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1 Faculty of Power and Environmental Engineering, Department of Technologies and Installations for Waste
Management, Silesian University of Technology, 18 Konarskiego St., 44-100 Gliwice, Poland;
wojciech.hryb@polsl.pl

2 Institute for Ecology of Industrial Areas, Environmental Microbiology Unit, 6 Kossutha St., 40-844 Katowice,
Poland; izabiedron@gmail.com

* Correspondence: Ewa.Bragoszewska@polsl.pl; Tel.: +48-322-372-762

Received: 13 December 2019; Accepted: 29 January 2020; Published: 31 January 2020
����������
�������

Abstract: International interests in biological air pollutants have increased rapidly to broaden the pool of
knowledge on their identification and health impacts (e.g., infectious, respiratory diseases and allergies).
Antibiotic resistance and its wider implications present us with a growing healthcare crisis, and an
increased understanding of antibiotic-resistant bacteria populations should enable better interpretation
of bioaerosol exposure found in the air. Waste sorting plant (WSP) activities are a source of occupational
bacterial exposures that are associated with many health disorders. The objectives of this study were (a)
to assess bacterial air quality (BAQ) in two cabins of a WSP: preliminary manual sorting cabin (PSP) and
purification manual sorting cabin (quality control) (QCSP), (b) determine the particle size distribution
(PSD) of bacterial aerosol (BA) in PSP, QCSP, and in the outdoor air (OUT), and (c) determine the antibiotic
resistance of isolated strains of bacteria. Bacterial strains were identified on a Biolog GEN III (Biolog,
Hayward, CA, USA), and disc diffusion method for antimicrobial susceptibility testing was carried out
according to the Kirby–Bauer Disk Diffusion Susceptibility Test Protocol. A large share of fecal bacteria,
Enterococcus faecalis and Alcaligenes faecalis spp. feacalis, was found in the tested indoor air, which is a
potential health hazard to the workers of the monitored WSP. Our results demonstrate the necessity
to take into account fecal air pollution levels to avoid making erroneous assumptions regarding the
environmental selection of antibiotic resistance. Total elimination of many anthropogenic sources is
not possible, but important findings of this study can be used to develop realistic management policies
methods to improve BAQ.
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1. Introduction

Bioaerosols are crucial indicators of air pollution and play an instrumental role as risk factors when it
comes to the adverse health outcome [1]. These indicators, also known as primary biological airborne
particles (PBAPs), have been linked to various health effects, from allergic, through infections, to toxic
reactions [2–6]. PBAPs include all particles having a biological source that is in suspension in the air
(bacteria, fungi, viruses, pollen) as well as biomolecules (toxins, debris from membranes such as lipids and
proteins) [7].
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Bacterial air quality (BAQ) is an important problem because people inhale nearly 10 L of air a minute,
which amounts to 15,000 L/day [8]. Waste sorting plants (WSPs) are a specific source of bacteria emission
into the air. A WSP occurs during waste transport and processing at sorting stations. Rapid population
growth and urbanization around the world has led to increased waste generation rates. In Poland and
in many other countries, there are still no established legal limits for occupational exposure to bacteria
aerosol in WSPs. However, this information is indispensable for the assessment of population exposure,
as well as for the identification of the sources of bacterial aerosols (BAs) emission [9].

In the European Union, the protection of workers against hazards related to exposure to biological
agents is regulated by Directive 2000/54/EC [10]. Additionally, the harmfulness of these factors in Polish
regulations is set out in the regulation dated 22 April 2005 on harmful biological factors for health in the
work environment and health protection of employees exposed to these factors [11].

Growing concern over the threat posed by antibiotic-resistant bacteria present in the air has turned
attention also to the environmental dimensions of the problem, and the receiving environments form
another possible hotspot for antibiotic resistance dissemination when bacteria originating from a WSP come
in contact with environmental bacteria [12]. The genes that make up this environmental resistome have
the potential to be transferred to pathogens, and indeed there is some evidence that at least some clinically
relevant resistance genes have originated in environmental microbes [13]. Over the past years, the role
of the environment as an important source and dissemination route of resistance has been increasingly
recognized [13–15], but our knowledge of its contribution is still limited.

