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As the most widely used mammalian cell line, Chinese hamster ovary (CHO) cells can
express various recombinant proteins with a post translational modification pattern similar
to that of the proteins from human cells. During industrial production, cells need large
amounts of ATP to support growth and protein expression, and since glycometabolism is
the main source of ATP for cells, protein production partly depends on the efficiency of
glycometabolism. And efficient glycometabolism allows less glucose uptake by cells,
reducing production costs, and providing a better mammalian production platform for
recombinant protein expression. In the present study, a series of progresses on the
comprehensive optimization in CHO cells by glycometabolism strategy were reviewed,
including carbohydrate intake, pyruvate metabolism and mitochondrial metabolism. We
analyzed the effects of gene regulation in the upstream and downstream of the glucose
metabolism pathway on cell’s growth and protein expression. And we also pointed out the
latest metabolic studies that are potentially applicable on CHO cells. In the end, we
elaborated the application of metabolic models in the study of CHO cell metabolism.

Keywords: CHO cells, glycometabolism engineering, pyruvate metabolism, aerobic oxidation of glucose, metabolic
models

INTRODUCTION

In recent years, the proportion of biological drugs in the global pharmaceutical market has been
expanding. Since 2002, more than 300 biological drugs have been approved by the FDA (Food and
Drug Administration, 2004; Tihanyi and Nyitray, 2021), and the number continues to grow.

For macromolecular complex recombinant therapeutic proteins (RTPs), proper folding and post-
translational modifications of proteins are required to meet their biological activity; therefore,
mammalian cells are often used to produce RTPs. Among the mammalian cells, such as mouse
myeloma cells, mouse fibroblasts, human embryonic kidney 293 cells, small hamster kidney cells, and
human retina-derived PerC6 cells (Bebbington et al., 1992; Barnes et al., 2001; Jones et al., 2003;
Griffin et al., 2007; Baldi et al., 2010), Chinese hamster ovary (CHO) cells are the most widely used
mammalian cell line, and nearly 70% of RTPs are produced using this system (Cheung et al., 2016).
The CHO expression system has several advantages over other expression systems: 1) It is capable of
both appressed growth and high cell density suspension culture in special media, which facilitates
large-scale industrial production (Lai et al., 2013). 2) Almost no human virus can multiply in CHO
cells, suggesting that it is potentially less dangerous (Boeger et al., 2005). 3) The expressed proteins
are closest to natural proteins in terms of molecular structure, physicochemical properties, and
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biological functions, and the glycosylation of CHO cell-expressed
proteins is closer to that of human-derived cells due to the lack of
immunogenic α-galactose epitopes (Ghaderi et al., 2012). 4) CHO
cells are fibroblasts with low endogenous protein secretion, which
facilitates the isolation and purification of recombinant proteins
(Mohan et al., 2008), 5) and can efficiently amplify and express
exogenous genes (Li et al., 2018).

Since the first RTP, tissue plasminogen activator (tPA), was
approved formarketing in 1986 (Kaufman et al., 1985), CHO cells
have been the cell line of choice for expressing RTPs as their
expression system. Protein production has exceeded 10 g/L due to
the optimization of culture medium and the development of
production culture processes (Kim et al., 2012). But the
application of cell engineering technology is promising to
achieve a breakthrough in yield.

To meet the growing market demand for biopharmaceuticals,
how to continuously innovate manufacturing processes to
achieve higher volume productivity in shorter time, as well as
stable product quality and lower production cost is a hot research
topic in biopharmaceutical field nowadays. To achieve this,
researchers overexpressed beneficial genes or repressed
disadvantageous genes by genomic knock-out or siRNA-
mediated knock-down to improve performance of CHO
manufacturing cell lines. These cell engineering approaches
classically focused on the cellular growth, metabolism,
apoptosis, the protein glycosylation, secretion, and production
(Le Fourn et al., 2014; Yang et al., 2015). We also constructed
DNA methyltransferase-deficient (Dnmt3a-deficient) CHO cells
to reduce DNA methylation (Jia et al., 2018; Wang et al., 2019).
Then we realized that metabolic engineering strategies targeting
key enzymes in the glucose metabolism of CHO cells and the
enzymes associated with key enzyme activities can further
optimize the cell lines to facilitate industrial production.

