional, either
protective or deleterious, roles and may link innate and adaptive
immune responses.

Since PD-L1hi mature splenic B cells were recently shown to
provide protection against EAE12 and PD-L1 can be induced by
IFN-g, we investigated the possible role of PD-L1 in CpG-proB-
induced protection. There was no correlation between the level of
PD-L1 expression on WT versus IL-10 and IFN-g-deficient
CpG-proBs and their relative protective capacity against EAE
(Supplementary Fig. 10a). Furthermore, CpG-proBs isolated from
PD-L1-deficient C57BL/6 donor mice showed only a slight
(non significant) reduction in their protective effect against EAE
(Supplementary Fig. 10b). Therefore, PD-L1 is not playing a
significant role in disease protection against EAE by CpG-proBs.

Our data indicate that the protective effect mediated by
B-cell-derived IFN-g operates at least in part by sequestering
CD4þ T cells in the reactive LN. Many presently available
treatments of MS aim at preventing T cells from entering the
CNS. Several chemokine receptors and their ligands have been
shown to take part in the process of neuroinflammation,
including CCR7 whose ligands CCL19 and CCL21 are produced
by endothelial cells at the inflamed BBB in mice and men43,44.

CCR7� /� or plt/plt mice that lack CCL19 and CCL21 are
resistant to EAE45, demonstrating the requirement of
CCL19/CCR7 interactions for the development of EAE. When
expressed in peripheral tissues, CCL19 and CCL21 are able to
mediate cell recruitment in vivo of both naive and recently
activated T cells46. CpG-proB recipients showed downregulated
staining for CCR7 at the surface of both CD4þ and CD8þ LN T
cells. We found that IFN-g affected CCR7 expression on T cells
indirectly by enhancing the production by CpG-proB cells of both
CCR7 ligands, CCL19 and CCL21. Once in the LN, the B-cell
progeny produced both chemokines at far higher rates than the
progenitors they derived from. The observation that similar levels
of cell surface CCR7 were recovered once ligands were eliminated
by an acid wash suggested that high-receptor occupancy by
CCL19 or CCL21 was taking place in T cells from CpG-proB
recipients, anchoring T cells within LN. Britschgi et al.33 have
demonstrated that CCR7 levels and occupancy reflect the amount
of CCL19 present in the environment and that high levels of
CCL19 reduce CCR7 staining by the same antibody we used.
Similarly, increased levels of the CCR7 ligands in inflamed tissues
have been reported to reduce CCR7 detection and to induce
locally T-cell retention47. Thus, high occupancy of CCR7 by its
ligands and particularly CCL19 occurs in LN of CpG-proB
recipients and impedes leucocyte migration. The particular
anchoring role of CCL19 produced by the B-cell progeny was
confirmed by the findings that CpG-proB cells isolated from
CCL19-deficient mice did not reduce surface CCR7 expression
measured without acidic washing procedure and concomitantly
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Figure 7 | Protection against EAE by CpG-proBs relies on cooperative action of their LN and spinal cord B-cell progeny. (a) At the onset of clinical signs

of EAE in untreated mice, autoreactive T cells migrate to the spinal cord (1) and release pathogenic cytokines IL-17 and GM-CSF (2). (b) In mice protected

against EAE by adoptive transfer of only 60,000 CpG-proBs per recipient, the IFN-g-dependent release by CpG-proB’s progeny of CCL19 (1–2) anchors

T cells via CCR7 (3), leading to effector T cells (Teff) accumulation in reactive LN. As a result, fewer T cells reach the spinal cord (4). In the spinal cord, the

CpG-proB’s progeny releases IL-10 (5), that reduces IL-17 and GM-CSF production by T cells, enhances Foxp3þ Treg accumulation and triggers IL-10

release by host B cells.
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lost their capacity to sequester T cells within reactive LN, and
to protect against EAE disease. Importantly, the markedly
(3,000-fold) enhanced production of CCL19 in LN rather than
spinal cord progeny of CpG-proBs strongly supports a major role
of this protective mechanism in the reactive LN to keep T cells
away from the CNS. Notably, we did not observe significant
reduction of S1P1R expression of LN-trapped T cells in
CpG-proB recipients relative to control mice with EAE.
Therefore, different from FTY720 (ref. 48) which targets the
LN egress signal, CpG-proBs promote entrapment of pathogenic
T cells inside secondary lymphoid organs by targeting instead the
retention signal.