This paper aims (a) to asses bacterial air quality (BAQ) in two cabins of WSP: preliminary manual sorting
cabin (PSP) and purification manual sorting cabin (quality control) (QCSP), (b) determine concentration
and bacterial particle size distribution (PSD) in PSP, QCSP, and in the outdoor air (OUT), and (c) determine
the antibiotic resistance of isolated strains of bacteria.

2. Experiments

2.1. Sampling Sites

The study was carried out in two cabins of a WSP: PSP and QCSP, for mixed municipal waste, as well as
outside (OUT) the building (Figure 1). The research was conducted during March 2019. Every measurement
was conducted between 12:00 am and 15:00 am, when the indoor temperature was about 17 ◦C, and
outdoor was an average of 12 ◦C. Relative humidity of indoor air (RH) was about 20%, and outdoor 28%.
The device used for air temperature and humidity measurement was Oregon Scientific™ (WMR200).

The WSP, which has a capacity of 70,000 Mg/year, works in a two-shift system and is equipped with
technology adapted to segregating municipal waste, collected selectively. The volume of the preliminary
cabin of sorting plant (PSP) is ~178 m3, and the volume of cleaning cabin of sorting plant (QCSP) is ~565 m3.
The preliminary and purification cabin of the sorting plant has a 20-fold air exchange per hour. It is supply
and exhaust ventilation, and the air in the cabins is drawn off from the conveyor belts. In each sorting
cabin, there average 10 people working.
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Figure 1. Six-stage Andersen Cascade Impactor (ACI) used during measurements in (a) preliminary 
manual sorting cabin (PSP), (b) a purification manual sorting cabin (quality control) (QCSP), and (c) 
outside the analyzed building (OUT). 

2.2. Sampling and Analytical Methods 

Bacteria were collected using a six-stage Andersen Cascade Impactor (ACI) (Thermo Fisher 
Scientific, Waltham, MA, USA) with cut-off diameters of 7.0, 4.7, 3.3, 2.1, 1.1, and 0.65 μm. The pump 
ensured a constant flow rate (28.3 dm³/min) throughout the ACI. The sampling time was 10 min, 
following Nevalainen et al. [16]. The air sampling device was set at a height of 1.5 m. The ACI was 
disinfected by 70% ethanol-immersed cotton balls between each sampling. Samples were collected 
on nutrient media in Petri-dishes located on all ACI stages. Tryptic soy agar (TSA, BioMaxima) was 
used for bacteria, with cycloheximide added to inhibit fungal growth. The concentration of 
cycloheximide (95%, ACROS Organics™) in culture medium was 500 mg/L. The Petri dishes were 
incubated for 48 h at 36 ± 1 °C. 

2.3. Bacteria Identification and Multi-Antibiotic Resistance (MAR) Test 

Bacteria identification and multi-antibiotic resistance (MAR) were practiced by using the same 
operation details as in our previous studies [17–19]. Selected strains were identified using the Biolog 
OmniLog system (Biolog, Haward, CA, USA) and GEN III MicroPlate™. Cultivated bacteria were 
also tested for the MAR. Thirty-six different antibiotics and their concentrations were chosen to take 
into consideration the most common species in the literature concerning antibiotic resistance.  

3. Results and Discussion 

3.1. Quantity of Bacterial Aerosol (BA) of Two Cabins of Sorting Plant and Outdoor Air 

Figure 1. Six-stage Andersen Cascade Impactor (ACI) used during measurements in (a) preliminary manual
sorting cabin (PSP), (b) a purification manual sorting cabin (quality control) (QCSP), and (c) outside the
analyzed building (OUT).

