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Abstract

Thyroid-carcinoma (THCA) is the most common malignancy with an increasing incidence.

Recent evidence has emphasized the role of microRNA (miRNA) in THCA. However, knowl-

edge concerning the roles of miRNAs in THCA is still limited. We therefore use a miRNA-tar-

get gene differential regulatory network (MGDRN) to identify key miRNAs and characterize

their synergistic regulation in THCA. Both miRNA-target gene interactions from multiple

databases and negative expression correlations between miRNA-target genes were used to

characterize the interactions. Then, two regulatory networks involving normal and tumor

conditions were constructed, respectively. The MGDRN was finally constructed using differ-

ent interactions between the above two regulatory networks. By analyzing topological fea-

tures of the MGDRN, four miRNAs (hsa-mir-152-3p, hsa-mir-148a, hsa-mir-130b and hsa-

mir-15b) are identified as key miRNAs in THCA. Over-expression of mir-152-3p inhibited

proliferation and colony formation of TPC-1 cells. Furthermore, mir-152-3p negatively regu-

lated ERBB3 by binding to the 3’-UTR of ERBB3, and down-regulation of ERBB3 by small

interfering (si)RNAs inhibited proliferation and colony formation of TPC-1 cells, indicating

that mir-152-3p acted as an anti-tumor miRNA by negatively regulating ERBB3. Finally, two

synergistically dysregulated modules were identified which may contribute to the initiation

and progression of THCA. Overall, the results provided a better understanding of the molec-

ular basis of THCA, and suggested novel treatment strategies for this cancer.

Introduction

Micro(mi)RNAs are endogenous, single-stranded, non-coding RNAs (~ 22 nucleotides) that

regulate gene expression by directly degrading mRNA or suppressing post-transcriptional pro-

tein translation by binding to the 3’ untranslated region (3’ -UTR) of the respective target

mRNAs [1, 2]. The miRNAs have been reported to regulate *30% of the human genome, and

are involved in many cellular processes such as cell proliferation [3], apoptosis [4], and devel-

opment [5]. Abnormal miRNA functions may therefore affect multiple features of cells, re-

sulting in complex pathological events including cancers. It has been confirmed that many
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miRNAs are tumor suppressors or oncogenes, and play important roles in the initiation, pro-

motion and progression of various cancers [6].

Thyroid carcinoma (THCA) is one of the most common malignancies [7] and the fifth

most frequent cancer in women, with increasing incidence[8]. Recent studies have emphasized

the role of miRNA in THCA development [9]. Hong et al. found that miR-20b functioned as a

tumor-suppressor in THCA by regulating the MAPK/ERK signaling pathway [10]. Using inte-

grated miRNA and mRNA analyses, Liu et al. identified important miRNAs that were used to

better understand the molecular mechanisms of THCA [11]. Most of these studies were based

on differential expression of miRNAs. However, the expression of miRNAs is much lower

than that of mRNA, and some important disease-related miRNAs do not differ in expression.

Although the methods based on differential expression ignored the synergistic role of miR-

NAs, disease miRNAs tend to have more synergism, and regulate targets with the same or

similar functions [12]. To avoid the ambiguities of slightly differentially expressed miRNAs,

network based methods should use topological information to evaluate the importance of

these molecules. At the same time, the differential regulatory network based method can iden-

tify both key molecules and key dysregulated relationships between disease and normal condi-

tions, providing an opportunity to investigate the synergistic roles of miRNAs.

To further understand the possible role of miRNAs in THCA, we used a method based on a

miRNA-gene differential regulatory network (MGDRN) to investigate the key miRNAs in

THCA and to explore the synergistic role of miRNAs in this disorder. First, to improve the

confidence of miRNA-target gene interactions, both miRNA-target gene interactions in

multiple databases and negative expression correlations between miRNA-target genes were

analyzed. Second, two regulatory networks were constructed involving normal or tumor

conditions, respectively. The MGDRN was then constructed that included different interac-

tions between the two regulatory networks. We then analyzed the topological features of the

MGDRN and found key miRNAs involved in THCA. Experiments results showed that mir-

152-3p acted as an anti-tumor miRNA by negatively regulating ERBB3. We further deter-

mined if these miRNAs synergistically dysregulated target genes at both gene level and path-

way level. Our studies provided a useful tool to identify key miRNAs and dys-regulatory

interactions in THCA that could help identify the molecular mechanism of this malignancy.

