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Abstract

Copernicia prunifera (Miller) H. E. Moore is a palm tree native to Brazil. The products

obtained from its leaf extracts are a source of income for local families and the agroindustry.

Owing to the reduction of natural habitats and the absence of a sustainable management

plan, the maintenance of the natural populations of this palm tree has been compromised.

Therefore, this study aimed to evaluate the diversity and genetic structure of 14 C. prunifera

populations using single nucleotide polymorphisms (SNPs) identified through genotyping-

by-sequencing (GBS) to provide information that contributes to the conservation of this spe-

cies. A total of 1,013 SNP markers were identified, of which 84 loci showed outlier behavior

and may reflect responses to natural selection. Overall, the level of genomic diversity was

compatible with the biological aspects of this species. The inbreeding coefficient (f) was neg-

ative for all populations, indicating excess heterozygotes. Most genetic variations occurred

within populations (77.26%), and a positive correlation existed between genetic and geo-

graphic distances. The population structure evaluated through discriminant analysis of prin-

cipal components (DAPC) revealed low genetic differentiation between populations. The

results highlight the need for efforts to conserve C. prunifera as well as its distribution range

to preserve its global genetic diversity and evolutionary potential.

Introduction

Habitat reduction and deforestation resulting from human activities have had adverse effects

on forest populations, contributing to high rates of species extinction, particularly in the Neo-

tropical region [1]. With the exception of some natural areas, most tropical species occur in

anthropogenic landscapes, where the previously continuous forest has now been reduced to
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smaller and isolated patches [2]. This modification of landscape composition and structure

leads to habitat fragmentation, contributing to the loss of alleles, reduction of heterozygosity,

and increase in inbreeding [3].

The palm tree Copernicia prunifera (Mill.) H. E. Moore (Arecaceae; subfamily: Coryphoi-

deae), known as carnaúba, generally forms monodominant populations known as “carnau-

bais” [4]. The species has multiple inflorescences, which are made up of yellowish and

hermaphroditic flowers [5]. Flowering is more intense between November and February, and

the fruiting period is between January and March [6]. Fruits are likely dispersed by sanhaçu-

do-coqueiro (Tangara palmarum) [5].

C. prunifera is endemic to the Caatinga biome [7], which is one of the largest seasonally dry

tropical forest areas in South America [8]. The Caatinga is an exclusively Brazilian biome, cov-

ering an area of approximately 900,000 km2 in northeast Brazil. The climate in this region is

characterized by a long dry season with irregular rainfall, representing a xeric, semi-deciduous

shrubland and forest vegetation [9]. This palm tree also grows in the Restinga region, which

contains vegetation of the coastal plain under marine influence and established on sandy soil

composed of physiognomic variations from the beach towards the interior of the coastal plain

[10,11]. Caatinga and Restinga are the major vegetation units in northeast Brazil [12].

Local populations use this species as a source of employment and income. Leaf extraction is

responsible for sustaining several families during the period of drought that extends from July

to December in northeast Brazil [13]. The fruits serve as food for animals, the stems can be

used in the construction of houses, and the fasciculated roots have medicinal properties [14].

Due to its versatility and usefulness, this palm tree is known as “the tree of life” [15]. The main

product of economic value obtained from this tree is carnaúba wax, which is extracted from

young leaves and is of interest in the pharmaceutical and automotive industries [16]. Carnaúba

populations suffer from intense exploitation because the method used to extract carnauba wax,

which consists of practically removing all the leaves of the plant to obtain ceriferous powder

[17].

However, unsustainable harvesting practices and the absence of sustainable management

programs pose major threats to the long-term survival of this palm tree species. C. prunifera
populations show signs of intense exploitation with visible signs of anthropogenicity, such as

fire, extraction and cutting of leaves, soil impacted by livestock, and low or absence of regener-

ation (Fig 1). In addition, anthropogenic disturbances in the last century, mainly due to defor-

estation, agricultural expansion, and modernization of agriculture, have led to a rapid decline

in these populations [17].

The maintenance of genetic diversity is a powerful conservation strategy for preserving the

adaptive potential of species in neotropical regions [18]. In addition to configuring the ability

of species to adapt to various changing environments, genetic diversity is the driving force

behind evolution and speciation. [19]. Consequently, maintenance of genetic diversity within

populations ensures that the species can remain biologically active and adaptable to structural

changes caused by anthropogenic actions [20,21].

The genetic diversity and structure of forest populations evaluated based on molecular

markers is a widely used strategy in conservation genetics [22,23]. With the advent of next-

generation sequencing, it is possible now to identify thousands of molecular markers of single

nucleotide polymorphism (SNP) throughout the genome. This provides a genomic approach

to evaluating genetic diversity [24]. A larger SNP sample size facilitates the identification of

regions that show signs of selection and can serve as a starting point for the identification of

adaptive differences between populations, which is fundamental for optimizing biological con-

servation efforts [25,26]. These markers enable the identification of outlier and neutral loci.