2.2. Sampling and Analytical Methods

Bacteria were collected using a six-stage Andersen Cascade Impactor (ACI) (Thermo Fisher Scientific,
Waltham, MA, USA) with cut-off diameters of 7.0, 4.7, 3.3, 2.1, 1.1, and 0.65 µm. The pump ensured
a constant flow rate (28.3 dm3/min) throughout the ACI. The sampling time was 10 min, following
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Nevalainen et al. [16]. The air sampling device was set at a height of 1.5 m. The ACI was disinfected by
70% ethanol-immersed cotton balls between each sampling. Samples were collected on nutrient media
in Petri-dishes located on all ACI stages. Tryptic soy agar (TSA, BioMaxima) was used for bacteria,
with cycloheximide added to inhibit fungal growth. The concentration of cycloheximide (95%, ACROS
Organics™) in culture medium was 500 mg/L. The Petri dishes were incubated for 48 h at 36 ± 1 ◦C.

2.3. Bacteria Identification and Multi-Antibiotic Resistance (MAR) Test

Bacteria identification and multi-antibiotic resistance (MAR) were practiced by using the same
operation details as in our previous studies [17–19]. Selected strains were identified using the Biolog
OmniLog system (Biolog, Haward, CA, USA) and GEN III MicroPlate™. Cultivated bacteria were also
tested for the MAR. Thirty-six different antibiotics and their concentrations were chosen to take into
consideration the most common species in the literature concerning antibiotic resistance.

3. Results and Discussion

3.1. Quantity of Bacterial Aerosol (BA) of Two Cabins of Sorting Plant and Outdoor Air

Table 1 shows the quantity of BA concentration in the indoor and outdoor air of the sorting plant
areas. The mean value of the average concentration of the BA was the highest in the PSP, ranging from
1.49 × 103 to 2.7 × 103 CFU/m3, while the average concentration in the QCSP ranged from 8.6 × 10

2
to

1.9 × 103 CFU/m3. The outdoor concentration of BA ranged from 6.9 × 102 to 1.7 × 103 CFU/m3.

Table 1. Average concentration and indoor/outdoor ratio (I/O), CFU/m3 of total bacterial colony-forming
units per cubic meter of preliminary manual sorting cabin (PSP), purification manual sorting cabin (quality
control) (QCSP), and outside the analyzed building (OUT).

PSP QCSP OUT

Total average concentration 1.81 × 103 1.25 × 103 1.14 × 103

Min value 1.49 × 103 8.6 × 102 6.9 × 102

Max value 2.7 × 103 1.9 × 103 1.7 × 103

Indoor/outdoor ratio 1.6 1.1 -
SD 8.0 × 102 6.2 × 102 5.1 × 102

BA contamination levels on both PSP and QCSP were lower than the threshold values of occupational
exposure specified by the Polish Committee for the Highest Permissible Concentrations and Intensities of
Noxious Agents in the Workplace (1.0 × 105 CFU/m3) [20]. Similar studies carried out in a sorting plant in
Finland showed that the maximum value of BA in the WSP ranged from ~500 to ~1500 CFU/m3 [21]. The
significantly higher average value of BA was recorded in a WSP located in Korea (1.9 × 105 CFU/m3) [22].

3.2. Particle Size Distribution (PSD) of Bacterial Aerosol (BA) in Two Cabins of Sorting Plant (PSP; QCSP) and
Outdoor Air

Table 2 presents the analysis of the average concentration of BA collected from the different stages of
ACI in the indoor and outdoor air of the sorting plant areas.

The highest average concentration of BA in the outdoor air observed on the stage with aerodynamic
diameter ranging from 3.3 to 4.7 µm. Stages with aerodynamic diameter ranging from 0.65 to 2.1 had
the highest concentration of BA of indoor samples, both in QCSP and in PSP. The results suggest the
existence of potential exposure of workers to respirable particles (less than 3.3 µm) that can reach the
trachea, bronchi, and alveoli, contributing to adverse respiratory symptoms [23,24].



Microorganisms 2020, 8, 202 5 of 11

Table 2. Average concentration and indoor/outdoor ratio (I/O), CFU/m3 of bacterial colony-forming units
per cubic meter collected from the different stages of ACI in the preliminary manual sorting cabin (PSP),
purification manual sorting cabin (quality control) (QCSP), and outside the analyzed building (OUT).