Materials and method

The expression data of genes and the miRNA of THCA

The RNA-seq datasets of genes and miRNA of THCA were downloaded from The Cancer

Genome Atlas (TCGA) database (http://tcga-data.nci.nih.gov/), and then quantile-normalized

and background-corrected at level three. Reads per kilobase of exon per million fragments

mapped (RPKM) were used to describe the expression levels. The 463 cancer samples and 53

normal samples with matched gene expressions and miRNA profiles were extracted for analy-

ses. For miRNA, the pre-miRNAs were converted to mature miRNAs (mat-miRNAs) based

on the corresponding relationships between the pre-miRNAs and mat-miRNAs from the miR-

Base database [13].

The miRNA-target gene interactions

The miRNA-target gene interactions were derived from seven databases including TargetScan

[14], RNAhybrid [15], Rna22 [16], PicTar5 [17], mirBase [13], Miranda [18], and DIANA-

microRNA. After redundancy processing, 289,470 miRNA-target interactions among 15,185

genes and 1,089 miRNAs were obtained.

miRNA-target gene differential regulatory network in thyroid carcinoma
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Construction of the MGDRN in THCA

We constructed the MGDRN by considering both predicted miRNA-target gene interac-

tions and negative regulatory correlations. First, to improve the confidence of miRNA-tar-

get gene interactions, only interactions included in more than two databases were used.

Then, differentially expressed genes were obtained by fold change (FC) method, and genes

with a FC > 2 or < 0.5 were considered differential expressed. After logarithmic and abso-

lute value transformation, the cutof is |log2(FC)|> 1. To identify THCA differentially regu-

lated miRNA-target genes relationships, only miRNAs and differentially expressed genes in

the miRNA-target gene interactions were extracted. Then, based on these THCA differen-

tially regulated miRNA-target gene relationships, regulatory networks were constructed

involving normal and tumor conditions, respectively. For each condition, the correlation

values between each miRNA-gene interaction were calculated using Pearson’s correlation

coefficient (PCC) as follows: PCC miRNAi;genei
� �

¼

Pn
i¼1
ðxi� �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðxi � �xÞ2ðyi� �yÞ2

p (1), in which n repre-

sented sample numbers with both gene expression profiles and miRNA profiles; xi repre-

sented the expression value of genes in sample i, and yi represents expression value of miRNA

in sample i; and �x and �y represented the mean expression values of the gene expression and

miRNA expression in sample i, respectively. Because the miRNAs usually negatively regulated

their genes, only the PCC between each miRNA-gene interaction less than 0 were remained.

Then, the two regulatory networks (normal and tumor) were compared and only the |PCC|

with a difference > 0.2 and |log2(FC)|> 1 between tumor and normal were used to construct

the MGDRN of the THCA. Finally, the MGDRN was constructed in which both the interac-

tions between the miRNA-target and the expressions of nodes (miRNAs and targets) were dif-

ferentially observed between tumor and normal samples.

Topological measurement

For a given graph, G = (V, E), in which V represented the nodes, and E represented the edges.

The degree measured how many edges connected to these nodes and reflected the interactions

of these nodes with other nodes. For example, if there were n edges linked to a node, v, then

the degree of node v was defined as:

DegreeðvÞ ¼ n;

Betweenness centrality measured the centrality of each node in a network. It was equal to

the number of shortest paths from each node to all others that passed through this node, and it

represented the amount of control that a node exerted over the interactions of other nodes in

the network. The betweenness centrality of node v was defined as:

betweenness centrality vð Þ ¼
P

s6¼v6¼t

sstðvÞ
sst

;

where sst was the total number of shortest paths from node s to node t and sstðvÞ was the

number of these paths that passed through node v.

