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Introduction
Soybean (Glycine max [L.] Merr.) is one of the most important 
crops grown worldwide, and it contributes significantly to food 
production. According to the World Agricultural Outlook 
Report by the United States Department of Agriculture 
(USDA), in 2016, the United States produced more than 100 
million of tons of soybean, and in 2018, it was projected that the 
production would be close to 120 million of tons. Soybean pro-
vides a high-quality vegetable protein that is used primarily in 
animal feed and for human food uses and is the leading vegeta-
ble protein produced worldwide. Soybean oil is a high-quality 
vegetable oil that is used in food, feed, and industrial applica-
tions. Thus, with the increasing demand for high-quality and 
sustainable food production, it is necessary to improve soybean 
yield and increase the performance through genetic improve-
ment. Rates of genetic gain in soybean have been estimated at 
about 17 to 22 kg/ha/year, but potentially can be improved.1–3

With the advancements in genotyping technologies and 
sequencing, an important increment in the number of delivered 
markers at low cost can be achieved, which can open opportuni-
ties to increase genetic gain in soybean. Genomic prediction 
(GP) is a technique that is widely used in breeding programs for 
cultivar development, and it aids the selection process by taking 

advantage of the use of molecular markers for estimating the 
performance of lines based on their genomic estimated breeding 
value. It is more effective than traditional phenotypic or pedi-
gree-based selection, and it has the potential to increase genetic 
gain by threefolds4 compared with marker-assisted selection. 
Genomic prediction is a procedure that combines genotypic and 
phenotypic information to build prediction models and per-
forms prediction on un-phenotyped lines using only their marker 
profiles. The technique was first introduced by Meuwissen et al.5 
Since then, a lot of effort was devoted to model development in 
GP,6–9 implementation of GP,10,11 and model comparison.12-14

Another avenue to improve GP models is to optimize them 
according to the data available for prediction. Howard et al14 
used response surface methodology to optimize GP models 
based on number of lines, number of markers, number of 
quantitative trait loci, degree of epistasis (gene-by-gene inter-
action), and degree of heritability (proportion of phenotypic 
variability explained by the genetic variability) in a simulated 
data set. There are studies that aim to improve GP models by 
optimizing the relationship between the training and the test-
ing sets.15 Genomic prediction models can also be improved 
by optimizing the quality control (QC) of the genotypic data 
used for model development. Jarquín et  al16 compared 
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prediction models for a soybean population grown by the 
University of Nebraska—Lincoln Soybean Breeding Program 
with different degrees of missingness and minor allele fre-
quency (MAF) in the genomic marker data. However, the 
focus of the study was not to evaluate a comprehensive set of 
factors considered in QC but to evaluate the genotype-by-
sequencing genotyping technology in GP for soybean 
breeding.16

In this study, we evaluated GP accuracy based on QC of 
genomic data collected on soybean populations grown by the 
University of Nebraska—Lincoln Soybean Breeding Program. 
We varied the sets of markers to be included in the model by 
considering different percentages of missing values (PMMS; 
27 levels) and different levels for MAF (12 levels). Training 
and testing sets for all these combinations (27 × 12 = 324) were 
conformed 200 times. The evaluation of this comprehensive set 
of combinations offered the opportunity to construct the 
response surface of the prediction accuracy (based on the per-
centage of missing genomic values and the MAF). As the gen-
otyping by sequencing (GBS) technology is not perfect and a 
large number of missing values are delivered, 2 imputation 
methods were implemented to compare their effects on the 
predictive ability of the models (naïve imputation method 
[where the mean of the non-missing marker values are inserted 
for the missing markers] and the Random Forest (RF)-based 
imputation). In this context, several novelty methods have been 
developed for imputing missing data. Some of these consider 
haplotype phase information,17 others use information from 
higher density panels from reference individuals,18 or are based 
on classification and regression methods for unordered mark-
ers.19 A compressive review of the impacts on predictive ability 
of several imputation methods can be found in Rutkoski et al.20

In this article, first the phenotypic and genotypic marker 
data that were used for GP are introduced. Then, it is described 
how the QCs were implemented for the different factors and 
levels used for constructing the response surface of the predic-
tion accuracy values for the 2 imputation methods. Briefly, the 
GP model that was implemented is also introduced. Finally, we 
discuss the response surface of the prediction accuracy values 
dependent on the level of missing marker values, the MAF, and 
the imputation technique (IT) used to create more compre-
hensive sets of genomic data, and some conclusions based on 
our findings are provided.