Specifically, outlier loci show differentiated behavior regarding genetic variation and offer an
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opportunity to evaluate local adaptation patterns; neutral loci are similarly affected by the

demographic and evolutionary history of populations [27].

Genetic diversity studies based on molecular markers of natural populations of C. prunifera
in tropical areas such as Caatinga and Restinga are still scarce [17,28–30]. In addition, no stud-

ies on C. prunifera have applied next-generation sequencing technology for data acquisition in

population genomics. Due to the importance of this neotropical palm tree for local communi-

ties and considering the rapid and recent increases in the exploitation of its populations, the

present study employed next-generation sequencing to evaluate the genetic diversity and

structure of 14 natural populations of C. prunifera in two environments (Caatinga and Rest-

inga) in Brazil using SNP markers to provide information that can help in the design of effi-

cient strategies for the conservation and sustainable use of this species.

Material and methods

Plant material and DNA extraction

In the present study, 160 individual plants from 14 populations of C. prunifera were evaluated.

Out of the samplings collected, 10 populations came from the Caatinga (RUS, LGP, SER,

Fig 1. Signs of anthropization in the evaluated populations of C.prunifera. a) wood cutting; b) leaf extraction and

cutting; c) cattle raising; and d) burns.

https://doi.org/10.1371/journal.pone.0276408.g001
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MACZ, MACE, JUC, APD, IPG, MOS, and MAT) and four from the Restinga (ICA, SMG,

AR1, and AR2) regions in the states of Ceará and Rio Grande do Norte, Brazil (Fig 2 and S1

Table). The distance between the plants evaluated within the 14 populations was 15–20 m,

with a minimum height of 6–10 m; regenerating and young plants were not collected. The IPG

population is composed of a different type of carnaúba, known as “white carnaúba,” which is

phenotypically distinct from the “common carnaúba” due to the presence of a light stipe,

smaller fruits, and the absence of thorns in the petiole in addition to limited occurrence in the

region [14].

Small pieces of leaves were cut using a tree trimmer, placed in plastic tubes containing 2 mL

of hexadecyltrimethylammonium bromide (CTAB 2X), labeled, and stored in a freezer at

-20˚C until DNA extraction. This study was conducted according to the recommendations of

the Brazilian Ministry of the Environment and registered in the National System of Manage-

ment of Genetic Heritage and Associated Traditional Knowledge (SISGEN; Sistema Nacional
de Gestão do Patrimônio Genético e do Conhecimento Tradicional Associado) with the number

A411583.

Genomic DNA was extracted from the processed leaves according to the protocol described

by Doyle and Doyle [31]. DNA quality was evaluated in a 1% agarose gel and stained with

Fig 2. Map of the collection sites of C. prunifera populations in the states of Ceará and Rio Grande do Norte, Brazil. Distribution map of the evaluated

populations was drawn using the software QGIS v3.18.1. (Open Access Geographic Information System, https://qgis.org/pt_BR/site). This figure is licensed

under CC BY 4.0.

https://doi.org/10.1371/journal.pone.0276408.g002
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SYBR Safe™ (Life Technologies Corporation) for visualization under ultraviolet light, using

lambda phage DNA of known concentrations as a reference. Quantification of the samples was

performed using a Qubit 3.0 fluorometer with the dsDNA BRKitt (Life Technologies), and the

DNA was standardized to a concentration of 30 ng.μl-1

GBS library preparation and high-performance sequencing

To obtain SNPs, genomic libraries were developed using the genotyping-by-sequencing tech-

nique (GBS) with two restriction enzymes, according to the protocol described by Poland et al.

[32] with modifications. First, 7 μl of genomic DNA from each sample was digested at 37˚C

for 12 h using the restriction enzymes NsiI and MspI. Subsequently, 0.02 μM barcode-specific

adapters for Illumina technology were ligated to the ends of the digested fragments. Binding

reaction was performed at 22˚C for 2 h, 65˚C for 20 min, 10˚C indefinitely. After the adapters

were ligated, the samples were purified using a QIAquick PCR Kit (Qiagen). The library was

enriched by PCR (Polymerase Chain Reaction) using the following amplification program:

95˚C for 30 s, followed by 16 cycles of 95˚C for 10 s, 62˚C for 20 s, and 72˚C for 30 s, and end-

ing at 72˚C for 5 min. Finally, the library was purified using a QIAgen1QIAquick PCR Purifi-

cation Kit. The Agilent DNA 12000 kit and Agilent1 2100 Bioanalyzer System were used to

verify the average size of the DNA fragments. Sequencing was performed using the Illumina1

HiSeq 2500 Mid Output Kit v4 (50 cycles) (Illumina Inc., San Diego, CA, USA) in a single-end

configuration.

