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Diffraction-engineered holography:
Beyond the depth representation limit
of holographic displays
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Chang-Kun Lee1, Seokil Moon1, Jungkwuen An 1, Jong-Young Hong1,
Geeyoung Sung1 & Hong-Seok Lee 1,2

Holography is one of the most prominent approaches to realize true-to-life
reconstructions of objects. However, owing to the limited resolution of spatial
lightmodulators compared to static holograms, reconstructed objects exhibit
various coherent properties, such as content-dependent defocus blur and
interference-induced noise. The coherent properties severely distort depth
perception, the core of holographic displays to realize 3D scenes beyond 2D
displays. Here, we propose a hologram that imitates defocus blur of inco-
herent light by engineering diffracted pattern of coherent light with adopting
multi-plane holography, thereby offering real world-like defocus blur and
photorealistic reconstruction. The proposed hologram is synthesized by
optimizing a wave field to reconstruct numerous varifocal images after pro-
pagating the corresponding focal distances where the varifocal images are
rendered using a physically-based renderer. Moreover, to reduce the compu-
tational costs associatedwith rendering andoptimizing,we alsodemonstrate a
network-based synthetic method that requires only an RGB-D image.

Holography is a recording and reconstruction process based on the
interference of multiple wave fields1. Holograms duplicate the wave
field of the recorded object under an appropriate illumination and
provide true-to-life reconstructions of three-dimensional (3D)
objects2. Beyond the reproduction of a recorded object, the computer-
generated hologram (CGH), which is a numerically calculated holo-
gram of a wave field of non-existing objects, enables the display of
arbitrary 3D scenes and provides monocular depth cues, unlike tradi-
tional displays3.

Although holographic displays are free from vergence-
accommodation conflict, which causes visual fatigue4 and a sig-
nificant reduction in the depth constancy5, unsolved issues originating
from their limited resolution still remain. A real-world object scatters
light by reflecting light in various directions from the substructures of
its rough surface6, and a static hologram can represent such sub-
structureswith a large effective number of pixels7. In contrast, dynamic

holograms, of which the resolution is 3 orders of magnitude smaller
than that of static holograms8, cannot spread light without the noise
because the interference between voxels becomes noticeable as the
number of voxels increases9,10. From this perspective, dynamic holo-
grams can be categorized into two different types, namely diffusive
holograms and non-diffusive holograms (Fig. 1a).

Diffusive holograms spread light up to the maximum diffraction
angle bounded by a pixel pitch by introducing high-frequency
patterns10–14. For example, high-frequency patterns can be included
in holograms by placing voxels with sufficient separation between
them10,11, applying random phases12,13, and employing point-based
methods with physically correct phases14. In diffusive holograms, 3D
objects can be seen at any position within a viewing angle and out-of-
focus objects are blurred as real-world objects. However, the image
quality is limited by a small number of points or interference between
the points, displaying speckles on the reconstructed scenes9,10.
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In contrast to diffusive holograms, non-diffusive holograms con-
centrate on enhancing the image quality of reconstructed scenes. In
this case, the position-dependent phase offset is imposed in point-
based methods to avoid the rapid phase variation of different depth
objects15,16, phase-retrieval algorithms are adopted to reconstruct
single-depth images17,18, and quadratic phases are utilized to suppress
the speckles19,20. Although non-diffusive holograms tend to exhibit an
enhanced image quality, the coherent properties of light become
conspicuous due to a reduced numerical aperture and content-
dependent defocus pattern19,21. For instance, constructive and
destructive interferencepatterns appear in the intensity distributionof
non-diffusive holograms according to Fresnel propagation and those
interference patterns are far different from the defocus blur of a real-
world object. The inconsistent defocus patterns destroy the relation-
ship between the depth and the blur, which is crucial in the context of
depth perception22,23. Moreover, the presence of a lucid boundary at
the interface between objects with different depths due to inter-
ferencedistorts theperception of the relativedepthbetweenobjects24.
Thus, for the high image quality hologramwithout distortion of depth
perception, both advantages of diffusive holograms and non-diffusive
holograms are required.

On the other hand, multi-plane hologram attracts great attention
recently, especially for their improvement in image quality and

computation time25–29. For instance, non-convex optimization is
adopted to minimize a custom cost function25, dynamic adjustment of
amplitude-constraint is employed to improve image quality26, and a
new algorithm based on singular value decomposition of the Fresnel
impulse response function is proposed to enhance computational
speed27. Since the multi-plane hologram is synthesized by optimizing
the wave field to reconstruct one image at one focal plane while
optimizing to reconstruct other images at other focal planes, multi-
plane holograms are widely adopted in dynamic 3D projections30–32.
However, experimental realization of high image quality reconstruc-
tion with a single wave field is still challenging30–33.