The closeness centrality represented how close a node was to other nodes in the same net-

work and was defined as the average mean path from this node to other nodes. The closeness

centrality of node v was defined as:

Closeness centrality vð Þ ¼
1

Pn
udðu; vÞ

;
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where dðu; vÞ represented the shortest distance between node u and the node v, and n repre-

sented the number of nodes in the network.

Enrichment analyses

The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional

enrichment analyses were performed by DAVID tools (https://david.ncifcrf.gov/), which pro-

vided a comprehensive set of functional annotation and enrichment tools to understand the

biological mechanisms of a gene set [19]. The biology process terms with P< 0.05 were con-

sidered statistically significant.

Cell culture

The human cell lines TPC-1 was provided by the Chinese Academy of Medical. Then TPC-1

cells were cultured in Dulbecco’s modified Eagle medium with 10% fetal bovine serum (Invi-

trogen, Waltham, MA, USA), 50U/mL penicillin, and 50μg/ml streptomycin (Invitrogen). All

cells were maintained at 37˚C in a humidified incubator using 5% CO2.

The small interfering (si)RNA and miRNA transfections

TPC-1 cells were seeded into 35mm plates at 24 hours before transfection. ERBB3 siRNA was

used as the control siRNA, and was transfected using Lipofectamine1 2000 (Invitrogen) with

serum-free medium. At 5 hours after transfection, the medium was changed to complete

medium, followed by 48 hours of culture.

The ERBB3 siRNA sequences uesed were as follow:

sense:5'-CCAAUACCAGACACUGUACUU-3’, and

antisense: 5'-GUACAGUGUCUGGUAUUGGUU- 3’.

TPC-1 cells were seed into 60 mm plates 24 hour prior transfection. 4ul of mir-152-3p-3p

mimic or its corresponding negative control at 20uM (miR10000438-1-5, Ribobio, China)

were transfected using lipofectamine 2000 (Invitrogen) for 48 h with serum-free medium

according to experiments request.

Antibodies and western blotting

Cells were lysed with RIPA lysis buffer containing a protease inhibitor cocktail (Roche, Basel,

Switzerland). Equal amounts of protein (50 μg) were separated by 10% SDS-PAGE and trans-

ferred to a nitrocellulose membrane (Pall, Port Washington, NY, USA). After blocking, the

blots were probed with primary antibodies to actin, ERBB3 (1: 200 dilution, Santa Cruz, Bio-

technology, Santa Cruz, CA, USA), and caspase-3 (1: 500 dilution, Cell Signaling Technology,

Danvers, MA, USA). After washing and incubating with rabbit or mouse secondary antibodies

(1:10000 dilution; Cell Signaling Technology), the blots were visualized using the ECL reagent

(GE Healthcare, Little Chalfont, UK).

CCK-8 cell viability assay

TPC-1 cells were seeded into 96-well plates at a density of 2×103 cells per well. Twenty-four

hours later, they were transfected with the mir-152-3p-mimic or ERBB3-siRNA. After 48

hours, the cell viability was assessed using the Cell Counting Kit-8 (CCK-8; Dojindo, Tokyo,

Japan).

miRNA-target gene differential regulatory network in thyroid carcinoma
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Clonogenic survival assay

The TPC-1 cells (8×102) were counted and seeded into 6 cm dishes. After 48 hours of cell

adherence, the cells weretransfected with the mir-152-3pmimic or ERBB3-siRNA. After 10

days of culture, the colonies were stained with 0.1% Crystal Violet in 20% methanol for 15

minutes. The samples were then photographed and the numbers of visible colonies were

counted.