Material and Methods
Phenotypic and genotypic data

The predictions were conducted using phenotypic and geno-
typic data on 301 soybean lines grown by the University of 
Nebraska—Lincoln Breeding Program. These lines belong to 3 
maturity groups (MG) [64, 213, and 24 lines from MGs I, II, 
and III, respectively] and were tested in 6 locations in Nebraska 
(Beemer [277], Phillips [301], Cotesfield [277], Mead [301], 
Lincoln [24], and Clay center [24]). Only in the Phillips and 

Mead locations were all the lines tested. A complete descrip-
tion of the distribution of the lines and the experimental design 
can be found in Jarquín et  al.16 Phenotypes of 3 traits were 
considered in the analysis: grain yield (GY), days to maturity 
(DTM), and plant height (PH). The phenotypes were adjusted 
accounting for the location and block effects due to the experi-
mental design. The genomic data, the genotyping procedure, 
and the GBS analysis are described in detail in Jarquín et al.16 
Briefly, DNA isolation was performed using the Qiagen 
DNeasy Plant 96 kit, and the samples were analyzed in the 
Institute of Genomic Diversity at Cornell University. Then, the 
GBS analysis pipeline implemented in Tassel Version 3.0.156 
was used to call the single-nucleotide polymorphisms (SNPs). 
After the SNP calling, the molecular marker information con-
sisted of 216K SNP markers.

GP model

The GP model used to evaluate prediction accuracy for the 3 
traits (GY, PH, and DTM) was the genomic best linear unbi-
ased prediction (G-BLUP) model including only additive 
effects. The model can be written as

y gi i i= + +µ ε ,

where yi is the phenotype of the ith line (i = 1, …, n), μ is the 
overall mean, gi is the additive genetic value of the ith line, and 
εi is the corresponding residual term.

Using matrix notation, the model can be written as 
y = μ + g + ε, where g = Xb with X being a n × p (n is the num-
ber of genotype and p is the number of markers) dimensional 
matrix of genotype scores. Considering that the marker effects 
associated with the jth marker (i.e. Xj; for j = 1, 2, …, p) are dis-
tributed as N ( , )0 σ2b  and based on the assumptions of the mul-
tivariate normal distribution, the mean and co-variance of g 
(the vector of genetic effects) are the null vector 0 and 
Cov( )=g XX G′ =σ σ2 2

b g  where G = ′−p 1XX  and σ σ2 2
g b= p . 

Summarizing the model, we can write g G N g(0; σ2 )  and 
ε εi N (0;σ2 ) , where G is commonly referred to as the 
Genomic Relationship Matrix and its entries describe the 
genetic similarities among pair of lines.

The model was evaluated based on prediction accuracy, 
which was defined as the first moment Pearson correlation 
coefficient between the observed phenotypic value and the pre-
dicted genomic-enabled breeding value. The predictions were 
carried out using a tenfold cross-validation scheme, which was 
repeated 200 times. Then, the mean and the variance of the 
prediction accuracy values were calculated.

QC of the genomic data

Quality control is a fundamental step in genomic data analysis 
and GP, and it might significantly influence the prediction 
accuracy. In our study, we focused on evaluating 3 of the most 
important factors in QC. These are done after the genomic data 
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are translated to a numeric format. These 3 factors were the 
MAF, the percentage of missing marker scores (PMMS), and 
the IT used to complete the genotypic data. Minor allele fre-
quency is the proportion of the second most common allele 
occurring in a population. Using genomic data, it is calculated as 
the frequency of the second most common allele among the 
genotyped lines. This value provides information about the pro-
portion of common versus rare variants in the population. The 
procedure consists in discarding markers from the analysis with 
a MAF smaller than a given cut-off value. In genomic studies, 
different cut-off points have been adopted for discarding mak-
ers based on MAF. Thus, there is not a conventional value used 
in all species. For example, in maize21 and wheat,22 a MAF of 
0.05 was used for GBS and an Infinitum SNP array, respec-
tively, while23 considered a cut-off of 0.01 in wheat for GBS 
data. PMMS is the percentage of missing marker scores is the 
percentage of marker scores in the genomic data set that are 
missing. A large percentage of missing values would lead to 
inaccurate estimations of markers’ effects delivering biased and 
incorrect predictions. Thus, markers with a large PMMS should 
be avoided in the analysis. For this factor, these previous authors 
considered a similar cut-off criterion and discarded those mark-
ers with more than 20%, 15%, and 20%, respectively.