Here, we demonstrate a diffraction-engineered hologram (DEH)
that presents photorealistic scenes and real-world-like defocus blur,
enhancing depth expressions of holographic displays by utilizing
multi-plane holograms. We take advantage of the fact that the phase
variation of light does not affect the image seen by the eyes, but steers
the propagating direction of light. Contrary to most of the conven-
tional CGH algorithms, which only optimize the intensity at object-
existing planes15–20, DEH also optimizes diffracted patterns at out-of-
focus planes by adaptively changing thephase to enhancedefocus blur
while leaving the intensity at the object-existing planes nearly the
same. To find the phase satisfying such diffracted pattern, the
approach of multi-plane hologram25–31,33,34, which reconstructs
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Fig. 1 | Schematics of diffraction-engineered holography. a The intensity dis-
tributions of the diffusive hologram (dCGH), the non-diffusive hologram (nCGH),
and the DEH are drawn for two different planes when a blue square is recon-
structed on the left side. The black lines represent the phases of the various
holograms, while the blue arrows represent the propagating direction of the light.
In the DEH, the content-dependent phase at the edge of the square spreads light

over a wide angle so defocus blur can be formed at the other focal plane. b Upon
varying the focal distance of the camera, varifocal images are rendered using a
physically based renderer. c The wave field is optimized to satisfy all varifocal
images at each depth in the DEH. d The nCGH synthesizes a hologram by propa-
gating each pixel at a different depth and superposing the propagated points.
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different images dependingon apropagationdistance, is adopted. The
wavefieldofour hologram isoptimized to reconstruct sharply focused
images of an object at the object plane and reconstruct blurred images
at other focal planes. To obtain blurred and focused images employed
as optimization targets, varifocal images are rendered by a physically
based renderer that properly handles occluded objects and provides
an accurate blur circle similar to that of a human eye. As a result, the
DEH achieves both superiorities, namely the image quality of non-
diffusive holograms and the depth expression of diffusive holograms.
Furthermore, to reduce the computational cost associated with
the rendering of varifocal images and the optimization of a complex
wave field, we design and train a convolutional neural network. The
diffraction-engineered hologram network (DEHNet) synthesizes the
complex wave field displaying appropriate blurred images depending
on the focal distanceswhile requiring only an RGB-D image as an input.
Finally, we confirm the properties of the DEH through simulations and
experiments to demonstrate an enhanced depth expression compared
to conventional CGHs.

Results
Loss function for hologram synthesis
Assuming that a wave field at the z = 0 planes is given by ∣A(x, y)∣eiϕ(x,y),
the propagated wave field at the z = dn plane calculated by the angular
spectrum method (ASM)35 is given as

Propdn
ð∣Aðx,yÞ∣eiϕðx,yÞÞ= F�1 F ∣Aðx0,y0Þ∣eiϕðx0 ,y0 Þ� �

eikzdn

n o
, ð1Þ

where F(F−1) is the Fourier (inverseFourier) transformoperator, eikzdn is

a propagation kernel with kz =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x � k2
y

q
, and kx(ky) is the angular

wavenumber along the x(y) direction. Here, a notable point of Eq. (1) is

the fact that the propagation kernel eikzdn does not alter the amplitude
distribution in the Fourier domain, and so the amplitude distribution
in the Fourier domain is sustained for every propagation distance.
Considering that the diffraction angle is proportional to the spatial
frequency19,21, the application of a wide frequency range of phases is
the only means to achieve sufficient defocus blur unless the intensity
itself is composed of a wide range of frequencies.

However, the majority of high-quality non-diffusive CGH (nCGH)
algorithms fix the phase as zero or as a position-dependent formula15,16

to avoid speckles, thereby leaving the content-dependent defocus
pattern unsolved. The DEH starts from this point. DEH is calculated by
optimizing a wave field to possess a content-dependent phase so that
the propagated wave field forms a clear image at the object-existing
plane while forming a blurred image at other planes. As a target image
for each propagated distance, we used varifocal images generated by a
rendering processby changing the focal distanceof a camera to ensure
that blur considering occluded surfaces is efficiently reflected (Fig. 1b).
After simulating the propagated intensity of the wave field using the
ASM, we calculated the mean square error (MSE) between the propa-
gated intensity and the varifocal image of which the focal distance is
equal to the propagation distance (Fig. 1c). The wave field is compared
with tens of varifocal images and it is updated using a gradient descent
method. The optimization is iterated until the change of the wave field
is negligible.