Acridine orange/ethidium bromide (AO/EB) fluorescence staining

The TPC-1 cells were treated with the mir-152-3p-mimic or ERBB3-siRNA for 48 hours. The

cells were then incubated with AO/EB mixing solution for 5 minutes (Solarbio Biotechnology,

Beijing, China). Cellular morphological changes were examined by fluorescence microscopy at

200×. The percentage of apoptotic cells was calculated using the following formula: apoptotic

rate (%) = number of apoptotic cells/ total number of cells counted.

Luciferase reporter assay

The wildtype sequence of the 3’-UTR of ERBB3 (ERBB3-WT) and a mutant 3’-UTR of ERBB3

(ERBB3-Mut) were cloned into separate pMIR-REPORT luciferase vectors (Ambion, Thermo

Fisher Scientific, Waltham, MA, USA). The HEK293 cells were seeded into six-well plates and

co-transfected with the indicated reagents using Lipofectamine1 2000 (Invitrogen) for 48

hours. The luciferase activity was assessed using the Dual-Luciferase-Reporter 1000 assay sys-

tem (Promega, Madison, WI, USA). The Renilla activity was used for normalization.

Data analysis

The data were obtained from at least there independent experiments, and were expressed as

the mean ± standard deviation. The data were evaluated using the unpaired Student’s t test,

and a value of P < 0.05 was considered to be statistically significant.

Results

Construction of the MGDRN

To construct the MGDRN, we first constructed a global miRNA-gene interaction model by

using interactions included in more than two databases to obtain 282,053 interactions between

645 miRNAs and 14,591 genes. Differentially expressed genes were then obtained by the FC

method, and genes with |log2(FC)|> 1 were considered differentially expressed. We obtained

3,872 differentially expressed genes. To identify the THCA differentially regulated miRNA-tar-

get gene relationships, only the differentially expressed genes and their regulating miRNAs in

the miRNA-target genes interactions were extracted, resulting in 567 miRNA and 2759 genes

remained. The negative regulatory relationships between miRNA-mRNA were also identified.

Two regulatory networks were constructed involving both normal and tumor conditions by

using the 2,759 differentially regulated genes and 567 miRNAs. For each condition, the corre-

lation value between each miRNA-gene interaction was calculated using the Pearson’s correla-

tion coefficient (PCC), and only a PCC between each miRNA-gene interaction < 0 remained.

The two regulatory networks were then compared, and only miRNA-gene interactions with a

difference over 0.2 between tumor and normal remained. Finally, we constructed a MGDRN

between the tumor and normal conditions by considering both predicted miRNA-target gene

interactions and negative regulatory correlations of expression. The MGDRN of THCAs

included 1,362 interactions between 304 miRNA and 826 genes. There were 875 up-dysregu-

lated relationships (pink edges), compared with 487 down-dysregulated relationships (blue

miRNA-target gene differential regulatory network in thyroid carcinoma
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edges) (Fig 1A), suggesting that up-dysregulated relationships might play dominant roles in

the progression of THCAs.

Topological analyses of the MGDRN

We first analyzed the topological features of the MGDRN. For each node, the degree, between-

ness centrality and closeness centrality were calculated. The distributions of all nodes, mRNA

nodes, and miRNA nodes are shown in Fig 1B–1D. The degrees of all nodes and miRNAs ran-

ged from 1 to 23, and the degrees of mRNA ranged from 1 to 16. A disperse distribution of

miRNA nodes suggested that some miRNAs may be important regulators of multiple genes in

THCA; while some miRNAs may be as specific regulators to regulate only a few genes. The

topological features of all nodes’ of MGDRN were ranked, and Table 1 lists the top10 miRNAs

on each dimension. Notably, four miRNAs (hsa-mir-152, hsa-mir-148a, hsa-mir-130b and

hsa-mir-15b) were in the top ten in all topological features (Fig 2A and Table 1). It has been

reported that hsa-mir-152 is repressed in endometrial cancer when compared to normal tissue,

so it could be potential biomarker of endometrial cancer [20]. The hsa-mir-152-3p has also

been reported to be specific for the follicular variant of papillary thyroid cancers [21]. To inves-