This paper reviews the progress of research on optimizing
CHO cellular glucose metabolism in three aspects: alternative
carbon sources, pyruvate metabolism, and mitochondrial
metabolism using gene editing techniques.

CHO CELL GLUCOSE METABOLISM
PATHWAY

Glucose is the main component of mammalian cell culture
medium and the main carbon source material that provides
energy for cell growth. There are four main metabolic
pathways of glucose in CHO cells: the conversion to lactic
acid through the glycolytic pathway, which provides energy for
cell growth; the complete oxidation to CO2 by entering the
tricarboxylic acid cycle (TCA cycle) continuously; the
conversion to ribose phosphate through the pentose phosphate
pathway, which is used for the generation of nucleic acid; and the
synthesis to other substances such as amino acids and fatty acids.

It has been shown that glucose in cultured mammalian cells
produces ATP mainly through the glycolytic pathway, with 2 mol
of ATP per mole of glucose, but 36 mol of ATP per mole of
glucose if it can be fully oxidized to CO2 in the TCA cycle (Berg
et al., 2007). It can be seen that the energy generation efficiency of

the TCA cycle is much higher than that of the glycolysis.
However, the isotopic tracer method analysis revealed that
more than 95% of glucose is converted to lactate through the
glycolysis pathway, 3.6% of glucose enters the pentose phosphate
pathway, and only 0.6% are carried into the TCA cycle (Petch and
Butler, 1994). This shows that, despite the enormous potential of
established cell lines, CHO cells have inherent metabolic
limitations: High glycolytic rate even in the presence of
oxygen. This is common to the Warburg effect found in
tumor cells (Bulte et al., 2020). To improve the metabolic
efficiency of CHO cells, researchers have regulated the
expression of several genes of interest (GOIs) in the glucose
metabolism pathway (Figure 1). And the effects of these
glycometabolism engineering methods on cell culture and
protein production of CHO cells are listed in Table 1.

ALTERNATIVE CARBON SOURCES

Various intrinsic (genetic) and external (environmental) factors
act together during cell lineage development, among which
environmental factors include the provision of key
components, such as amino acids, carbohydrates, and
metabolites, which promote cell growth, prolong culture
viability, and increase productivity by supporting efficient cell
metabolism. However, high provision of nutrients can increase
the production and accumulation of metabolic wastes, such as
lactate and ammonia, inhibiting normal cellular metabolism.
Moreover, very rapid glycolysis can lead to the accumulation
of pyruvate, which in turn generates lactate. In addition, the
production of lactate and ammonia can further lead to inefficient
metabolism, resulting in reduced cell growth and protein
synthesis (Glacken et al., 1986; Kurano et al., 1990). Therefore,
reducing the synthesis of toxic products such as ammonia and
lactate is one of the main approaches to improve CHO culture.
Considering the relationship between metabolism, cell growth,
and recombinant protein production, metabolism-related genes
are common GOIs for genetic engineering (Templeton et al.,
2013). Altering the expression of key genes in the central carbon
metabolism and the use of alternative carbon sources are
beneficial to reduce lactate production to optimize the cell
culture (Altamirano et al., 2013; Richelle and Lewis, 2017).
Therefore, the strategy of using key genes of glucose
metabolism as GOIs for metabolic engineering of CHO cells
and simultaneously pairing them with the use of alternative
carbon sources to culture CHO cells have been heavily studied
and applied.