Compared to other researches16,36 employing learning-based
methods or optimization methods, occluded surfaces and defocus
blur canbe reflected on the reconstructed scene bymeans of explicitly
comparing the propagated intensities and defocused images. Fur-
thermore, to reconstruct sharply focused objects, thewave field is also
compared with an all-in-focus image when the propagation distance is
close to the depth of the objects (see Section 9 of the Supplementary

material for further details of all-in-focus loss). Standard phase retrie-
val algorithms, e.g. the iterative Fourier transform algorithm, can be
used in multi-plane holograms30,33,34, but gradient descent optimiza-
tion is employed to compare the wave field with the depth-weighted
all-in-focus image.

In summary, the total loss function L for optimization is given by

L=
XN
n= 1

"
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where N is the number of varifocal images, Idn
is the intensity of the

varifocal image at a focal distance dn, IAIF is the intensity of the all-in-
focus image,Dn is the depthmap normalized from d0 to dNwith a focal
distance dn, β is the user-defined loss weight, and γ is the user-defined
depth attention weight. Here, the depth map with defocus blur
depending on the focal distance is used insteadof an all-in-focus depth
map to reflect the occluded surfaces (see the “Methods” section and
Section 10 of the Supplementary material for further details). The first
term in Eq. (2) represents the MSE of the propagated wave field
compared to the varifocal images, while the second term represents
theMSEof the propagatedwavefield compared to the depth-weighted
all-in-focus image. In contrast to a DEH, conventional methods16

construct holograms by propagating each 3D point for a particular
distance depending on its depth value and superposing the propa-
gated points (Fig. 1d). The method simulates the propagation of the
points by the ASM and also handles occluded surfaces by ignoring the
backside wavefront when the backside and frontside wavefronts
overlap.

Holograms depicting a scene with different-sized cubes were
synthesized and in-focus (out-of-focus) conditions of the holograms
were simulated as shown in Fig. 2a. Even in the out-of-focus conditions,
the defocus blur of the nCGH cannot be seen, especially for the large
cube, due to the content-dependent defocus pattern19,21. Coherent
propagation of thewave field forms a Fresnel diffraction patternwhich
differs from the defocus blur of incoherent light so the depth per-
ception can be distorted22. In contrast, the out-of-focus image of the
DEH displays a clear defocus blur even if the diameter of the blur circle
is slightly smaller than that of the rendered image. However, the most
significant drawback of the DEH is its computational load, since a
number of varifocal images are required in addition to an optimization
procedure. Since nCGH can be synthesized using only RGB-D images,
DEHs are not practical in the majority of real-time applications.

To overcome such issues, a neural network (DEHNet) is trained to
obtain a DEH from RGB-D images (Fig. 2b). The network is composed
of 34 convolutions with 12 channels except for the last layer which
includes a concatenated shortcut. Non-linearity and a wide receptive
field are more important than hidden features so the number of
channels is selected as small as possible to increase the number of
convolutions and activations under a restricted computation resource
(see Section 8 of the Supplementary material for image quality
dependency on the number of channels). The training dataset consists
of 3000different scenes and eachof these scenes contains 21 varifocal
images, an all-in-focus color image, 21 varifocal depthmaps, and an all-
in-focus depth map (see Section 6 of the Supplementary material for
the minimum number of planes required in DEHNet and Section 11 of
the Supplementary material for results with a different number of
planes). After training, the weights of the network were quantized to
8-bit integers to reduce computational load. The DEHNet can synthe-
size an optimal wave field that can reconstruct appropriately blurred
and sharply focused images while considering occluded surfaces, and
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this can be achieved using only an all-in-focus color image and an all-in-
focus depth map.