tigate the biological mechanisms of these miRNAs in the MGDRN, GO function and KEGG

pathway enrichment analyses were performed for each miRNA by using their dysregulated tar-

get genes in MGDRN (S1–S4 Tables and Fig 2B). As shown in Fig 2B, dysregulated target

genes of hsa-mir-152 were enriched in most processes including complement and coagulation

cascades, cell adhesion molecules, p53 signaling pathway, ECM-receptor interaction and the

renin-angiotensin system. The hsa-mir-148a was involved in the apoptosis pathway; the hsa-

mir-15b participated inregulation of the actin cytoskeleton, the MAPK signaling pathway and

pathways in cancer; and the hsa-mir-130b was enriched in the bladder cancer pathway. Most

of the significant KEGG terms of these miRNAs focused on cancer-related processes, suggest-

ing these miRNAs play important roles in cancer progression and may serve as key regulators

in THCA.

To further investigate the mechanism of the four miRNAs, the miRNAs and their dysregu-

lated target relations were extracted from the MGDRN. The results showed that the majority

of PCCs between has-mir-130b, has-mir-152, and has-mir-148a and their targets were up-reg-

ulated in tumor conditions, while the PCCs between has-mir-15b and its targets were down-

regulated in tumor conditions (Fig 2C). In addition, these miRNAs shared some target genes,

suggesting that they were synergistically dysregulated in THCA. Notably, all of PCCs between

has-mir-152 and its targets were up-regulated in tumors (Fig 2C), indicating that the nega-

tively regulated effect of mir-152 was reduced in tumors. Thus, mir-152 may be a potential

tumor-suppressing miRNA [22]. To confirm the isoform of mir-152, we used TargetScan bio-

informatics tools and found that miR-152-3p could target ERBB3, so miR-152-3p was used for

the following experiments.

Over-expression of mir-152-3p inhibits cell proliferation and colony

formation of TPC-1 cells

To further test the tumor-suppressing effects of mir-152-3p on THCAs, we investigated the

effects of mir-152-3p on cell proliferation and colony formation in TPC-1 cells transfected

with the mir-152-3p-mimic or NC. The CCK-8 assay showed that TPC-1 cells transfected with

the mir-152-3p-mimic grew slower than their NC-transfected counterparts (Fig 3A). The col-

ony formation assay showed that TPC-1 cells transfected with mir-152-3p-mimic showed

fewer colonies than their NC transfected counterparts (Fig 3B). The AO/EB stainding showed

that after treatment with the mir-152-3p-mimic, the TPC-1 cells underwent apoptosis (Fig

miRNA-target gene differential regulatory network in thyroid carcinoma
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3C). The protein levels of caspase-3 also showed that the cells transfected with the mir-152-

3pmimic were more upregulated than those of the NC group.

ERBB3 is a direct target of mir-152-3p

To characterize the molecular mechanism of growth inhibition by mir-152-3p, we searched

for genes containing potential mir-152-3p recognition sites in their 3’-UTRs using the TargetS-

can bioinformatics tools. which showed that the oncogene, ERBB3, was a putative target of

mir-152-3p (Fig 4A). Some miRNAs have been reported to have an anti-tumor effect that

involved negative regulation ERBB3 [23]. To confirm the specificity of mir-152-3p, the wild

type sequence of the ERBB3 3’-UTR (ERBB3-WT) and a mutant ERBB3 3’-UTR (ERBB3-

Mut) were inserted into the pMIR-REPORT luciferase vector. After co-transefection of the

indicated reagents described in Fig 4B, mir-152-3p significantly reduced the luciferase activity

of ERBB3-WT, while the ERBB3-Mut did not show any differences. In addition, we performed

immunoblot analyses of NC and the mir-152-3p-mimic-transfected cell extracts using anti-

ERBB3-specific antibody. Enforced expression of mir-152-3p resulted in a potent downregula-

tion of ERBB3 protein levels in TPC-1 cells (Fig 4C).