Galactose
CHO cells cultured with galactose, instead of glucose as the sole
carbon source, showed a low survival rate (Neermann and
Wagner, 1996). In contrast, when cultured in a medium
containing both glucose and galactose, the cells could utilize
lactate and reduce lactate generation, probably because CHO cells
metabolize galactose slower than glucose, reducing the glycolytic
rate and avoiding a large accumulation of pyruvate. However, in
this case, the galactose-related metabolism, which is much slower
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than that of glucose, also causes a decrease in the specific cell
growth rate (Kelly et al., 2018). To improve galactose metabolism,
CHO cells overexpressing galactose kinase (GALK1) were
cultured in a medium containing galactose, which increased
their specific growth rate by 39% and maintained their growth
with galactose as the main carbon source. The slightly lower
density of cells overexpressing GALK1 compared to controls may
be related to metabolic stress due to GALK1 overexpression (Gu
et al., 1995); however, lactate accumulation was less and the
parameter ΔL/ΔGal increased by 54% indicating improved
cellular galactose metabolism (Jimenez et al., 2019). Metabolic
flux analysis during the glucose depletion phase versus the
galactose depletion phase in CHO cells overexpressing GALK1
and control CHO cells showed that inefficient glucose
metabolism led to pyruvate accumulation during the glucose
depletion phase. This excess pyruvate is directed to the
synthesis of alanine and lactate, which is characteristic of cells
cultured with glucose as a carbon source (Altamirano et al., 2006;
Wilkens et al., 2011). Furthermore, cells overexpressing GALK1
exhibited a lower glycolytic flux during the glucose depletion
phase and a higher TCA cycle flux during the galactose depletion
phase than the controls (Jimenez et al., 2019). Moreover,
culturing CHO cells using galactose increases the sialic acid
glycosylation modification of recombinant proteins (Liu et al.,
2015). However, when CHO cells were cultured in a galactose
medium, some amino acids, such as histidine and glutamine, were
depleted in the early stages of cell growth and became growth

limiting factors. Therefore, this method of culturing CHO cells
with galactose as a carbon source can still be improved. In
addition, overexpression of galactose transporter protein
(GLUT8) can also increase the uptake and metabolism of
galactose by cells (Jiménez et al., 2011).

Fructose
The affinity of fructose transporter protein (GLUT5) for fructose
is lower than that of glucose transporter protein (GLUT1) for
glucose. Thus, replacing glucose in the medium with fructose
while CHO cells express GLUT5 can also reduce lactate
accumulation by reducing the glycolytic flux (Wlaschin and
Hu, 2007). CHO cells usually do not grow well in media
containing fructose but not glucose due to low or possibly no
expression of GLUT5 transporter protein. Cells express GLUT5
show a good lactate metabolism profile when fructose is present,
indicating an increase in lactate consumption efficiency
(Wlaschin and Hu, 2007; Le et al., 2013; Wilkens and
Gerdtzen, 2015). In 2013, Le et al. used the ability of the
promoter of the thioredoxin-interacting protein (TXNIP) gene
to drive GLUT5 expression in late cell culture by driving the
expression of the GOI as the cells grow, allowing glucose to
stimulate cell growth in early culture and later shifting the cells to
metabolize fructose, which facilitates the overall cellular
metabolic balance (Le et al., 2013).

By stably expressing both GLUT5 and pyruvate carboxylase
(PYC), energy metabolism was improved, and lactate production

FIGURE 1 | A profile of the GOIs’ sites in the glucose metabolism pathway of CHO cells. To better demonstrate the relationship between the target genes of
metabolic engineering and the glucose metabolism pathway in CHO cells, an illustration is presented. The GOIs which are overexpressed have been marked with “+,”
and the others which are down-expressed via siRNA have been marked with “−.” All the GOIs are indicated using background of colorful circles, and the metabolic
pathways are marked as an axis below the figure.
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was reduced, resulting in increased cell density and prolonged cell
life span. Cellular metabolic flux analysis showed that CHO cells
subjected to double gene editing had higher metabolic fluxes in
glycolysis and TCA cycles, were able to consume more fructose,
and maintained higher cell density (Wilkens and Gerdtzen,
2015).

PYRUVATE PRODUCTION, TRANSPORT,
AND CONSUMPTION

During the growth and protein expression of CHO cells, the
culture medium can provide various nutrients to the cells. Among
them, some carbohydrates, lipids, and amino acids can be
metabolized by the cells to produce energy. These substances
can be converted to each other to maintain the metabolic balance
of the cells, and pyruvate plays a very important role in this
conversion process. For example, the metabolism of amino acids
such as alanine and glycine, lipids, such as glycerol and fatty acids,
and various hexoses are all related to the metabolism of pyruvate.
Especially for the TCA cycle, pyruvate is one of the most
important metabolic substrates. In addition, during the
production, transport, and consumption of pyruvate, the
generated substances, such as nicotinamide adenine
dinucleotide (NADH), are essential for the regulation of
cellular metabolism and influence the efficiency of metabolism
of various substances. Notably, pyruvate is also the only source of

lactate, a waste product of cellular metabolism, and therefore, the
study of pyruvate metabolism becomes an important part that
cannot be bypassed when solving problems such as lactate
production and accumulation. Since the processes of pyruvate
production, transport and consumption involve multiple
metabolites and key enzymes, various GOIs are available to
optimize the metabolism of pyruvate.