Image quality of reconstructed holograms
Figure 3 shows the simulated results for the DEH, the DEHNet, and
the nCGHwhen the focus is adjusted to the frontside or backside of
the scene. We only compared non-diffusive holograms in this paper
because the purpose of the paper is synthesizing high-image-
quality holograms. A comparison between diffusive holograms and
DEH can be found in Section 2 of the Supplementary material. One
of the differences between the nCGH and the DEH is the vivid

boundary at the interface of the objects which are located at dif-
ferent depths as shown in the enlarged image in Fig. 3. An abrupt
phase variation at the interface leads to two coherent beams with
different phases coinciding at the interface; the constructive and
destructive interferences then build a sharp boundary. Since blur-
red and sharply focused edges at the occluded surface boundary
are used to judge the relative depths between objects24, the pre-
sence of a distorted blur at an edge can be considered one of the
most serious defects. Moreover, when a hole exists in an object, the
hole is distorted by the depth difference between the object and
the background.
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Fig. 2 | Reconstructed intensities of different algorithms and schematics of
DEHNet. a In-focus andout-of-focus intensities of the rendered case, the dCGH, the
nCGH, and the DEH are simulated (from top to bottom). The side lengths of the

cubes are 3, 4, and 6 pixels (from left to right). b The convolutional neural network
synthesizes a wave field from an all-in-focus image and an all-in-focus depth map.

Fig. 3 | Simulation results for the DEH, the DEHNet, and the nCGH. All-in-focus
rendered image (a), depth map (f), front focus rendered image (e), and rear focus
rendered image (j). Reconstructed images of DEH (b, g), DEHNet (c, h), and nCGH
(d, i). With the exception of the all-in-focus image and the depth map, the top
images (b–d) correspond to the front focus images and the bottom images (g–j)

correspond to the rear focus images. The PSNR values (in dB) and the SSIM values
are marked on the top right corner of each image. The smaller images represent
enlarged views of the larger images. The ASM was used to simulate different focal
planes.
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The image quality, including defocus blur as well as speckle noise,
can be measured quantitatively by evaluating the peak signal-to-noise
ratio (PSNR) and the structural similarity (SSIM) compared to the
rendered images. While the optimized DEH exhibits the best PSNR
(26.1 dB) and SSIM (0.88) values, the DEHNet also gives compatible
results. In contrast, the nCGH gives significantly lower PSNR (19.8 dB)
and SSIM (0.67) values. Here, the second term in Eq. (2) boosts the
imagequality of the in-focus objects,which results in a slight reduction
in the PSNR. Without the second term, the PSNR increases slightly
(0.6 ~ 0.8 dB) although the image quality at the focal plane is reduced.
The nCGH algorithm used here only includes ASM propagation and
consideration of occluded surfaces, but a comparison with the other
algorithm16 canbe found in Fig. S2. The other algorithmshows a similar
weak defocus blur as the nCGH algorithm.

Experiments and benchmark
In order to concretely validate the DEHNet, an experimental demon-
stration is necessary. In an optical reconstruction, an amplitude-only

spatial light modulator (SLM) with a 1920× 1080 (FHD) resolution is
used instead of a complex SLM. It is well known that an amplitude SLM
can be used as a complex SLM by means of spatial filtering, although
the spatial bandwidth of the SLM is lost37. As confirmed by the simu-
lation, the defocus blur is much weaker and a vivid boundary exists
near the interface of the different-depth objects in the nCGH. As a
consequence, it is difficult to perceive the depth of the 3D scene in the
nCGH. This tendency is more apparent in the enlarged images shown
in Fig. 4. Numerical and experimental reconstruction of nCGHandDEH
with changing focal planes can be found in Supplementary videos.
Details regarding the experimental setup andparameters can be found
in the “Methods” section.

Figure 5 shows the inference times of the various CGH-generation
methods, whichwere evaluated on anNVIDIAV100GPUusing the FHD
resolution images. Since an optimization-based DEH requires 500
iterations, the method requires more than 1min to synthesize a holo-
gram with superior image quality. However, we achieved a frame rate
of 62Hz using DEHNet, while losing only ~0.5 dB of the PSNR

Fig. 4 | Experimental results of the DEHNet and the nCGH. The top images correspond to the front focus images and the bottom images correspond to the rear focus
images. The small images represent enlargements of the corresponding reconstructions, as indicated by the white squares.
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Fig. 5 | Performance comparison. a Inference times. OPT refers to the DEH cal-
culated by optimization, NET refers to the DEH calculated by DEHNet before
quantization, and qNET refers to the DEH calculated by DEHNet. We achieved a
frame rate of 62Hz in qNET, which is 8600 (70) times faster than that obtained in
OPT (nCGH). The OPT inference time does not include the rendering time of the
varifocal images. b The PSNR and SSIM were evaluated for the 512 resolution
dataset. The presented PSNR and SSIM values represent the mean values of all
images in the dataset with respect to the 21 rendered images for each scene. OPT,

NET, and qNET have similar PSNR values (29.0, 28.9, and 28.5 dB, respectively) and
SSIM values (0.909, 0.910, and 0.894, respectively), while nCGH gives significantly
lower PSNR (22.5 dB) and SSIM (0.756) values. cThe PSNR and SSIMwere evaluated
for the FHD resolution dataset. For the OPT, NET, qNET, and nCGH methods, the
SSIM (PSNR) values were given by 0.955 (33.4 dB), 0.957 (33.4 dB), 0.939 (32.7 dB),
and 0.889 (27.1 dB), respectively. The error bars represent the standard deviations
between scenes.