Downregulation of ERBB3 by specific siRNAs inhibits proliferation and

colony formation of TPC-1 cells

Because we showed that ERBB3 was a target of mir-152-3p, we postulated that mir-152-3p

inhibited TPC-1 cells by downregulating ERBB3. To confirm that downregulation of ERBB3 is

crucial for the inhibitory effects on TPC-1 cells, specific siRNA against ERBB3 was used to

silence ERBB3. As shown in Fig 5A and 5B, the si-ERBB3 significantly reduced the expression

of ERBB3 mRNA and protein. CCK-8, AO/EB, and colony formation assays showed that si-

ERBB3 inhibited TPC-1 cell proliferation and colony formation (Fig 5C–5E). Furthermore,

the immunoblots showed elevated protein levels of caspase-3, suggesting that silencing of

ERBB3 resulted in increased apoptosis (Fig 5F). Together, these results showed thatmir-152-

3p induced the inhibition of TPC-1 cell proliferation and induced apoptosis of these cells.

Fig 1. Topological features of the micro (mi)RNA-target gene differential regulatory network (MGDRN). A.Overview of the MGDRN; the

purple and orange nodes represent mRNAs and miRNAs, respectively. The size of nodes represents the degrees of nodes in the network. The blue

and pink edges in the MGDRM represent down-dysregulation and up-dysregulation involving tumor versus normal conditions, respectively. B. The

node distribution of all nodes in the MGDRN. C. The node distribution of all mRNAs. D. The node distribution of all miRNAs. E. The number of down-

dysregulated and up-dysregulated relationships in the MGDRN.

https://doi.org/10.1371/journal.pone.0178331.g001

Table 1. The top 10 miRNAs in degree, betweennesscentrality and closenesscentrality.

name Degree name Closeness Centrality name Betweenness

Centrality

hsa-mir-30e 23 hsa-mir-152-3p 0.206728 hsa-mir-15b 0.11699

hsa-mir-142 23 hsa-mir-15b 0.204809 hsa-mir-130b 0.097815

hsa-mir-203 20 hsa-mir-130b 0.203692 hsa-mir-152 0.095341

hsa-mir-152-3p 19 hsa-mir-301b 0.201829 hsa-mir-142 0.092238

hsa-mir-148a 19 hsa-mir-148b 0.199179 hsa-mir-148b 0.082839

hsa-mir-130b 18 hsa-mir-148a 0.19636 hsa-mir-30e 0.080211

hsa-mir-98 18 hsa-mir-181b 0.196043 hsa-mir-148a 0.067307

hsa-mir-15b 18 hsa-mir-29b 0.195097 hsa-mir-98 0.067228

hsa-mir-30a 17 hsa-mir-30e 0.194006 hsa-mir-511 0.060459

hsa-mir-34a 17 hsa-mir-142 0.19285 hsa-mir-328 0.05879

https://doi.org/10.1371/journal.pone.0178331.t001
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Fig 2. Topological analyses of the MGDRN. A.A Venn diagram of the top 10 maximum nodes in each dimension (with maximum

degree, betweenness centrality, and closeness centrality). B. KEGG pathway enrichment analyses for dysregulated targets of four key

miRNAs. The x-axis is -log10 of the P-value, and P< 0.05 was considered statistically significant. C. The subnetwork of four key miRNAs

extracted from the MGDRN. Abbreviation is the same as in Fig 1.

https://doi.org/10.1371/journal.pone.0178331.g002
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The miRNAs involved synergistically and dysregulated pathways in

THCA

Previous studies reported that multiple miRNAs synergistically controlled individual genes

[12], so we determined if these miRNAs synergistically dysregulated target genes in the

MGDRN. A bi-directional hierarchical clustering was performed on the MGDRN. Although

some miRNAs dysregulated multiple genes in THCA, there was no significant modularity phe-

nomenon (S1 Fig), suggesting that these miRNAs did not synergistically dysregulate genes in