Identification of SNPs

The identification of SNPs was performed using Stacks software v.1.42 [33,34]. The first step

comprised filtering and demultiplexing with the process_ radtag module. In the absence of a

reference genome for C. prunifera, the DeNovo Stacks pipeline was used, starting with the

ustacks module to identify putatively homologous read stacks (putative loci). This step was per-

formed for each sample separately using the following parameters: minimum stack depth

(-m = 3) and maximum distance between stacks (-M = 2). The loci of each sample were

grouped into a catalog using the cstacks module, allowing a maximum distance of two nucleo-

tides (-n 2) between the loci of each sample. Loci with lower probability values (—lnl_lim -10)

were eliminated using the rxstacks correction module. Finally, the population module was used

to filter the SNP markers using the following parameters: only one marker per sequenced tag,

frequency of least frequent allele (MAF� 0.01), minimum stack depth 3X, and minimum

occurrence in 75% of saplings in each population.

Loci determination under selection

Two complementary tests were performed, pcadapt and fsthet, were performed to detect out-

lier loci (hypothetically under selection). The pcadapt method [35] was used to identify loci

associated with the genetic structure revealed by a principal component analysis (PCA), that is,

without any underlying genetic model. The analysis was performed using the pcadapt package

[35] on the R platform [36] by retaining the first eight principal components of the PCA and

considering the loci with q-values� 0.1 as outlier SNPs. The fsthet method [37] was used to

identify loci with FST values that were excessively high or low compared with what was

expected under neutrality. The analysis was performed using the fsthet package [37] on the R

platform [36] by considering the loci below or above the 95% confidence intervals constructed

with 1000 bootstraps for the expected relationship between HE and FST as outlier SNPs. This

test was performed by considering the estimates of FST in two different scenarios: i) comparing

the Restinga and Caatinga populations and ii) comparing the samples of the white morphotype
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with those of conventional morphotype. The final set of SNP markers hypothetically under

selection consisted of loci identified as outliers in at least two of the three tests performed.

Thus, the outlier SNP loci may reflect the action of selection on different types of vegetation.

Sequences containing outlier SNPs were searched with the BLASTX tool against the geno-

mic data set of the National Center for Biotechnology Information (NCBI) using blast2go [38].

This analysis was performed to identify the similarities between the protein-coding data depos-

ited in the NCBI database and the loci with outlier SNPs identified. For sequences with signifi-

cant BLASTX hits, the functional annotation associated with characterized and/or described

coding sequences was performed using the gene ontology system (GO terms). GO terms sum-

marize information on cellular components, molecular functions, and biological processes in

which the gene products are involved.

Population genomic analyses

Genetic diversity was estimated based on the number of alleles (A), number of private alleles

(Ap), observed heterozygosity (HO), and expected heterozygosity (HE). Inbreeding coeffi-

cients (f) were also estimated, and their confidence intervals were obtained using 1000 boot-

straps. Estimates of diversity and inbreeding were obtained using the diveRsity [39] and

PoPPr [40] packages of the R software [36]. The distribution of genetic variation within and

between populations of C. prunifera was evaluated using analysis of molecular variance

(AMOVA), and its significance was tested with 10,000 permutations using the PoPPr pro-

gram [40].

Genetic differentiation was estimated using pairwise FST values with confidence intervals of

1000 bootstraps, using the diveRsity package [39] of R software [36]. The population structure

was evaluated using discriminant analysis of principal components (DAPC) with Adegenet

[41,42] for R software [36]. This analysis was performed for neutral loci, and priori groups

were defined from the 14 sampling sites. DAPC does not presuppose the underlying popula-

tion genetic processes (e.g., binding equilibrium and Hardy–Weinberg equilibrium) common

to other methods used to detect population structure, and as it is based on principal compo-

nent analysis, this method can analyze genomic datasets relatively efficiently [43].

Genetic relationships and divergence between individuals were investigated by constructing

a dendrogram generated based on the distance of Nei using the neighbor-joining method [44].

The final dendrograms were formatted using MEGA version 7 [45].