Article https://doi.org/10.1038/s41467-022-33728-5

Nature Communications |         (2022) 13:6012 5



compared to the optimization method. Considering encoding time,
the total frame rate is 57 Hz since the encoding process of amplitude-
only hologram takes 0.89ms.

The PSNR and SSIMwere evaluated for two datasets with different
resolutions to quantitatively measure the image quality. One dataset is
composed of 512 × 512 resolution images (Fig. 5b) as in the case of the
training dataset, while the other dataset is composed of FHD resolu-
tion images (Fig. 5c). The indicated metrics represent the mean values
of the comparison results between all varifocal images and the corre-
sponding holograms so the smoothness of defocus blur and the
sharpness of the focused object are both reflected. In the 512 (FHD)
resolution dataset, the DEHNet provides a 6.5 (6.3) dB enhancement in
the PSNR and a 0.15 (0.07) enhancement in the SSIM compared to the
nCGH. Both of the evaluation datasets are rendered with textures that
differ from that of the training dataset to ensure that the performance
of the trained network is not restricted to the training dataset.
Benchmark results with various image quality metrics including
learned perceptual image patch similarity metrics38 can be found in
Section 2 of the Supplementary material.

When the holograms are synthesized using real-world images
instead of rendered images, it should be pointed out that incorrect
values from the captured depth maps can induce severe noise. In the
majority of cases, real-world-captured depthmaps include depth holes
and incorrect depth values39 so the interference pattern distorts the
objects when the object boundaries of the depth map are not

consistent with those of the RGB image (Figs. 6 and 7). In contrast to
the nCGH producing interference-induced black lines at the bound-
aries of noisy depth, the DEH provides noise-suppressed images at
these boundaries. In some applications using measured depth maps,
e.g. video see-through displays, the DEH would therefore give a
superior image quality to the nCGH.

Discussions
Recent advances in CGH algorithms result in remarkable progress in
image quality and computation time. However, those algorithms do
not give attention to the weak defocus blur of synthesized holograms,
which severely distorts depthperception22,23. Because of theproperties
of static holograms, researchers believed that defocus blur would be
correct in dynamic holographic displays. In this aspect, we demon-
strate the difference between reconstructed images of the conven-
tional holograms and realistic scenes depicting defocus blur
dependingon accommodation. Furthermore,wepropose one solution
to overcome the incorrect depth cue problem by adopting a neural
network and the increments in the PSNR and SSIM metrics are sub-
stantial. We expect the DEHs could be widely used in holographic
displays for virtual and augmented realities offering real-world-like 3D
displays using currently available display devices.

Recently, several researchers reported enhanced accommodation
of CGH by utilizing a number of the wave fields, the so-called time-
multiplexing method40,41. Although the time-multiplexing method

Fig. 6 | Simulation results obtained using a real-world RGB-D image. Using a
real-world-captured image56, a DEH and an nCGH were synthesized and their
intensities were simulated wherein the total image size was resized to 1280× 720.
The large images show the front- and rear-focused images, while the small images

show the focus-dependent images (from left to right, 0, 0.6, 1.2, 1.8, 2.4, and 3.0
diopter). The first row of small images shows the front objects and the rear objects
simultaneously, while the second rowof small images shows the noise on the leaves
originating from the imperfect depth map.
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presents great image quality and enhanced accommodation effect,
real-time reconstruction of such hologram requires more than 10
times of computation resources compared toourmethod and thus it is
still challenging to realize real-time reconstruction. Besides, another
approach is recently proposed to remove occlusion artifacts by
adopting a layered depth image in learning-based CGH algorithms42.
However, the approach did not deal with the amount of defocus blur,
distinctive from our method.