THCAs. Furthermore, we investigated whether miRNAs synergistically dysregulated genes on

a pathway level. First, KEGG pathway enrichment analyses were performed to identify miRNA

dysregulated pathways using their target dysregulated genes in the MGDRN. Similarly, bi-

directional hierarchical clustering was performed on miRNA and dysregulated pathways. The

clustered miRNAs tend to dysregulate similar biological functions. We found that a single

miRNA could dysregulate multiple pathways and that a single pathway could be synergistically

dysregulated by multiple miRNAs (Fig 6A). The results showed obvious modularity in the

heatmap plot (Fig 6A), suggesting that miRNAs synergistically dysregulated genes on the path-

way level in THCA. Two modules were discovered in the heatmap plot. Module 1 showed that

three miRNAs (hsa-mir-491, hsa-mir-185 and hsa-mir-219) synergistically dysregulated 12

functional pathways (Fig 6B). Most of these pathways involved cancer or cancer related (i.e.,

the MAPK signaling pathway) pathways. Furthermore, it has been reported that hsa-mir-219

inhibited tumor size and cancer cell proliferation, suggesting that it was a negative regulator of

tumor development [24]. Forced expression of miR-219-5p suppressed PTC cell proliferation

Fig 3. The mir-152-3p inhibits proliferation and colony formation of TPC-1 cells. A. The MTT assay of TPC-1 cells infected with the NC or mir-152-3p

mimic. *P<0.05. B. The colony formation assay of TPC-1 cells infected with the NC or mir-152-3p mimic. top, representative images. Bottom(graph), colony

numbers from three independent experiments. *P<0.05. C. The acridine range/ethidium bromide ratio was determined to characterize the apoptosis of TPC-

1 cells. D. The expression of caspase-3 in TPC-1 cells after treatment with the NC or mir-152-3pmimic was determined by western blots. *P<0.05.

https://doi.org/10.1371/journal.pone.0178331.g003
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and migration and promoted apoptosis[25]. The miR-491 regulated the proliferation and

apoptosis of CD8(+) T cells that could be a novel target for antitumour immunotherapy [26].

The miRNA-185 suppressesed proliferation, invasion, migration, and tumorigenicity of

human prostate cancer cells by targeting the androgen receptor [27]. These three miRNAs

may therefore play crucial roles by synergistically dysregulating these cancer related pathways

in THCAs. Module 2 showed that four miRNAs (hsa-mir-30e, hsa-mir-191, hsa-mir-330 and

has-mir-339) synergistically dysregulated four functional pathways (Fig 6C). In non-alcoholic

fatty liver disease, hsa-miR-330 has been reported to modulate focal adhesion by targeting

VEGFA and CDC42 [28]. Focal adhesion is also an import pathway in THCA [29], suggesting

hsa-miR-330 may be involved in this process in THCAs. The hsa-mir-191 is plays an impor-

tant role in many cancers including ovarian endometriosis and osteosarcoma [30, 31]. Nota-

bly, the other three pathways involved cardiovascular disease pathways, indicating underlying

molecular interactions between THCA and cardiovascular disease. Klein et al. suggested that

the risk of cardiovascular and all-cause mortality is increased in patients with THCA, indepen-

dent of age, sex, and cardiovascular risk factors and that a lower thyroid stimulating hormone

level may have been responsible for this increased mortality[32].

Discussion

In the present study, we used a MGDRN to identify key miRNAs and to explore the synergistic

roles of these miRNAs in THCAs. First, both miRNA-targeted gene interactions in multiple

databases and negative expression correlations between miRNA-target gene were used to vali-

date miRNA-target gene interactions. Second, two regulatory networks were constructed

involved normal and tumor condition, respectively. Finally, the MGDRN was constructed by

interactions that differed between the above two regulatory networks. The MGDRN of THCA

Fig 4. The mir-152-3p negatively regulates ERBB3 by binding to the 3’-UTR of ERBB3. A. Putative mir-152-3p-binding site at the 3’-UTR of ERBB3

(TargetScan). B.The luciferase assay of HEK293T cells. The relative luciferase activity was determined after the described reporter constructs (pMIR-

ERBB3-WT or pMIR-ERBB3-Mut) were co-transfected with the NC or mir-152-3p mimic into HEK293T cells. The luciferase activity was normalized to Renilla

luciferase activity. Columns, mean; bars, standard deviation. **P<0.01. C. The mir-152-3p negatively regulates protein expression of ERBB3 in TPC-1 cells.