PSP QCSP OUT I/O for PSP I/O for QCSP

0.65–1.1 6.36 × 102 3.26 × 102 1.59 × 102 4.0 2.1
>1.1–2.1 6.17 × 102 3.76 × 102 2.05 × 102 3.0 1.8
>2.1–3.3 3.45 × 102 2.14 × 102 2.62 × 102 1.3 0.8
>3.3–4.7 0.55 × 102 1.63 × 102 3.19 × 102 0.2 0.5
>4.7–7.0 1.09 × 102 1.0 × 102 1.37 × 102 0.8 0.7

> 7.0 0.55 × 102 0.75 × 102 0.57 × 102 1.0 1.3

The indoor/outdoor ratio (I/O) shows us where the source of BA might be found [9,25]. The average
I/O calculated for all indoor and outdoor BA total average concentrations was higher than 1, therefore,
it could be clearly concluded that the major sources of bioaerosols were internal sources (Table 1). In this
case, the major source of the BA is stored waste (especially for fractions <2.1 µm) (Table 2). This result
indicates also that there is an additional source of bacterial aerosol for workers of the WSP.

3.3. Quality and Antibiotic Resistance of Bacterial Aerosol (BA) in Two Cabins of Sorting Plant (PSP; QCSP)

In a preliminary manual sorting cabin (PSP), a significant dominance of Gram-positive microorganisms
(90.48%) was noted, and Gram-positive microorganisms (96.21%) predominated also in the purification
manual sorting cabin (quality control) (QCSP). Gram-negative microorganisms constituted 9.52% and
3.79%, respectively. Comparing the qualitative composition between microorganisms isolated from air
samples in the two cabins, the dominance of the following species was noted: in the PSP, the dominant
species were Staphylococcus saprophyticus, Enterococcus faecalis, and Alcaligenes faecalis spp. feacalis, while
in QCSP, Mycobacterium setense and Micrococcus luteus were dominant. According to Directive 2000/54/

EC [10] and the Classification of Harmful Biological Factors developed by the Institute of Rural Health in
Lublin, Poland [26], the species selected for testing belong to Risk Group I and they are not hazardous for
humans in the work environment, however, their long-term inhalation may cause adverse health effects,
especially in workers sensitive to this type of air pollution.

In PSP, the dominant species showed resistance from 45.9% (Enterecoccus faecalis) to 56.8%
(Staphylococcus saprophyticus and Alcaligenes faecalis spp. feacalis) of all tested antibiotics. Bacteria from the
Staphylococcus genus are present on the skin and mucous membranes. However, despite its universality in
the human environment, it can cause numerous diseases [27]. According to the literature, Staphylococcus
saprophyticus is a Gram-positive coccus and it is associated primarily with urinary tract infections (UTIs),
especially among women [28]. According to the literature, it is a strain that shows resistance to most
drugs used in this UTI treatment [29–31]. The strain isolated in our study from the air sample showed
resistance to Ciprofloxacin, Trimethoprim/ Sulfamethoxazole, Nalidixic acid, Ampicillin, Erythromycin,
Vancomycin, and Norfloxacin, which are used to treat UTIs. In contrast, the strain was sensitive to the
antibiotic nitrofurantoin [28,32]. It seems interesting that the strain is sensitive to the drug present in
use since 1952 (Nitrofurantoin) [33] while it shows resistance to the above-mentioned antibiotics later
introduced into medical use (Table 3).

S. saprophyticus can be differentiated from another coagulase-negative staphylococcus by its resistance
to Novobiocin. Like other uropathogens, S. saprophyticus utilizes urease to produce ammonia. However,
unlike many of these organisms, it cannot reduce nitrate [34].
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Table 3. The pattern of antibiotic resistance of the isolated strains, including the date of introduction of
antibiotics for medical use. Marked boxes indicate resistance.