It should also be noted here that in some works, the multi-plane
hologram refers to the hologram reconstructing multiple objects at
different depths, as an antonym of the hologram that reconstructs
multiple objects at a single depth36. In contrast, we use the term to
represent a hologram that can reconstruct numerous full-size images
at the same time depending on the focal distance. As the latter holo-
gram, our experiment shows a greatly enhanced image quality in
comparison with that reported previously30–33 despite the fact that
more than 20 images were used as target images. The degraded image
quality in previous experiments mainly originated from the high-
frequency patterns that almost reached the pixel-pitch-limited fre-
quency, since a phase-only SLM or an amplitude-only SLM was used
instead of a complex SLM30,34. Our experiment confirms that it is
possible to reconstructmultiple intensities with greatfidelity when the
target intensities are gradually varied, suggesting the feasibility of real-
time applications of multi-plane holograms, such as holographic
optical tweezers32, one-step volumetric printings43, and volumetric
displays44.

Methods
Determining the diameter of the blur circle
To construct large field of view (FoV) display systems, an SLM is
magnified by a lens array. As a consequence, the maximum propaga-
tion distance of the hologram that allows the reconstruction of a vir-
tual imagewith a depth from d to infinity is determinedby the effective
focal length of the lens array. By approximating the lens array as a thin
lens, the maximum propagation distance of the hologram, Δz, can be
calculated as45,

Δz ≈
1
d

Δx2res2

4 tan2 ðFoV=2Þ , ð3Þ

where Δx is the pixel pitch of the SLM, res is the resolution of the
display, FoV is the field of view of the system, d is the virtual image
distance of the floating object synthesized by the hologram, and the
virtual image distance of the display is set to infinity. If we consider a
55° FoV, a 4K resolution, a 7.2μm pixel pitch, and d =0.35m, then
Δz = 2mm is obtained from Eq. (3).

Under the specific display parameters that were considered
herein, it is possible to calculate the diameter of a blur circle of a
human eye when the eye is focused on infinity while the object syn-
thesized by the hologram is floating at a distance of d. The diameter of
a blur circle of an eye in units of display pixels, CoCeye, is given by

CoCeye =
A � res

2d � tanðFoV=2Þ , ð4Þ

Fig. 7 | Experimental results obtained using a real-world RGB-D image. Using a
real-world-captured RGB-D image39, a DEH and an nCGH were synthesized and
optically reconstructed. Since the real-world depth map includes depth holes, a
monocular depth estimation algorithm57 was adopted to fill the holes. The optically
reconstructed images are cropped to show the details. Black lines caused by wave

interference can be seen in the nCGH results but not in the DEH results. Moreover,
defocus blur can be perceived only in the DEH results. "Color'' represents the all-in-
focus color image, "cropped'' represents the cropped image, "depth with holes''
represents the measured depth map depicting the depth holes with white color,
and "depth with filled holes'' represents the hole-filled depth map.
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where A is the pupil diameter. If the wave field of the hologram is
partially blocked by the iris, the image quality degrades by the noise of
the blocked wave field. Considering that the diameter of a pupil is
larger than 1.5mm in the majority of cases46,47, A is set to 1.5mm to
avoid image degradation originating from a partially blocked wave
field. From the above parameters, CoCeye is 15 pixels and the aperture
size of the rendering camera is set to satisfy the diameter of a blur
circle of the rendered images.

Although the diameter of defocus blur of an nCGH can be
enlarged by increasing the propagation distance, achieving a blur
circle equivalent to that of a human eye is only possible under a small
FoV (~10°). For example, if we increase the propagation distance to
enlarge the diameter of the blur circle, the virtual image distance of
the object(d) comes closer and the blur circle diameter of the eye
(CoCeye) is also increased. As a result, an increase in the diameter of
the defocus blur under a fixed propagation distance is required to
attain a human eye-equivalent defocus blur with a holographic
display.

Experimental details
In the experiment, IRIS-U62 LCoS (liquid crystal on silicon) from MAY
Inc. of which resolution is 3840× 2160 and pixel pitch is 3.6μm, is used
as 1080pmode by putting the same pixel value in 2 × 2 nearest pixels to
minimize pixel crosstalk originated from its small pixel pitch48. As a
result, the LCoSbehaves as anFHDresolution amplitude-only LCoSwith
a pixel pitch of 7.2μm. The distance between the minimum and max-
imum depths was set to 2mm. The dispersion diameters by the pixel
pitch diffraction are 25 (red), 20 (green), and 18 pixels (blue) under
2mm light propagation. Considering that the maximum diameter of
defocus blur of the rendered images is 15 pixels, the propagation dis-
tance should be longer than 1.7mm. Since themodulated intensity non-
linearly depends on the assigned values of the pixels, the amplitudewas
calibratedbymeasuring output values for each input pixel value. Anoff-
axis hologramwas adopted and the grating period was set to 0.25 of its
maximum period to avoid unwanted noise. The Burch encoding
method49 was used to project the complex wave field onto real values.
With anadjustable 2D slit, zerothorder andhigherorderdiffractions are
blocked (Fig. 8). As a light source, laser diodes with wavelengths of 638,
515, and 460nm were used and were sequentially illuminated on the
LCoS. To remove speckles caused by the coherence of the lasers, the
holographic diffuser was rotated at the focused spot of the laser beams.