β-Actin was used as an internal control for ERBB3.

https://doi.org/10.1371/journal.pone.0178331.g004
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included 1,130 nodes (304 miRNAs and 826 genes) and 1,362 edges. The 875 up-dysregulated

relationships (pink edges) and 487 down-dysregulated relationships (blue edges) involving

tumor conditions suggested that up-dysregulated relationships played a dominant role in pro-

gression of THCAs. By analyzing topological features (degree, betweenness centrality and

closeness centrality) of the MGDRN, four miRNAs (hsa-mir-152-3p, hsa-mir-148a, hsa-mir-

130b and hsa-mir-15b) are identified as key miRNAs in THCAs. Overall, the results showed

that mir-152-3p induced an anti-tumor effect by negatively regulating ERBB3.

Fig 5. Downregulation of ERBB3 by specific siRNAs inhibits proliferation and colony formation of TPC-1 cells. A. The mRNA expression of

ERBB3 in TPC-1 cells transfected with ERBB3-siRNA or NC. β-Actin served as an internal control. *P<0.05. B. The protein expression of ERBB3 in TPC-

1 cells transfected with ERBB3-siRNA or NC. β-Actin served as an internal control. C. The MTT assay TPC-1 cells transfected with ERBB3-siRNA or NC.

*P<0.05. D. The colony formation assay of TPC-1 cells transfected with ERBB3-siRNA or NC. *P<0.05, E. The acridine range/ethidium bromide ratio

was used to determine the apoptosis of TPC-1 cells. F. The expression of caspase-3 in TPC-1 cells after treatment with NC or ERBB3-siRNA.*P<0.05.

https://doi.org/10.1371/journal.pone.0178331.g005
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We further explored if miRNAs synergistically dysregulated target genes in the MGDRN.

We found that miRNAs synergistically dysregulated genes on the pathway level rather than on

the gene level in THCAs. Two synergistically dysregulated modules were identified that could

contribute to the initiation and progression of THCA.

The success of this study could be attributed to two reasons. First, the method we used to

construct differential regulatory networks could identify dysregulated molecules and

Fig 6. The analyses of synergistically dysregulated pathways by miRNAs. A. A heatmap of the synergistically dysregulated pathways by

miRNAs; bi-directional hierarchical clustering was performed using the R package. The two yellow ellipses represent module 1 and module 2,

respectively. B. The sub-network of module 1.C. The sub network of module 2.

https://doi.org/10.1371/journal.pone.0178331.g006
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dysregulated miRNA-target interactions in THCAs at the same time, making it possible to

characterize the synergistic roles of miRNAs. We also chose different cutoffs of 7 miRNA-

mRNA databases (intersection = 3,4,5,6 and 7, respectively; see S5 Table). We found that when

cutoff = 3, the miRNAs, mRNAs and their relationship in the MGDRN dramatically decreased

compared with cutoff = 2. When cutoff = 7, there was no miRNA-mRNA relationship pre-

dicted. So we chose seven algorithms and a cutoff of>2 to guarantee a relatively higher sensi-

tivity and accuracy. We then used topological information to evaluate the importance of

molecules to avoid a problem with slightly differentially expressed miRNAs. Second, in con-

struction of the MGDRN, both miRNA-target gene interactions in multiple databases and neg-

ative expression correlations between miRNA-target genes were used to improve the

confidence of miRNA-target gene interactions.

In summary, we identified putative miRNAs and modules that were involved in THCAs by

using a differential regulatory network, which provided a better understanding of the molecu-

lar basis of THCA.
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