Production
Pyruvate is the main product of the glycolytic process in CHO
cells, and the concentration of intracellular pyruvate is mainly
influenced by its production rate. If production rate exceeds
consumption rate, a higher glycolytic flux leads to the
accumulation of pyruvate. The rapid production and
accumulation of pyruvate lead to the accumulation of lactate
(Wilkens et al., 2011) and alanine (Ma et al., 2009) early in the
course of fed-batch cultures. This was verified in the metabolic
profiling data (Zhang et al., 2004; Sheikholeslami et al., 2014).
One idea is to slow down glycolysis to avoid pyruvate
accumulation, which will inevitably affect the normal
metabolism, growth, and protein expression of CHO cells.
For example, inhibition of GLUT1 (Paredes et al., 1999)
expression will lead to a decrease in both cell growth rate
and maximum cell density (Altamirano et al., 2013). Another
idea is to increase the rate of glycolysis and simultaneously
promote pyruvate depletion using gene editing techniques.
However, feedback inhibition exists for key enzymes in

TABLE 1 | The effects of glycometabolism engineering methods on CHO cells.

Metabolic
pathway

Target gene Gene function Gene regulation
strategy

Cell culture Protein production References

Carbohydrate
intake

GALK1 Galactose → G-
6-P

Overexpression 39% increase in specific growth
rate; 54% increase in ΔL/ΔGal

— Jimenez et al. (2019)

GLUT8 Transport
galactose

Overexpression Increase growth rate — Jiménez et al. (2011)

GLUT5 Transport fructose Overexpression Enable cells tometabolize fructose
in late growth

— Le et al. (2013)

Pyruvate
metabolism

MPC Transport
pyruvate

Overexpression Increase live cell density by up to
approximately 1.9 times; reduce
lactate production by 50%

Increase alkaline
phosphatase and
monoclonal antibody
production by 40%

Bulte et al. (2020)

PDK Phosphorylates
PDH

Down-expression
via siRNA

Increase PDH activity; facilitate
pyruvate entry into the TCA cycle

— Zhou et al. (2011)

LDH-A Pyruvate ↔
Lactate

Down-expression
via siRNA

Reduce lactate production by
45–79%

No increase in specific
productivity and protein
production

Kim and Lee (2007)

PYC2 Pyruvate →
Oxaloacetate

Overexpression Promote lactic acid consumption
and reduce lactic acid
accumulation by about four times

Increase monoclonal
antibody production by 70%

Gupta et al. (2017)

TCA cycle ACO2 Citric acid →
Isocitric acid

Down-expression
via siRNA

Significantly inhibit cell growth — Dhami et al. (2018)

LETM1 Transport Ca2+ miR-23 sponge
deplete miR-23

No increase in cell growth Increase specific productivity
and SEAP volume
productivity for three times

Kelly et al. (2015)

NAMPT NAM → NMN Potential application in CHO cells Mori et al. (2014); Opitz
and Heiland (2015)

SLC25A51 Transport NAD+ Potential application in CHO cells Girardi et al. (2020);
Kory et al. (2020);
Luongo et al. (2020)

NMNAT NMN → NAD+ Potential application in CHO cells Croft et al. (2020)
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glycolysis, such as hexokinase, phosphofructokinase (PFK), and
pyruvate kinase; for example, PFK can be inhibited by ATP, low
pH, and lactate, whereas hexokinase is inhibited by glucose 6-
phosphate (Halestrap and Price, 1999; Costa Leite et al., 2007),
suggesting that it is difficult to genetically edit the glycolytic
pathway.