Phase noise of the amplitude-only SLM
Due to the properties of liquid crystals, it is inevitable that the
amplitude-only SLM modulates the phase. The noise from such phase
modulation can be avoided if an appropriate grating phase is applied.
Assuming that amplitude modulation is given by f(x) and unwanted
phase modulation is given by expfip1 f ðxÞ+ ip2 f ðxÞ2g, then the wave
field at the SLM is given as f ðxÞeip1 f ðxÞ+ ip2 f ðxÞ2 . Here, we approximated
the unwanted phase modulation as a second-order polynomial func-
tion of the amplitude modulation. To expand the expression, we
employed the Jacobi–Angler expansion, eikz cosθ =

P1
n=�1 inJnðzÞeinθ,

where Jn(z) is the nth Bessel function of the first kind. Using a Fourier
series expansion, f ðxÞ=PkFk cosðkx +ϕkÞ, the wave field at the SLM
can be expressed as

f ðxÞeip1 f ðxÞ+ ip2f ðxÞ2 = f ðxÞeip1ð
P

k
Fk cosðkx +ϕk ÞÞ+ ip2
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k
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Fortunately, p1, p2, and Fk are <1 in our experiment, and so Jn(z)
with ∣n∣≪ 1 can be neglected for those cases. As a result, Eq. (5) can be
approximated as

f ðxÞeip1f ðxÞ+ ip2f ðxÞ2≈ f ðxÞ
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As we can see from Eq. (6), if a grating phase with a period eikprismx is
applied, then eikprismx , e�ikprismx , e2ikprismx , and a constant term is
generated. Moreover, Burch encoding49 generates its conjugate
term e�ikprismx and its phase noise-induced terms. As a result, the
eikprismx , e�ikprismx , e�ikpitchx + 2ikprismx , e�ikprismx , eikprismx , eikpitchx�2ikprismx

terms exist, where kpitch is the wavenumber of the SLM pixel pitch
and the terms such as eikpitchx�2ikprismx are created by the blackmatrix
of the SLM.When the frequency of the grating phase is one-third of
the spatial frequency of the pixel pitch, our signal term eikprismx

overlaps with the noise term eikpitchx�2ikprismx and the noise cannot be
filtered. To avoid such noise, the frequency of the grating phase
was set to one-quarter or less of the spatial frequency of the
pixel pitch.

Generation of the training dataset
The objects in the 3D scene were randomly sampled from publicly
available datasets50–53 and each scene was rendered by Blender to have
21 varifocal images54. The textures of the objects used in the training
stage were randomly sampled from the CC0 texture library55 and the
textures of the objects used in the evaluation stagewere sampled from
the "Benchmark for 6D Object Pose Estimation” datasets50–53. The col-
ors, orientations, and intensities of the light sources were randomly
sampled while the maximum intensity was restricted to prevent
overexposure. When a scene is overexposed, intensity sums of each
varifocal image could be different because the intensities become
clipped. Since the propagation of light conserves its total energy,
varifocal images with inconsistent intensity sums cannot be con-
structed with a single wave field.

The focal planes of each scene were equally spaced while the
distances between the camera and the objects were significantly
longer than the distances between the different objects to symme-
trically blur either side of the focal plane. The symmetric blur in the
rendered images is consistentwith the asymmetric blur of an eyewhen
a tiny display ismagnified and projected to the eye.With the exception
of the background, the pixel-wise statistics of the depth distribution
were made almost uniform to prevent overfitting to a particular depth

Fig. 8 | Schematic representation of the experimental setup. Collimated RGB
lasers were illuminated on an SLM through a polarizing beam splitter (PBS). After
the Fourier plane is formed by the first lens group, zeroth order and higher orders
of the grating phase diffraction implementedon the SLMwere blockedby the filter.
The reconstructed hologram was captured by a camera with a second lens group.
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during training (see Section 7 of the Supplementary material for fur-
ther details of the depth distribution).