In summary (Fig. 7), the powerful protective effect of
CpG-proBs against EAE is due to the capacity of their progeny
to anchor T cells within the LNs particularly by releasing CCL19,
thereby retaining them away from the spinal cord. This process is
indispensable, but not sufficient to confer protection against EAE,
at disease onset when T cells have already migrated into the
CNS. The B220þCD11bþCD1dþCD5þ B-cell progeny of
injected CpG-proBs must further release IL-10 within the
spinal cord, which is ultimately required for switching the host
cytokine profile from inflammatory to immunoregulatory. These
molecular mechanisms were obtained using progenitors in which
each individual mediator was deficient at a time. BM chimera
exhibiting concomitant deficiencies in all the mentioned
molecular mediators may be necessary to provide full demonstra-
tion of their roles in the protection afforded by CpG-proBs.
CpG-proBs are, to our knowledge, the most efficient B-cell subset
so far reported to be able, at only 60,000 cells per recipient,
to stably inhibit ongoing encephalomyelitis. These properties
of CpG-proBs therefore open interesting perspectives for cell
therapy of autoimmune diseases. In addition, these data shed light
on the importance of the BCR-independent signals that B-cell
progenitors receive in the BM environment to develop
into mature B cells with regulatory rather than inflammatory
functions.

Methods
Mice. WT CD45.2þ C57BL/6J mice were obtained from Janvier Laboratories
(Le Genest Saint Isle, France). Congenic CD45.1þ , MyD88� /� , IFN-g� /� ,
Rag2� /� C57BL/6J, all backcrossed for at least ten generations, were bred in our
animal facility under specific pathogen-free conditions. CCL19� /� C57BL/6J mice
were raised at the Department of Biochemistry at the University of Lausanne,
IL-10� /� C57BL/6J mice at the DRFZ, Berlin and PD-L1� /� C57BL/6J mice49 at
Trinity Biomedical Sciences Institute, Trinity College Dublin. Knock-out animals
and their WT controls from the same origin were systematically used as donor
mice for CpG-proBs. Female 12-week-old C57BL/6J mice were used as a model
for MOG35–55-induced EAE and received intravenous progenitor cell transfers at
day-12 post-immunization.

EAE induction. Active EAE was induced in 12-week-old female mice by s.c.
immunization at two sites, upper and lower back, with 200 mg MOG35–55 peptide
emulsified in CFA containing 400 mg heat-killed Mycobacterium tuberculosis
H37Ra (Hooke Laboratories, Lawrence, MA, USA), on day 0. In addition, mice
received 200 ng pertussis toxin (Hooke Laboratories) i.p. in 0.1 ml per mouse on
days 0 and 1. Clinical signs of EAE were assessed daily with a 0- to 5-point scoring
system defined as follows: 0, no obvious changes in motor function compared with
non-immunized mice; 0.5, tip of tail is limp; 1, limp tail; 1.5, limp tail and hind leg
inhibition; 2, limp tail and weakness of hind legs; 2.5, limp tail and dragging of hind
legs; 3, limp tail and complete paralysis of hind legs or paralysis of one front and
one hind leg; 3.5, limp tail and complete paralysis of hind legs that are together on
one side of body; 4, limp tail, complete hind leg and partial front leg paralysis;
mouse is still minimally moving and appears feeding; 4.5, complete hind leg and
partial front leg paralysis; no movement around the cage, mouse is not alert; 5,
death or severe paralysis. Mice with score Z4 for two consecutive days and mice
with score 5 were killed.

Sorting of TLR-activated BM progenitors. BM cells removed from tibiae and
femurs of 8–12-week-old C57BL/6J mice were incubated in RPMI-1640 medium
(PAA) supplemented with 10% (vol/vol) fetal calf serum and 1% antibiotics
(penicillin and streptomycin) for 18 h with 1 mg ml� 1 of the oligodeoxynucleotides

CpG 1,585 (CpG-A; InvivoGen), CpG 1,668 (CpG-B; Eurogentec, Angers, France)
or with the respective agonists of TLR-1–9, supplied in a commercial kit
(InvivoGen, Toulouse, France), including: Pam3CSK4 (0.5 mg ml� 1), FSLI
(1 mg ml� 1), HKLM (2� 106 cells ml� 1), Poly I:C (HMW; 5 mg ml� 1), Poly I:C
(LMW; 5 mg ml� 1), LPS-EK standard (1mg ml� 1), FLA- ST standard (1 mg ml� 1)
and ssRNA40/LyoVec (2 mg ml� 1) as well as CpG 1,826 (CpG-B; 1 mg ml� 1).

c-kitþ BM cells were sorted by immuno-magnetic separation using a RoboSep
automaton (StemCell Technologies, Grenoble, France). Sorted cells were further
stained with appropriate fluorochrome-conjugated mAbs against Sca-1, B220,
PDCA-1, IgM and electronically sorted as a small-size, c-kitlowSca-1lowB220þ

PDCA-1� IgM� cell subset using a FACS-Aria I (BD Biosciences, Le Pont de
Claix, France).

Isolation of immune cells from the spinal cord. Spinal cords isolated from
control and CpG-proB-recipient mice were incubated for 30 min in digestion
buffer of DNAse and liberase (27 WU ml� 1) in PBS 1� at 37 �C, mixing every
5 min. EDTA (100 mM, 500 ml) was added for 1 min to end the digestion. The cells
were passed through a cell strainer, using a syringe plunger (back side) to smash
the tissue. Cells were then resuspended in 3–5 ml of 40% Percoll underlayed with
the same volume of 70% Percoll (in PBS) and centrifuged for 35 min at 1,300 g
(2,800 r.p.m.) without brakes to form a smooth interface. Cells were collected with
a Pasteur pipette and diluted 10 times with complete medium RPMI 10% SVF.
After centrifugation cells were resuspended in 2–3 ml of complete medium and
further stained with appropriately labelled mAbs.