The purpose of the study was to evaluate prediction accu-
racy using genomic data where MAF and PMMS are varied 
under 2 ITs (naïve and RF). The response of the prediction 
accuracy under different combinations of the levels of MAF 
and PMMS was visualized by a response surface plot. The 
response surface was evaluated at all of the pairwise combina-
tions of 12 levels of MAF and 27 levels of PMMS. The 
response surface was examined for highest peak, and 4 com-
mon MAF × PMMS combinations were evaluated. Also, the 
number of markers at each MAF × PMMS combinations were 
computed, and the values were added in the bottom part of the 
response surface plot using a scaled surface.

Results and Discussion
In this study, the response surface of GP accuracy was created 
as a function of the combination of MAF and PMMS, and 2 
ITs used for imputing missing values in the genomic data were 
compared. For the predictions, genomic and yield data from 
the University of Nebraska—Lincoln Soybean Breeding 
Program were used.

The 12 levels considered for MAF were 0.05, 0.06, 0.07, 
0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40, while the 
27 levels for PMMS were 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 
10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 
25%, 30%, 40%, 50%, 60%, 70%, and 80%. For imputing the 
marker scores, we compared the naïve and RF ITs. Figures 1-6 
represent the response surface plots of the GP accuracy values 
depending on the MAF and PMMS. Figures 1 and 2 are for 
GY, Figures 3 and 4 are for PH, and Figures 5 and 6 are for 
DTM. For Figures 1, 3, and 5, the naïve IT was implemented, 
and for Figures 2, 4, and 6, the RF technique was implemented. 

Figure 1.  Response surface plot (top) of the prediction accuracy values 

as a function of MAF (0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 

0.30, 0.35, and 0.40) and PMMS (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 

9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 

30%, 40%, 50%, 60%, 70%, and 80%) for grain yield using the naïve 

imputation technique. The black and blue dots represent the mean 

prediction accuracy for 4 particular MAF × PMMS combinations ([0.05, 

5%], [0.05, 70%], [0.3, 5%], and [0.3, 70%]) and the obtained standard 

deviations for 200 replicates of training-testing randomizations. The gray 

response surface (bottom) represents the number of markers that 

remains in the analysis after applying the quality controls (QCs) on 

marker data (MAF and PMMS). The numbers in the gray plot correspond 

to the actual number of markers that remained in the analysis for the 4 

particular MAF × PMMS combinations. The yellow dot points at the 

combination that gave the highest correlation (0.586 and SD: 0.011). In 

this case, the yellow and black points coincided for the (0.3, 70%) 

combination with 8104 marker SNPs. MAF indicates minor allele 

frequency; PMMS, percentage of missing marker scores; SNP, 

single-nucleotide polymorphism.

Figure 2.  Response surface plot (top) of the prediction accuracy values 

as a function of MAF (0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 
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Table 1 shows results for 4 MAF × PMMS combinations that 
were examined for all of the 6 figures (trait × IT).

Besides the 4 common coordinates, the highest peak is also 
shown on the response surface plots. In only one case, the high-
est peak was also 1 of the 4 commonly evaluated coordinates. 

Figure 3.  Response surface plot (top) of the prediction accuracy values as 

a function of MAF (0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 0.30, 

0.35, and 0.40) and PMMS (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 

11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 40%, 

50%, 60%, 70%, and 80%) for plant height using the naive imputation 

technique. The black and blue dots represent the mean prediction 

accuracy for 4 particular MAF × PMMS combinations ([0.05, 5%], [0.05, 

70%], [0.3, 5%], and [0.3, 70%]) and the obtained standard deviations for 

200 replicates of training-testing randomizations, respectively. The gray 

response surface (bottom) represents the number of markers that remains 

in the analysis after applying the quality controls (QCs) on marker data 

(MAF and PMMS). The numbers in the gray plot correspond to the actual 

number of markers that remained in the analysis for the 4 particular 

MAF × PMMS combinations. The yellow dot points at the combination 

(0.09, 2%) that gave the highest correlation (0.515, SD: 0.015) with 3799 

marker SNPs. MAF indicates minor allele frequency; PMMS, percentage of 

missing marker scores; SNP, single-nucleotide polymorphism.