Results

Identification of SNPs and determination of loci under selection

Sequencing of the genomic libraries resulted in 566,922,165 reads, and after quality control,

the total number of reads retained was 397,047,980. In total, 1,013 SNPs (average depth of

21X) were identified. A total of 391 outlier SNPs were identified using the pcadapt method,

70 using the fsthet method to compare morphotypes, and 47 using the fsthet method to

compare vegetation types (Fig 3). Of these, 84 SNP markers were identified in at least two of

the three tests and were considered hypothetically under selection, whereas the other 929

markers were considered as neutral loci. Among the outlier loci, 55 were putatively under

positive selection and 29 were putatively under balancing selection. Only six outlier loci

were found in the sequences similar to the annotated proteins (S2 Table). Considering the

results of the GO terms, the most frequent annotations for these proteins were the molecu-

lar functions of “binding” and “catalytic activity,” and the biological process of cell metabo-

lism (S1 Fig).
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Population genomic analyses

The genomic diversity estimates were based on 929 neutral SNP markers. The number of

alleles (A) ranged from 1,059 to 1,497. The IPG population (white carnaúba) had the lowest

number of alleles, probably because of the small sample size of the population. Expected het-

erozygosity (HE) ranged from 0.201 to 0.265 (Table 1). The APD population had higher genetic

diversity (HE = 0.265) and the highest number of private alleles (Ap = 40) compared with that

of the other populations. The inbreeding coefficients (f) were similar and negative for all popu-

lations, indicating an excess of heterozygotes.

FST values 0–0.05 and 0.05–0.15 indicate low and moderate genetic differentiation, respec-

tively, whereas values > 0.15 indicate high differentiation (Hartl, Clark 1997). In the present

study, FST estimates suggested low to high genetic differentiation between populations of C.

prunifera (Table 2). In general, there was a greater differentiation between the population from

MACE and those from the other sites (FST ranged from 0.118 to 0.20). In addition, the SMG

and IPG populations showed moderate levels of differentiation. A low genetic structure was

observed for the populations from LGP and SER (0.18) and AR1 and AR2 (0.19), suggesting a

genetic flow between these localities.

The low genetic divergence suggested by the pairwise FST was also observed in DAPC,

which retained 28.7% of the total variation in the first two principal components (Fig 4). This

analysis also showed greater genetic differentiation of the population from MACE in compari-

son with that of others in addition to pointing out an overlap between individuals from almost

all populations, especially AR1, AR2, and RUS.

Fig 3. Venn diagram with the number of outlier loci detected for the fsthet and Pcadapt tests with the overlap

between them.

https://doi.org/10.1371/journal.pone.0276408.g003
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Table 1. Estimates of genomic diversity and inbreeding based on 929 neutral SNP markers for populations of C. prunifera.

Population N A AP HO HE f f (95% CI)

ICA 7 1439 2 0.375 0.257 -0.367 (-0.473 - -0.308)

AR1 17 1497 35 0.387 0.260 -0.391 (-0.439 - -0.357)

AR2 11 1484 3 0.388 0.258 -0.454 (-0.526 - -0.394)

RUS 21 1495 27 0.383 0.260 -0.287 (-0.556 - -0.326)

SMG 10 1353 16 0.370 0.235 -0.272 (-0.34 - -0.211)

LGP 6 1059 5 0.378 0.229 -0.553 (-0,642 - -0.473)

SER 10 1235 6 0.381 0.246 -0.438 (-0,556 - -0.326)

MACZ 10 1462 9 0.387 0.259 -0.405 (-0,461- -0.365)

MACE 14 1227 7 0.369 0.201 -0.102 (-0,126- -0.081)

JUC 12 1466 3 0.376 0.247 -0.447 (-0,564 - -0.38)

APD 12 1317 40 0.372 0.265 -0.238 (-0,383 - -0.0127)

IPG 5 1249 1 0.375 0.224 -0.123 (-0,209 - -0.049)

MOS 18 1404 28 0.380 0.255 -0.112 (-0.174 - -0.065)

MAT 7 1361 8 0.376 0.237 -0.353 (-0.437- -0.306)

Number of individuals (N); total number of alleles (A); number of private alleles (Ap); observed heterozygosity (HO); expected heterozygosity (HE); inbreeding

coefficient (f); f (CI of 95%) = lower and upper confidence interval of 95% of the inbreeding coefficients.

https://doi.org/10.1371/journal.pone.0276408.t001

Table 2. Estimates of pairwise FST between populations of C. prunifera (lower diagonals). Upper diagonals contain the lower and upper limits of the confidence

interval.