The site of pyruvate production is primarily the cytoplasm, but
its metabolism is in the mitochondrial matrix. Although pyruvate
can freely cross the outer mitochondrial membrane (through
pores or non-selective channels), it needs to cross the inner
membrane and enter the mitochondrial matrix with the help
of the mitochondrial pyruvate carrier (MPC), which participates
in the TCA cycle, gluconeogenesis, and the metabolism of lipids
and amino acids to provide energy to the organism (Vanderperre
et al., 2015). Therefore, MPC can regulate the energy metabolism
of the organism by regulating the flux of pyruvate into the
mitochondrial matrix.

Transport
MPC are pyruvate transport proteins located on the inner
mitochondrial membrane, which were identified by Papa and
Halestrap (Papa et al., 1971; Halestrap, 1975) in the 1970s and
further characterized in mammals in 2012 (Brivet, 2003; Bricker
et al., 2012; Herzig et al., 2012). In mammalian cells, MPC is a
dimeric complex consisting of two subunits, MPC1 and MPC2,
and loss of activity of either subunit results in loss of activity of the
MPC complex. It has been demonstrated that deletion or
transcriptional repression of MPC1 results in defective
mitochondrial pyruvate uptake and accumulation of glycolytic
intermediates (Bricker et al., 2012; Herzig et al., 2012). Therefore,
it can be assumed that the presence of MPC is a key factor in
determining the occurrence of pyruvate transport or
accumulation. Researchers (Bulte et al., 2020) constructed
CHO cell lines stably overexpressing two subunits of the MPC
complex to facilitate pyruvate entry into mitochondria and
participate in the aerobic oxidation. Compared to controls,
CHO cells overexpressing MPC produced up to 50% less
lactate, had increased specific cell growth rates and maximum
live cell densities, and transiently expressed a 40% higher
maximum concentration of two recombinant model proteins,
alkaline phosphatase, and monoclonal antibody. The results of
the cell metabolism model showed that overexpression of MPC
increased the metabolic flux of pyruvate across the mitochondrial
membrane and promoted cell growth. However, the accelerated
cell growth resulted in faster nutrient consumption in the
medium, making it difficult to maintain a high-density culture
of cells. Therefore, fed-batch culture is an optional method to
develop the potential of this cell line. Regarding lactate
production, the MPC overexpressing cell line showed faster
lactate production during the first 12 h of culture, which was
associated with higher growth and glycolysis rates. However, the
rate of lactate production in this cell line rapidly decreased and
was significantly lower than that of the control group, and the
point in time at which lactate consumption began was earlier than
the control group, a metabolic feature largely attributable to the
translocation of pyruvate from the cytoplasm to the
mitochondria.

Consumption
Pyruvate consumption is inseparable from the metabolism of
lactate, nearly two-thirds of pyruvate generated by glycolysis is
converted to lactate (Jimenez et al., 2019). Lactate dehydrogenase
(LDH) catalyzed lactate production and consumption is a
reversible reaction; therefore, the LDH-catalyzed reaction in
CHO cells is often in equilibrium, and it is the relative
concentration of the substrate for this reversible reaction that
is the key factor in determining the direction of the reaction
(Quistorff and Grunnet, 2011). For example, elevated levels of
pyruvate or NADH favor the production of lactate for the forward
reaction, whereas elevated levels of lactate or NAD+ favor the
consumption of lactate for the reverse reaction. Typically, the
ratio of NAD+/NADH in the cytoplasm is ∼700:1, whereas the
ratio of lactate/pyruvate is ∼20:1 (Wilkens and Gerdtzen, 2015).
Changing the product/substrate ratio can shift the equilibrium
position, which can drive the reversal of the LDH reaction,
leading to lactate depletion. The production of lactate is
limited to LDH catalysis, and the extent of its accumulation
depends almost entirely on this reversible reaction, but pyruvate
can participate in multiple metabolic pathways, suggesting that
various factors can influence its concentration. When pyruvate is
consumed by enzymes other than LDH, there is a large reduction
in intracellular pyruvate, which also upsets the balance of the
LDH reversible reaction, making the reaction favorable to lactate
consumption. Therefore, editing key genes as GOIs for CHO
metabolic engineering in other depletion pathways of pyruvate
could provide a new idea to solve problems, such as lactate
accumulation.