Figure 4.  Response surface plot (top) of the prediction accuracy values 

as a function of MAF (0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 

0.30, 0.35, and 0.40) and PMMS (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 

10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 

40%, 50%, 60%, 70%, and 80%) for plant height using the Random 

Forest imputation technique. The black and blue dots represent the mean 

prediction accuracy for 4 particular MAF × PMMS combinations ([0.05, 

5%], [0.05, 70%], [0.3, 5%], and [0.3, 70%]) and the obtained standard 

deviations for 200 replicates of training-testing randomizations. The gray 

response surface (bottom) represents the number of markers that 

remains in the analysis after applying the quality controls (QCs) on 

marker data (MAF and PMMS). The numbers in the gray plot correspond 

to the actual number of markers that remained in the analysis for the 4 

particular MAF × PMMS combinations. The yellow dot points at the 

combination (0.09, 11%) that gave the highest correlation (0.524, SD: 

0.015) with 9287 marker SNPs. MAF indicates minor allele frequency; 

PMMS, percentage of missing marker scores; SNP, single-nucleotide 

polymorphism.

0.30, 0.35, and 0.40) and PMMS (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 

10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 

40%, 50%, 60%, 70%, and 80%) for grain yield using the Random Forest 

imputation technique. The black and blue dots represent the mean 

prediction accuracy for 4 particular MAF × PMMS combinations ([0.05, 

5%], [0.05, 70%], [0.3, 5%], and [0.3, 70%]) and the obtained standard 

deviations for 200 replicates of training-testing randomizations, 

respectively. The gray response surface (bottom) represents the number 

of markers that remains in the analysis after applying the quality controls 

(QCs) on marker data (MAF and PMMS). The numbers in the gray plot 

correspond to the actual number of markers that remained in the analysis 

for the 4 particular MAF × PMMS combinations. The yellow dot points at 

the combination (0.06, 80%) that gave the highest correlation (0.591, SD: 

0.010) with 44 180 marker SNPs. MAF indicates minor allele frequency; 

PMMS, percentage of missing marker scores; SNP, single-nucleotide 

polymorphism.

Figure 2. (Continued)

The black dots represent the mean prediction accuracy values 
for the 4 common coordinates, and the yellow dots are the 
mean prediction accuracy values for the highest peak. The blue 
dots show the standard deviation of the prediction accuracy 
using the 200 replicates for a 10-fold cross-validation design. 
The numerical values within the plots represent the number of 
markers used at those coordinates (combinations).

For GY under the naïve IT (Table 1 and Figure 1), the 
highest correlation (0.586) was obtained when markers with a 
MAF of at least 0.3 and less than 70% of missing values 
remained in the analysis delivering a total of 8140 SNPs. In 
this case, the highest value coincided with 1 of the common 
QCs for a slight improvement compared with the other 3 cases. 
Under the RF imputation, the highest correlation (Table 1 and 
Figure 2) was slightly higher (0.591) compared with the naïve 
imputation. This value was obtained when a MAF of 0.06 and 
PMMS equal to 80% were used as QCs. Thus, for reaching 
same levels of predictive ability, a larger number of markers 
were necessary (44 180) under RF IT. Thus, no significant dif-
ferences were found for the highest correlation obtained 
between the different IT; however, these values were obtained 



Jarquín et al	 5

using different QCs resulting in different number of markers. 
In this case, the naïve imputation needed less than 20% of the  
markers that were necessary for the RF to reach comparable 
results. The same statement applies for the 4 different QCs’ 
combinations within each IT but not along the complete sur-
face response. Comparing Figures 1 and 2, we observe a flatter 
surface response (especially in the corners of the surface) when 
the RF imputation was implemented indicating a small 
improvement in predictive ability along the complete surface 
by using this imputation method.