Staining of cells for flow cytometry analysis. To block non-specific Fc receptor
binding, cells were pre-incubated for 10 min at room temperature with FcR blocker
2.4G2 mAb. Cells were then stained with appropriately labelled mAbs against CD4,
B220, CD21, CD23, CD24, IgM, IgD, IgG, CD1d, CD5, CD43, CD93, PDCA-1,
CD8 (eBioscience, Paris, France), CD19, CD127, CD25, CD11b, CD11c,
c-Kit (CD117), Sca-1 (anti-Ly6A/E), CCR7 (clone 4B12), CD25, CD45.1
(BD Biosciences) and PDCA-1 (Miltenyi Biotec, Paris, France). Nuclear Foxp3
expression was measured by FACS analysis as per the manufacturer’s instructions
(eBioscience). Pax5 expression was measured in B-cell progenitors permeabilized
with the same buffer as for Foxp3, using an anti-Pax5 antibody from eBioscience.
Intracytoplasmic expression of cytokines was assessed after a 5-h stimulation with
PMA (10 ng ml� 1) plus ionomycin (500 ng ml� 1) in the presence of Brefeldin
A (20 mg ml� 1), followed by fixation/permeabilization with PFA/saponin and
subsequent staining with specific antibodies including APC-labelled anti-IL-23p19,
APC-labelled anti-IL-12p40, APC-labelled anti-IL-10, PE-labelled anti–IFN-g,
APC-labelled anti-IL-17 (all from BD Biosciences), PE-labelled anti-GM-CSF
(from eBioscience), Per-CP-labelled anti-human/mouse IL-12/IL-35 p35 (from
RnD Systems) or isotype controls (from BD Biosciences and eBioscience).
Membrane and intracellular antigen expression was analysed in a FACS Canto II
cytometer (BD Biosciences) using FlowJo software (Treestar, Ashland, OR, USA).

Cytokine assays. Control and CpG-ProB-recipient mice were killed at the peak
of the disease, 18–21 days after immunization. Cytokines were measured in
supernatants of recovered LN cells from control or CpG-ProB-recipient mice,
re-stimulated with the MOG35–55 peptide for 3 days followed by 5-h stimulation
with PMAþ ionomycin. For determination of spinal cord cytokines, isolation of
spinal cord cells was followed by incubation at 37 �C/5% CO2 in the presence of
Golgi-stop (þ PMA/ionomycin) for 3 h. Th1/Th2/Th17 cytokines and GM-CSF
were measured by multiplex ELISA using Flow Cytomix analyte detection reagents
from eBioscience.

Isolation of mRNA and real-time qRT–PCR. Total RNA was prepared using
RNAqueous-4PCR (Ambion, Life Technologies, St Aubin, France). Reverse-
transcription was performed with high-capacity cDNA reverse-transcription
kits (Applied Biosystems, Life Technologies). Resulting cDNA was amplified in
triplicates by the SYBR-Green PCR assay. PCR reactions were incubated for 2 min
at 50 �C and for 10 min at 95 �C, followed by 40 amplification cycles with 1 min
annealing/extension at 60 �C and 15-s denaturation at 95 �C. Quantitative real-time
PCR of mouse CCL19 and CCL21 was performed by the comparative threshold
cycle (DDCT) method and normalized to mouse HPRT1 using AB 7,900 HT
real-time PCR system (Applied Biosystems). The primer sequences used for CCL19
identify functional CCL19 (ref. 50). Primer sequences were as described50: CCL19
forward: 50-CTGCCTCAGATTATCTCGCAT-30 , CCL19 reverse: 50-GTCTTCC
GCATCATTAGCAC-30; CCL21 forward: 50-ATCCCGGCAATCCTGTTCTC-30 ,
CCL21 reverse: 50-GGTTCTGCACCCAGCCTTC-30 ; HPRT1 forward: 50-CCTTC
ACCAATGACTCCTATGAC-30 , HPRT1 reverse: 50-CAAGTTTACAGCCAAGA
TTCAC-30 .

Study approval. All mouse procedures were approved by the Paris Descartes
University Animal Experimentation and Ethics Committee. Sample sizes were
chosen to ensure reproducibility of the experiments and according to the 3Rs of
animal ethics regulation.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12134 ARTICLE

NATURE COMMUNICATIONS | 7:12134 | DOI: 10.1038/ncomms12134 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications


Statistics. Non-parametric Mann–Whitney’s t-test was used to compare values
between the two groups. Disease curves were analysed using two-way repeated
measures ANOVA test.

Data availability. All relevant data are available from the authors.
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