In CHO cells, the main metabolic route for pyruvate
consumption other than lactate production is through MPC
into the mitochondria, and acetyl coenzyme A is produced by
the action of the dehydrogenase complex. Therefore, to promote
pyruvate consumption, GOIs for editing in this metabolic route is
warranted. For example, in the early stages of CHO cell culture,
the pyruvate dehydrogenase (PDH) complex may be inactivated
by pyruvate dehydrogenase kinase (PDK) phosphorylation,
resulting in the inability to metabolize pyruvate (Jeong et al.,
2006). Therefore, knockdown of PDK can increase the activity of
PDH (Zhou et al., 2011), which is beneficial for directing pyruvate
to acetyl coenzyme A, promoting the oxidation of pyruvate, and
solving the problem of lactate production due to the massive
accumulation of pyruvate. Reducing the expression of LDH-A
alone can also reduce lactate production. However, despite a
45–79% decrease in lactate levels, specific productivity (Qp) and
protein production did not increase significantly, suggesting that
the knockdown of LDH-A alone in CHO cells is insufficient to
effectively increase Qp and protein production (Kim and Lee,
2007). In contrast, simultaneous inhibition of LDH-A expression
with PDK can successfully reduce lactate formation and
simultaneously increase volumetric productivity (Zhou et al.,
2011). In addition, pyruvate can be directly carboxylated to
oxaloacetate catalyzed by PYC, which reduces pyruvate
content while directly replenishing the carbon source for the
TCA cycle and accelerating the cycle rate. It has been
demonstrated that CHO cells overexpressing yeast pyruvate
carboxylase (PYC2) showed an approximately fourfold
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reduction in lactate accumulation and a 70% increase in
monoclonal antibody production compared to controls (Gupta
et al., 2017).

AEROBIC OXIDATION

In a typical oxygen-depleted environment, the energy production
rate of mammalian cells is approximately 2.5–4.5 pmol ATP/cell/
h. Cells in the growth phase require approximately 30% more
energy than in the resting phase (Mulukutla et al., 2010). Aside
from the energy required to maintain cell growth and
proliferation, cells require more energy to synthesize and
transport recombinant proteins. According to researchers’
calculations (Akashi and Gojobori, 2002; Seth et al., 2006),
cells need at least approximately 17,000 ATP to synthesize a
typical IgG. When the IgG specific production of CHO cells is
20 pg/cell/d, cells require 0.1 pmol ATP/cell/h (Dhami et al.,
2018). TCA cycle is the main pathway of ATP production
(Vander Heiden et al., 2009; Altamirano et al., 2013; Young,
2013). Therefore, TCA cycle-related gene editing is essential to
improve recombinant protein expression in CHO cells.

TCA Cycle
The TCA cycle is the metabolic center of mammalian cells. To
determine the key metabolic responses of the TCA cycle in CHO
cells, researchers (Dhami et al., 2018) transiently downregulated
the expression of each TCA cycle gene in CHO cells using
siRNA and examined its effects on cell growth and energy
production. The results showed that the silencing of at least
four TCA cycle genes was detrimental to the growth of CHO
cells. Notably, the reaction catalyzed by mitochondrial aconitase
(ACO2) is one of the key points of the TCA cycle in CHO cells.
Cell growth was significantly decreased (p ≤ 0.0001) after
48–72 h of aconitase silencing using siRNA alone,
demonstrating that the downregulation of aconitase genes
has the most lethal effect among TCA cycle genes. Aconitase
catalyzes the reversible conversion of citric acid to cis-aconitic
acid and then cis-aconitic acid to isocitric acid (Krebs and
Holzach, 1952). In mammalian cells, aconitase has a higher
activity rate than other TCA cycle reactions, and it maintains the
balance between citric acid, cis-aconitate, and isocitric acid
(Costello and Franklin, 2013). Gene expression analysis and
metabolic profiling of CHO cells with silenced aconitase gene
showed that downregulation of aconitase gene expression
caused oxidative stress and significantly reduced ATP and
NAD production. High levels of oxidative stress reduce
protein production, so amino acids such as pyruvate and
proline can be added during fed-batch culture to reduce
oxidative stress. In addition, reduced aconitase gene
expression compromised the function of the entire TCA
cycle and CHO cells were unable to replenish other
intermediates to maintain the normal function of this cycle.
This is the first demonstration of the regulation of the TCA cycle
in CHO cells by the aconitase gene. Elucidation of the critical
role of the aconitase gene in CHO cells allows the gene to be
applied to future cell engineering strategies for efficient

expression of recombinant proteins in response to oxidative
stress or to regulate the rate of TCA cycle.