Results for PH (Table 1 and Figures 3 and 4) showed dif-
ferent response surface patterns than for GY, which was 
expected due to the different genetic architecture of this trait. 
As shown by Fang et al,24 this trait is controlled by a very few 
loci. Here, the RF imputation gave the highest predictive 
ability (0.524) using approximately 2.5 times more markers 
(9287) than the naïve imputation (3799), which produced a 
mean correlation of 0.515. Similar to the previous case, the 
response surface obtained by the RF seemed a little flatter 

than the surface obtained by the other imputation method. 
Despite the imputation method, there were sizable improve-
ments in predictive ability with respect to conventional QCs. 
These improvements ranged between 27% and 48% for naïve 
imputation, while for RF, it was between 17% and 47%. 
Hence, a clear advantage was shown by considering other 
than conventionally used QCs.

Days to maturity showed a slight improvement in predictive 
ability by using the RF imputation compared with the naïve 
method. Similarly to the other 2 traits, the response surface was 
flatter (especially in the corners) using the RF technique. This 
IT gave the highest correlation (0.704) using 2.2 times more 
markers (26 512) than what was necessary with the naïve 
method (11 917), which delivered a mean correlation of 0.691. 
For this trait, the improvements with respect to conventional 
QCs ranged between 2% and 7% for both imputation methods. 
Thus, no significant improvements were observed considering 
other values than the commonly used QCs.

In this study, we showed that the improvements in predic-
tive ability are affected by (1) the genetic architecture of the 

Figure 5.  Response surface plot (top) of the prediction accuracy values 

as a function of MAF (0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 

0.30, 0.35, and 0.40) and PMMS (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 

10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 

40%, 50%, 60%, 70%, and 80%) for days to maturity using the naive 

imputation technique. The black and blue dots represent the mean 

prediction accuracy for 4 particular MAF × PMMS combinations ([0.05, 

5%], [0.05, 70%], [0.3, 5%], and [0.3, 70%]) and the obtained standard 

deviations for 200 replicates of training-testing randomizations. The gray 

response surface (bottom) represents the number of markers that 

remains in the analysis after applying the quality controls (QCs) on 

marker data (MAF and PMMS). The numbers in the gray plot correspond 

to the actual number of markers that remained in the analysis for the 4 

particular MAF × PMMS combinations. The yellow dot points at the 

combination (0.09, 20%) that gave the highest correlation (0.691, SD: 

0.009) with 11 917 marker SNPs. MAF indicates minor allele frequency; 

PMMS, percentage of missing marker scores; SNP, single-nucleotide 

polymorphism.

Figure 6.  Response surface plot (top) of the prediction accuracy values 

as a function of MAF (0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20, 0.25, 

0.30, 0.35, and 0.40) and PMMS (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 

10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 

40%, 50%, 60%, 70%, and 80%) for days to maturity using the Random 

Forest imputation technique. The black and blue dots represent the mean 

prediction accuracy for 4 particular MAF × PMMS combinations ([0.05, 

5%], [0.05, 70%], [0.3, 5%], and [0.3, 70%]) and the obtained standard 

deviations for 200 replicates of training-testing randomizations, 

respectively. The gray response surface (bottom) represents the number 

of markers that remains in the analysis after applying the quality controls 

(QCs) on marker data (MAF and PMMS). The numbers in the gray plot 

correspond to the actual number of markers that remained in the analysis 

for the 4 particular MAF × PMMS combinations. The yellow dot points at 

the combination (0.1, 80%) that gave the highest correlation (0.704, SD: 

0.009) with 26 512 marker SNPs. MAF indicates minor allele frequency; 

PMMS, percentage of missing marker scores; SNP, single-nucleotide 

polymorphism.
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trait and (2) the imputation method as well. The highest cor-
relations were found considering different combinations of 
MAF and PMMS, which also varied the number of markers 
necessary for the analysis. In general, RF produced flatter 
response surfaces showing a slight advantage by using this 
imputation method. Also, this method needed between 2 and 
5 times more markers than the naïve imputation for producing 
comparable results. Finally, we saw sizable, moderate, and null 
improvements in predictive ability for PH, GY, and DTM, 
respectively, by considering QCs other than those that are 
commonly used.
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