IPG APD AR2 JUC LGP MACE MACZ MAT MOS RUS SER AR1 ICA SMG

IPG (0.05–

0.14)

(0.02–

0.11)

(0.05–

0.20)

(0.05–

0.17)

(0.17–

0.27)

(0.03–

0.12)

(0.06–

0.19)

(0.04–

0.14)

(0.03–

0.13)

(0.05–

0.16)

(0.04–

0.13)

(0.02–

0.13)

(0.05–

0.16)

APD 0.092 (0.01–

0.07)

(0.01–

0.12)

(0.03–

0.12)

(0.12–

0.19)

(0.02–

0.08)

(0.06–

0.13)

(0.02–

0.08)

(0.01–

0.06)

(0.02–

0.09)

(0.02–

0.07)

(0.00–

0.09)

(0.07–

0.14)

AR2 0.053 0.036 (0.02–

0.11)

(0.03–

0.10)

(0.13–

0.20)

(0.01–

0.05)

(0.03–

0.10)

(0.01–

0.06)

(0.00–

0.04)

(0.02–

0.08)

(0.00–

0.04)

(-0.03–

0.03)

(0.04–

0.09)

JUC 0.109 0.062 0.057 (0.03–

0.15)

(0.11–

0.18)

(0.01–

0.09)

(0.01–

0.15)

(0.05–

0.14)

(0.03–

0.11)

(0.02–

0.10)

(0.03–

0.11)

(0.02–

0.12)

(0.06–

0.14)

LGP 0.096 0.064 0.054 0.072 (0.10–

0.16)

(0.02–

0.09)

(0.06–

0.15)

(0.06–

0.13)

(0.04–

0.09)

(-0.01–

0.07)

(0.02–

0.08)

(0.01–

0.11)

(0.05–

0.13)

MACE 0.210 0.150 0.162 0.144 0.123 (0.09–

0.15)

(0.17–

0.23)

(0.15–

0.21)

(0.13–

0.17)

(0.09–

0.15)

(0.12–

0.16)

(0.14–

0.21)

(0.12–

0.17)

MACZ 0.063 0.046 0.027 0.042 0.051 0.118 (0.04–

0.10)

(0.03–

0.09)

(0.01–

0.05)

(0.02–

0.08)

(0.02–

0.06)

(0.00–

0.07)

(0.03–

0.08)

MAT 0.113 0.087 0.058 0.073 0.094 0.195 0.063 (0.06–

0.12)

(0.04–

0.09)

(0.06–

0.12)

(0.04–

0.10)

(0.03–

0.10)

(0.08–

0.15)

MOS 0.077 0.047 0.032 0.084 0.086 0.172 0.050 0.084 (0.02–

0.07)

(0.05–

0.10)

(0.03–

0.07)

(0.00–

0.07)

(0.06–

0.11)

RUS 0.068 0.033 0.016 0.060 0.057 0.148 0.030 0.054 0.041 (0.04–

0.09)

(0.01–

0.04)

(0.00–

0.05)

(0.05–

0.11)

SER 0.094 0.053 0.045 0.054 0.018 0.118 0.046 0.080 0.069 0.063 (0.03–

0.07)

(0.02–

0.08)

(0.05–

0.10)

AR1 0.074 0.041 0.019 0.062 0.043 0.138 0.034 0.064 0.045 0.019 0.048 (0.01–

0.07)

(0.05–

0.10)

ICA 0.060 0.036 -0.003 0.058 0.050 0.171 0.028 0.055 0.032 0.022 0.044 0.029 (0.05–

0.11)

SMG 0.090 0.101 0.064 0.098 0.081 0.142 0.048 0.102 0.079 0.077 0.070 0.073 0.072

https://doi.org/10.1371/journal.pone.0276408.t002
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Analysis of molecular variance (AMOVA) indicated that most of the variation was found

within populations (77.26%), and the genetic differentiation between populations was high

and significant (φ = 0.227) (Table 3). The Mantel test revealed a positive and significant corre-

lation between the geographical and genetic distances based on the FST values (r = 0.0612;

p = 0.002).

According to the dendrogram (Fig 5), the MACE population was the most genetically dis-

tant, corroborating the results observed in the DAPC population. Individual saplings from the

LGP and SER populations exhibited similar levels of genetic similarity. In addition, there was a

Fig 4. a) Discriminant analysis of principal components (DAPC) representing the genetic structure of C. prunifera
populations based on 929 SNPs. b) Bar graph representing the coefficients of DAPC, where each bar delimits one

individual.

https://doi.org/10.1371/journal.pone.0276408.g004

Table 3. Analysis of molecular variance (AMOVA) based on 929 neutral SNP markers for fourteen natural populations of C. prunifera.

Degrees of freedom Sum of the squares Mean square Variance Percentage FST global (φ) p-value

Between the populations 13 3307.963 254.45867 17.32471 22.7366 0.227366 0.00005

Within the population 146 8595.417 58.87272 58.87272 77.2634

Total 159 11903.38 74.86402 76.19743

https://doi.org/10.1371/journal.pone.0276408.t003
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clear distinction among the three groups: the first group was formed by the populations from

LGP, SER, MACE, SMG, MACZ, JUC, and MAT; the second group consisted of AR2, ICA,

IPG (white carnaúba), and MOS; and the third group consisted of RUS, AR1, and APD. Popu-

lations from AR2 and ICA had the highest bootstrap value, which indicates a statistically well-

supported grouping.