Parameters of the loss function and the depth map with
defocus blur
Since the objects in the scene can have any depth, the number of
varifocal images was selected to be 21 pixels larger than the maximum
diameter of the blur circle, while γ was fixed to 40 to avoid the
simultaneous focusing of an object at two different focal planes. For an
arbitraryobject, the number of out-of-focus images (20) is significantly
larger than the number of in-focus images (1) and so the reconstructed
scene of the DEH is more influenced by the blurred images than the
focused image. Thus, to apply a similar or higher weight to an in-focus
image of objects, β was set to 20.

Although defocus blur is not considered while synthesizing a
depth map in the majority of applications, we used a defocus-blur-
considered depth map during the optimization and training pro-
cesses to consider occluded surfaces. Normally, if we include
defocusing blur when rendering a depth map, front depth values
and rear depth values are blended at an edge of defocus blur of a
front object. Instead, we sampled the depth map using only one ray
per pixel and collected 10 depth maps for each focal distance.
Among 10 depth values of each pixel, only the front-most depth
value is used, so the depth values of the blurred pixels are confined
to the depth of the front object. If we assume that one object is
located at the front of the scene and another object is located at the
rear of the scene, a blur circle of the rear object does not invade a
focused image of the front object when the front object is focused.
In contrast, a blur circle of the front object invades a focused image
of the rear object when the rear object is focused (Fig. 9). Assuming

that an all-in-focus depth map is used when comparing the depth-
weighted all-in-focus image and the intensity of the hologram for
the rear plane of focus (second term of Eq. (2)), the pixel weights of
the rear object close to the front object are high even if the blur
circle degrades the image quality. As a result, the loss function has a
lower value when a sharply focused image is reconstructed near the
boundary of the front object, ignoring the defocus blur of the front
object. Such circumstances can be avoided when the defocus-blur-
considered depth map is used for the second term of Eq. (2) since
the rear object occupies a smaller area in this depth map than in the
all-in-focus depth map for the rear plane of focus.

In an aspect of the loss function, we tried to adopt multi-scale
structural similarity (MS-SSIM) loss instead of MSE loss while syn-
thesizing DEH. However, the effect of MS-SSIM loss was unclear and
the DEH optimized by MS-SSIM loss suffered from defects. Com-
parison results can be found in Section 12 of the Supplementary
material.

Training of the neural network
In thefirst stageof training,weusedbatchnormalization layers in front
of activation layers. When the validation loss stopped decreasing, the
batch normalization layers and convolution layers were manually
fused using running means and running variances. After fusing the
batch normalization layers and convolution layers, the fused layers
were trained again with the same dataset until the validation loss
stopped decreasing. We used the Adam optimizer with a learning rate
of 0.0005. We reset the internal parameters of the optimizer for every
50epochs at the second stageof training. Thebatch sizewas 16 and the
weights of the network are updated after 4 batch runs, yielding an
effective batch size of 64. The training process took approximately

Fig. 9 | All-in-focus depth map and defocus-blur-considered depth map over-
laid on a color image. a All-in-focus rendered image. White box indicates an
enlarged area for other subfigures. b Enlarged all-in-focus depth map. c Defocus-
blur-considered depth map for the rear plane of focus. While acquiring the depth
values in the area of the defocus blur, the depth values of the front object and that
of the rear object were randomly sampled by the renderer. To ignore the depth
valuesof the rear object near the boundary, the depthmapswere acquiredmultiple

times and themost front values among the numerousdepthmapswere used.dThe
boundary of the rear object of the all-in-focus depth map is marked as a red line in
the rendered all-in-focus image.eThe boundary of the rear objectof the all-in-focus
depthmap ismarked as a red line in the rendered rear-focus image. f The boundary
of the rear object of the rear-focus depth map is marked as a red line in the ren-
dered rear-focus image.
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60h using an NVIDIA V100 GPU. The trained neural network was
symmetrically quantized using the TensorRT library and the same
training dataset was fed to calibrate the quantization parameters.

Data availability
All relevant data that support the findings of this work are available
from the corresponding author upon reasonable request. The config-
uration settings of BlenderProc used in synthesizing the training and
evaluation datasets will be publicly available along with the paper.

Code availability
All relevant codes that support the findings of this work are available
from the corresponding author upon reasonable request.
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