Approved for Medical Use Antibiotic Staphylococcus
saprophyticus

Enterecoccus
faecalis

Alcaligenes faecalis
spp. feacalis

Micrococcus
luteus E.

Mycobacterium
setense

1944 Neomycin [33]

1952 Erythromycin [35]

1952 Nitrofurantoin [36]

1956 Vancomycin [37]

1960 Metronidazole [38]

1961 Novobiocin [39,40]

1962 Trimethoprim [41]

1963 Ampicillin [42]

1963 Gentamicin [33]

1967 Doxycycline [43]

1967 Nalidixic acid [44]

1968 Rifampicin [45]

1968 Tobramycin [33]

1968 Trimethoprim/sulph [41]

1970 Ticarcillin [46]

1971 Minocycline [47]

1971 Mupirocin [48,49]

1972 Amoxycillin [42]

1975 Netilmicin [33]

1976 Amikacinv [33]

1977 Cefoxitin [50]

1978 Cefadroxil [51]

1979 Cefaclor [42]

1981 Piperacillin [52,53]

1983 Norfloxacinv [54,55]

1985 Ceftazidime [42]

1985 Ofloxacin [53]

1985 Aztreonam [56]

1986 Ciprofloxacin [53]

1987 Imipenem [57]

1988 Teicolpanin [58,59]

1991 Azithromycin [60,61]

1996 Cefepime [42]

2001 Ertapenem [62]

2005 Doripenem [63]

2010 Ceftaroline [64]

A strain with a very similar resistance pattern to Staphylococcus saprophyticus is Alcaligenes faecalis spp.
feacalis. In our research, the resistance pattern of this strain differs from Staphylococcus saprophyticus only by
its sensitivity to Amoxycillin and Piperacillin and by resistance to Cefepime. This bacterium can be found
in the human digestive tract, but if it lowers immunity it can cause disease. A. faecalis has been reported in
the case of ocular or urinary tract infections [65]. A. faecalis also appears in the feces of birds [66]. There
have also been cases of isolating this microorganism from water samples [67].

Enterococcus faecalis is a Gram-positive bacterium that can cause a variety of nosocomial infections, of
which UTIs are the most common. These infections can be exceptionally difficult to treat because of drug
resistance of many E. faecalis isolates [68]. Enterococci are characterized by natural resistance to numerous
antibiotics (among them cephalosporins) and also by easy acquired resistance to antibiotics. Infections
caused by multiresistant strains are difficult in treatment, and chronic, recurrent, and sometimes fatal
infections are described. Enterococcal infections are caused often by E. faecalis, rarely by E. faecium [69]. In
our study, numerous isolates of this strain were isolated in the PSP, but they showed lower resistance to
antibiotics compared with previously described strains.
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Our attention was drawn to the high proportion of microorganisms associated with urinary tract
infections (UTIs) in bioaerosol. The specificity of sorted waste indicates a large share of hygienic waste
from households that can be a source of these microorganisms.

In the QCSP, Gram-positive microorganisms predominated with few isolates of Gram-negative
microorganisms (a total of 12 colony-forming units). In the isolates of the two predominant species,
Micrococcus luteus and Mycobacterium setense, resistance to 32.43% and 27.03% of the tested antibiotics was
also noted, respectively.

Mycobacterium setense, which belongs to nontuberculosis mycobacteria (NTM), is an organism that
is increasingly isolated in humans. However, there are also reports of environmental isolates, however,
these were samples from hospital spaces [70,71]. This work shows that it is a strain that is no longer only
characteristic for the hospital environment. It has already been proven that this microorganism is also able
to adapt to other environments, as well as acquire resistance to various disinfectants. M. setense might
represent an health hazard because, as seen in literature, it is occasionally responsible for opportunistic
infections [72,73].

4. Conclusions

The research of the bacterial air quality (BAQ) was carried out in two cabins of a waste sorting plant
(WSP): preliminary manual sorting cabin (PSP) and purification manual sorting cabin (quality control)
(QCSP), as well as outside (OUT) the building.