Mitochondrial Metabolism
The search for corresponding target genes for editing has proven
to be effective in improving cellular metabolic capacity at various
points of the CHO cell gluconeogenesis pathway with the aim of
promoting metabolism. However, focusing on the mitochondria
themselves may allow us to regulate energy metabolism in CHO
cells more accurately and efficiently. Study of mitochondrial
content in CHO cells showed no significant linear correlation
between mitochondrial content and cell growth and recombinant
protein synthesis (O’Callaghan et al., 2015), suggesting that
mitochondrial efficiency rather than abundance plays a more
important role in the specific productivity of CHO cells.
Therefore, for the optimization of mitochondria in CHO cells,
efforts should focus on gene editing related to mitochondrial
efficiency rather than just increasing the amount of mitochondria
in the cell.

After depleting miR-23 using the miR-23 sponge (m23sp) in
CHO cells, the researchers found that the expression of an inner
mitochondrial membrane protein called Leucine Zipper and EF-
Hand Containing Transmembrane Protein 1 (LETM1) improved.
Therefore, LETM1 was identified as a potential target of miR-23.
Meanwhile, due to the depletion of miR-23, although the growth
of CHO cells was not changed, the specific productivity was
increased, leading to a three-fold increase in the secreted alkaline
phosphatase (SEAP) volume productivity (Kelly et al., 2015).
Further studies showed that LETM1 is a Ca2+/H+ antiporter that
can channel Ca2+ into the mitochondrial matrix, and the elevated
Ca2+ concentration in mitochondria can activate the rate-limiting
enzymes of the TCA cycle, such as PDH and ATP synthase, and
subsequently increase mitochondrial activity (Osellame et al.,
2012) and increase SEAP production. Mitochondrial editing
using transcription activator-like effector nucleases
(MitoTALENs) and zinc finger nucleases (MtZFNs) has been
successfully applied in the treatment of mitochondrial diseases
and other applications, while targeted editing of CHO cell
mtDNA has not been reported. Although clustered regularly
interspaced short palindromic repeats (CRISPR) technology
has been widely used for CHO nuclear genome engineering, it
is more difficult to introduce nucleic acids such as guide RNAs
into the mitochondrial matrix, which becomes a bottleneck for
the application of CRISPR technology on mitochondrial
engineering (Jo et al., 2015; Gammage et al., 2018).

In addition, the TCA cycle is dependent on the synthesis of
NADH for energy production in mitochondria; therefore, the
level of NAD+ is important in mitochondria as a raw material for
the synthesis of NADH. In mitochondrial reactions related to
glucose metabolism, NAD+ is involved in the TCA cycle,
oxidative phosphorylation, and oxidative respiratory chain
(Anderson et al., 2017), and elevated NAD+ levels promote the
overall metabolic capacity and energy production of CHO cells.
Multiple NAD+ synthesis pathways exist in CHO cells, among
which the salvage pathway is considered to be critical in
controlling intracellular NAD+ levels (Yaku et al., 2018).
Nicotinamide phosphoribosyltransferase (NAMPT), a key
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enzyme regulating the salvage pathway, has elevated expression in
several malignant tumor cells to meet the latter’s large energy
requirements, and it has been shown that inhibition of NAMPT
blocks glycolysis (Tan et al., 2013). Nicotinamide (NAM) added
to the cell culture medium, and the NAM generated upon NAD+

depletion can be catalyzed byNAMPT to synthesize nicotinamide
mononucleotide (NMN) (Mori et al., 2014; Opitz and Heiland,
2015), which in turn synthesizes NAD+ from NMNAT. Although
NAMPT is localized intracellularly in the cytosol, NAD+