When the genetic diversity and structure of the C. prunifera populations were evaluated

based on the type of vegetation (Caatinga and Restinga), similar levels of genetic diversity were

observed (Table 4).

The populations from the Caatinga had the largest number of private alleles (Ap = 253)

compared to the Restinga populations and this result is probably associated with the sample

size. The inbreeding coefficients (f) are both similar and negative. In addition, the FST esti-

mates suggested low genetic differentiation between the Caatinga and Restinga populations

(FST = 0.008). When considering only two morphotypes of C. prunifera (white carnaúba and

common carnaúba), similarities were observed in the estimates of diversity in addition to low

genetic differentiation (FST = 0.008) (Table 4). Analysis of molecular variance (AMOVA)

among the vegetation types (Caatinga and Restinga) produced small genetic differentiation (φ
= 0.024). It revealed 97.522% of the genetic variation within the vegetation types whereas,

2.478% of the total genetic variation was observed between types of vegetation (Table 5).

Discussion

Loci putatively under selection

The large number of SNP markers obtained in this study allowed for the identification of loci

with deviations from the expected neutral behavior, which are putatively under selection

Fig 5. Dendrogram obtained by the neighbor-joining method based on SNP markers for the 14 populations of C.

prunifera.

https://doi.org/10.1371/journal.pone.0276408.g005

Table 4. Estimates of genomic diversity and inbreeding based on 929 neutral SNP markers for populations of C. prunifera, considering the different types of vegeta-

tion (Caatinga and Restinga) and morphotypes (common carnaúba and white carnaúba).

Population N A AP HO HE f f (95% CI)

Caatinga 126 1802 253 0.379 0.270 -0.400 (-0.417 - -0.382)

Restinga 34 1603 54 0.380 0.266 -0.432 (-0.468 - -0.397)

Common carnaúba 155 1855 607 0.348 0.271 -0.400 (-0.417 - -0.384)

White carnaúba 5 1249 1 0.345 0.224 -0.123 (-0.209 - -0.048)

Number of individuals (N); total number of alleles (A); number of private alleles (Ap); observed heterozygosity (HO); expected heterozygosity (HE); inbreeding

coefficient (f); f (CI of 95%) = lower and upper confidence interval of 95% of the inbreeding coefficients.

https://doi.org/10.1371/journal.pone.0276408.t004

PLOS ONE Population genomics of the palm Copernicia prunifera

PLOS ONE | https://doi.org/10.1371/journal.pone.0276408 November 3, 2022 10 / 18

https://doi.org/10.1371/journal.pone.0276408.g005
https://doi.org/10.1371/journal.pone.0276408.t004
https://doi.org/10.1371/journal.pone.0276408


(outlier loci). The identification of outlier loci is an important step in understanding local

adaptation and evaluating the evolutionary potential of a species [46]. The palm tree C. pruni-
fera has no annotated reference genome, and probably for this reason, most sequences with

outlier loci are similar to uncharacterized proteins. Regarding the results obtained from the

annotation, most loci are associated with genes involved in metabolic processes, which have

been regularly found under selection in a variety of organisms because the gene functionality

correlates with environmental stressors [47].

Interestingly, some annotated loci were associated with genes of transposable elements (S2

Table). According to Gogvadze and Buzdin [48], transposable elements promote changes in

the genome, which is an important evolutionary mechanism for the adaptation of organisms

to changes in environmental conditions. This is expected in C. prunifera because the palm

trees grow in different environments such as seasonally flooded areas in the semi-arid region

[49]. In addition, outlier loci may be associated with environmental differences in the collec-

tion sites, especially as sampling areas are scattered over the Restinga and Caatinga.

It is important to highlight that the analyses performed in this study are unable to indicate

associations between genomic and functional variation; therefore, it is not possible to associate

generic molecular functions or biological processes with any adaptive traits involved in the

diversification of the evaluated populations. Therefore, studies with larger sample sizes with

better representation of the different geographical habitats are needed to generate information

on the evolution and diversification of C. prunifera. Small sample sizes belonging to popula-

tions with relatively small geographical distances, which enable gene flow to quickly spread

new adaptations to surrounding areas, reduce the capacity to detect recent evolutionary

changes [50]. However, the identified outlier loci can be used as candidates in association map-

ping studies. Thus, integrative approaches of association genetics, genome-wide scans, and

measurements of phenotype selection are necessary to understand the adaptive nature of a

given allele [51].