The obtained results of particle size distribution (PSD) of bacterial aerosol (BA) may indicate that
BA particles come directly from sorted waste. The results suggest the existence of potential exposure of
workers to respirable particles (<3.3 µm) that can reach the trachea, bronchi, and alveoli, contributing to
adverse respiratory symptoms.

Of the airborne bacteria isolated from air samples in the two cabins, the dominance of the following
species was noted: in the PSP, the dominant species were Staphylococcus saprophyticus, Enterecoccus
faecalis, and Alcaligenes faecalis spp. feacalis, while in QCSP, Mycobacterium setense and Micrococcus luteus
were dominant.

The high proportion of bacteria associated with urinary tract infections (UTIs) was observed. The
specificity of sorted waste indicates a large share of hygienic waste from households that can be a
source of these bacteria. Additionally, our results demonstrate the obligation to take into account fecal
air pollution levels to avoid making erroneous assumptions regarding the environmental selection of
antibiotic resistance.

The diversity of resistance genes (RGs) present in the environment suggests that there are still many
more resistance genes available for pathogens to recruit. These genes are common among the bacterial
populations in the human microbiome and are not likely to be eradicated, even in the absence of antibiotic
selection [74]. Therefore, it is important to use personal protective equipment (respiratory protection
masks, footwear, protective clothing, and gloves), effective and efficient ventilation, as well as limiting the
employees’ working time in these conditions [75]. Although, there is a lack of BAQ standards in Polish
legislation, the key problem is keeping a high standard of air quality, and we hope that the results of this
campaign may indicate the usefulness of periodic microbiological environmental monitoring to verify the
quality of the air and to establish possible technologically achievable guide levels of contamination for a
specific work environment.

Author Contributions: Conceptualization, E.B.; Data curation, E.B. and I.B.; Methodology, E.B. and I.B.; Supervision,
E.B.; Visualization, W.H.; Writing—original draft, E.B. and I.B.; Writing—review & editing, E.B., I.B., and W.H. All
authors have read and agreed to the published version of the manuscript.



Microorganisms 2020, 8, 202 8 of 11

Funding: This work was supported by the Faculty of Power and Environmental Engineering, Silesian University of
Technology (statutory research).

Acknowledgments: The authors wish to thank the Department of Air Protection, Silesian University of Technology,
for the possibility to use the laboratory.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiayu, C.; Qiaoqiao, R.; Feilong, C.; Chen, L.; Jiguo, W.; Zhendong, W.; Lingyun, C.; Liu, R.; Guoxia, Z. Microbiology
Community Structure in Bioaerosols and the Respiratory Diseases. J. Environ. Sci. Public Health 2019, 3, 347–357.
[CrossRef]

2. Pearson, C.; Littlewood, E.; Douglas, P.; Robertson, S.; Gant, T.W.; Hansell, A.L. Exposures and health outcomes in
relation to bioaerosol emissions from composting facilities: A systematic review of occupational and community
studies. J. Toxicol. Environ. Health. Part. B Crit. Rev. 2015, 18, 43–69. [CrossRef] [PubMed]

3. Fung, F.; Hughson, W.G. Health effects of indoor fungal bioaerosol exposure. Appl. Occup. Environ. Hyg. 2003,
18, 535–544. [CrossRef] [PubMed]

4. Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and
prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [PubMed]

5. Kim, K.H.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 2018, 67,
23–35. [CrossRef]

6. Górny, R.L. Microbial Aerosols: Sources, Properties, Health Effects, Exposure Assessment—A Review. KONA
Powder Part. J. 2020. [CrossRef]

7. Wéry, N. Bioaerosols from composting facilities-a review. Front. Cell. Infect. Microbiol. 2014. [CrossRef]
8. Wood, R.A.; Burchett, M.D.; Orwell, R.A.; Tarran, J.; Torpy, F. Plant/soil capacities to remove harmful substances

from polluted indoor air. J. Horticul. Sci. Biotechnol. 2002, 71, 120–129. [CrossRef]
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