Genetic diversity, inbreeding, and structure

Genetic diversity is one of the three classes of biodiversity recognized as a global conservation

priority and plays a decisive role in conservation efforts. Genetic diversity has a substantial

effect on both individual fitness and the adaptive capacity of the population, playing a vital role

in maintaining the capacity of species to withstand various biotic and abiotic stressors and

evolve under altered environmental conditions [52]. The present study provides the first esti-

mates based on SNPs for genetic diversity in C. prunifera. The GBS approach used in this

study produced a large number of SNP loci for the genomic evaluation of this palm tree with-

out the need for a reference genome. This has resulted in robust estimates of diversity and pat-

terns of genetic structure.

The results of genetic diversity and population structure were similar based on the results

of the analysis according to population (among the 14 localities), type of vegetation (Caatinga

and Restinga), and morphotype (common carnaúba and white carnaúba). In all situations, the

populations showed a negative f value, suggesting limited inbreeding with reduced self-

Table 5. Molecular analysis of variance (AMOVA) considering the Caatinga and Restinga for the populations of C.prunifera.

Degrees of freedom Sum of the squares Mean square Variance Percentage FST global (φ) p-value

Between types of vegetation 1 175.234 175.23395 1.886185 2.478 0.02478074 0.00005

Within types of vegetation 158 11728.146 74.22877 74.22877 97.522

Total 159 11903.38 74.86402 76.114954

https://doi.org/10.1371/journal.pone.0276408.t005
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pollination capacity under environmental conditions. Therefore, individual plants are less

related than expected under conditions of random mating. Genetic diversity and population

structure is influenced by biological characteristics of the species, including the mating system

[53]. Therefore, the reproductive biology of this species may explain the observed patterns of

genetic variation. The mating system of C. prunifera is mixed and preferably allogamous [5],

which favors the crossing between unrelated individuals. Thus, inbreeding coefficients are

reduced, and the maintenance of genetic diversity within populations is ensured.

Although the evaluated populations were susceptible to anthropogenic threats, it is possible

that they had high genetic diversity (HE). High levels of genetic diversity led to an increase in

long-term survival of a species; therefore, a strong positive correlation exists between heterozy-

gosity and population fitness, which is important for populations to adapt to new environmen-

tal conditions [54]. This high level of diversity is expected in forest species that are largely not

domesticated as a result of local adaptation and neutral evolutionary processes in heteroge-

neous environments [22].

The identification of private alleles is useful for genetic conservation [55]. In the present

study, the populations from APD (Ap = 40), AR1 (Ap = 35), and MOS (Ap = 28) had the high-

est number of private alleles and diversity was not found in the other localities; therefore, these

populations deserve special management because the levels of private alleles are indicative of

individual fitness and explain the evolutionary potential of populations and their ability to

adapt to the adverse environmental conditions [21]. Therefore, this information can be used to

increase the genetic representation in germplasm banks. and to convey the need to explore

seed collection in situ to ensure future replacement.

Genetic variation in plant species is strongly affected by several historical and demographic

factors, including geographic distribution, life form, and population size [56]. The results of

AMOVA showed that most of the genetic diversity was found within C. prunifera populations

(Table 3). Similarly, Santos et al. [17] analyzed the genetic differentiation of this palm tree in

the northeast region of Brazil and found that 62.86% of molecular variance was accounted for

by differences within populations. These results agree with those of different studies conducted

on forest species that reproduce by allogamy, seeing as these species have maintained most of

their genetic variability within populations [57].

Genetic structure analyses indicated that the 14 collection sites did not belong to a single

homogeneous population, and the geographically closest populations showed low values of

pairwise FST and overlap in the DAPC. Greater genetic similarity was found between the popu-

lations from LGP and SER and between AR1 and AR2. In addition, low genetic differentiation

was observed when the populations were evaluated according to vegetation type and

morphotype.

The low level of global genetic differentiation found between the populations studied here

(supported by FST, cluster analysis, and DAPC) and the higher proportion of genetic diversity

within populations with only fewer partitions between them could result from the combined

effect of different factors, such as cross rate, reproductive system, and high genetic flow rate in

this species. The Mantel test corroborates this result. Since geographically close populations

tend to be genetically similar, this indicates a pattern of isolation by distance. However, the

MACE population had the lowest level of diversity (HE = 0.201) and the highest degree of

structuring, being the most genetically divergent population compared with the others. This

differentiation was supported by the FST value, which is an indirect estimator of the population

connectivity between subpopulations (Table 2). The population from MACE corresponds to a

small population with the lowest number of plants in an area of approximately 0.9 hectares,

and spatially isolated from other populations. Furthermore, anthropogenic factors are

observed in higher intensity in this population, this fact is probably related to the intense
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exploitation of carnauba wax in this area [14]. These factors can lead to a reduction in genetic

diversity within population, likely as a result of genetic drift [58]. Santos et al. [17], using ISSR

markers, also indicated that MACE population has a high differentiation, and genetic disconti-

nuities were observed between this population and the others, with indications of a recent

genetic bottleneck. Therefore, the impact of human activities may have contributed to the lev-

els of genetic differentiation observed in the MACE population.

Implications for conservation

Conservation genomics is an extension of conservation genetics that seeks to apply genomic

techniques to the practical management of natural populations [59]. In this context, evalua-

tions of genetic variations in the entire genome are powerful approaches to gain an under-

standing of the processes that lead to molecular diversification and inform effective

management and conservation strategies [60]. However, application in real-time has been

slow and a persistent gap exists between theory and practice.

In Brazil, the legislation that guides forest management does not clearly describe the impor-

tance of genetic evaluation within natural populations; therefore, information that seeks to

associate genetic data with the formulation of sustainable management plans is unfortunately

not mentioned [61]. Although C. prunifera is not listed as an endangered species, the expan-

sion of agricultural activities over time has contributed to a reduction in its natural population

[17]. Therefore, conservation measures are necessary to minimize the additional loss of alleles

and to ensure the maintenance of genetic resources.

Conserving genetic diversity within a population should be the cornerstone of any conser-

vation strategy aimed at ensuring the long-term persistence of species and habitats [62]. In situ
and ex situ conservation strategies are considered promising alternatives for the conservation

of forest genetic resources (FGR) and aim to maintain the genetic diversity of species over

time, preserving the evolutionary processes and adaptive potential of populations [63].

Although ex situ approaches have the potential to conserve much of the biological diversity,

they do have a limitation of being more suited and efficient for conservation in plants that

have orthodox seeds. Therefore, in situ conservation is recommended for C. prunifera because

this species contains recalcitrant seeds [64]. However, active management, including the estab-

lishment of in vivo seed banks and the promotion of natural regeneration, can prevent the

decrease of population size, loss of genetic variability, and ensure long-term conservation [17].

The high genetic diversity observed in the evaluated populations of C. prunifera indicates

the need for large areas of land dedicated to in situ conservation for capturing the existing

genetic diversity of these populations. FST values estimated in the present study could help in

recommending the optimal number of populations for sampling, including populations that

had the highest estimates of diversity and the largest number of private alleles.

C. prunifera exploitation is an important source of employment and income for local com-

munities in the semi-arid region of Brazil. In this context, the rational management of palm

tree products should be a principal strategy in the efforts to conserve the natural habitats of the

species. Another strategy aimed at conservation and sustainable use would be the development

of a community and family forest management (CFFM) plan [65], which consists of the plan-

ning and management of actions and appropriate techniques for the sustainable use of forest

resources aimed at traditional communities and family farmers [66].

In addition, practical measures aimed at successful plant regeneration, such as the pause of

extractive activity during reproductive periods and the introduction of rotation cycles for leaf

harvesting in the explored areas, need to be implemented for the sustainable management of

carnaúba. However, the current social and economic conditions of workers employed in the
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activity of extraction and production of carnaúba wax must be considered. Workers in poorer

areas need to be provided additional support, including investments, to maintain the balance

between socioeconomic demand and conservation, which would pave the way to a more sus-

tainable supply of resources while reducing the pressure of uncontrolled harvesting.

A third approach would be to preserve populations and divergent genetic groups identified

in this study throughout their geographic distribution range through effective long-term

genetic and ecological monitoring, stimulating the development of ecological corridors

between fragments and natural forests, and avoiding the reduction of genetic variability. In

addition, interdisciplinary programs that study different aspects of C. prunifera populations

(e.g., habitat quality, impact of extractive activity on individuals, and genetic diversity)

throughout their distribution would be fundamental for the successful implementation of spe-

cies conservation management.

Supporting information

S1 Fig. Genetic ontology assignment graph (GO). GO Annotations are summarized into

three main categories: cellular location, biological process and molecular function for carnaúba

(Copernicia prunifera).

(DOCX)

S1 Table. Collection sites of the evaluated populations of Copernicia prunifera.

(DOCX)

S2 Table. Similarity with proteins and Gene Ontology classifications obtained in blast2go

for outlier SNPs putatively under selection in carnaúba (Copernicia prunifera). HE =
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64. Araújo LHB, Silva RAR, Dantas EX, Sousa RF, Vieira FA. Germinação de sementes da Copernicia pru-
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