synthesized by the salvage pathway can be imported into the
mitochondria with the help of a recently discovered
mitochondrial NAD+ transporter protein, SLC25A51 (Girardi
et al., 2020; Kory et al., 2020; Luongo et al., 2020), thus suggesting
that overexpression of NAMPT and SLC25A51 in CHO cells
would be a worthwhile approach to try, although it has not been
reported. Besides, nicotinamide mononucleotide
adenyltransferase (NMNAT) is the only enzyme responsible
for NAD+ production (Croft et al., 2020) and is a rate-limiting
factor in the NAD+ synthesis pathway, as is NAMPT. It has been
demonstrated that overexpression of nicotinamide/nicotinic acid
mononucleotide adenyltransferase 1 leads to a significant increase
in total cellular NAD+ content (Croft et al., 2018) and regulates
the concentration of NAD+ in relation to ATP (Pinson et al.,
2019). In 2009, NMNAT3 overexpressing mice were constructed
by microinjection of cDNA of NMNAT3 protein into mouse
oocytes (Yahata et al., 2009), and NMNAT3 is thought to be
localized in the mitochondria (Berger et al., 2005). The results
showed increased levels of NAD+ in mitochondria and enhanced
mitochondrial energy metabolism in mice (Gulshan et al., 2018).
This experiment has important implications for the optimization
of mitochondrial metabolism in CHO cells and provides new
ideas for metabolic engineering of CHO cells.

METABOLIC MODELS

Establishing metabolic models of mammalian cells has been
hampered by the complexity of cell structure, differences in
media composition and manipulation, and parameters during
culture. However, with the expansion of the coverage of
histological technologies and the improvement of the
reliability of histological data, in 2016, researchers were able to
systematically study CHO cell metabolism for the first time, they
successfully established a genome-scale CHO metabolic model,
iCHO1766 (Hefzi et al., 2016). The model contains 6,663
metabolic reactions, 4,456 metabolites, and 1,766 metabolic
genes. Subsequently, genome-scale metabolic models for

specific cell lines (e.g., CHO-K1, CHO-S, and CHO-DG44)
were established based on the iCHO1766 model (Hefzi et al.,
2016), we summarized and listed in Table 2 the characteristics of
these models containing detailed parameters for each model, and
we enumerated the organelles involved. A genome-scale
metabolic network model (GEM) is a model that summarizes
and connects all the data on genes, proteins, and cellular
metabolism involved in the metabolism of a particular cell
(O’Brien et al., 2015). Researchers can use reliable metabolic
models to perform virtual experiments in a computer in a fast and
inexpensive manner (Fouladiha and Marashi, 2017; Gu et al.,
2019). GEMs can predict the metabolic state of a cell under
specific growth conditions and is a powerful tool for cell biology
and metabolic engineering (Zhang and Hua, 2015). Like other
mammalian cell lines, the experimental manipulation and culture
of CHO cells are both expensive and time-consuming. A reliable
metabolic model of CHO cells can be used as a platform for
computational analysis of cellular metabolism to predict
experimental results and reduce the possibility of erroneous
experimental results for the metabolic engineering of CHO
cells, assisting in the selection of GOIs for metabolic
engineering and prediction of the metabolic profile of cells
after gene editing. For example, GEMs can be applied to study
the effects of gene expression changes on metabolic pathways, cell
growth, protein biosynthesis, and by-product secretion (Lewis
et al., 2012). Moreover, CHO cell metabolic models can also help
provide optimization strategies for culture media and
experimental strategies for genetic engineering to improve
recombinant protein production (Calmels et al., 2019;
Traustason et al., 2019; Fouladiha et al., 2020). In addition, the
ability of metabolic models to be integrated with histological data
is another advantage (Hyduke et al., 2013; Kildegaard et al., 2013;
Richelle et al., 2019a; Lakshmanan et al., 2019). For example,
transcriptomic and proteomic data can be mapped onto models
to infer the physiological properties of cells (Schaub et al., 2012;
Richelle et al., 2019b).

The simulation scope and capability of metabolic models can
limit the application of CHO cells in the industrial production of
RTPs. To obtain more reliable and accurate results, metabolic
models need to be updated regularly to cover the latest research
advances in molecular and biochemical fields (Schinn et al., 2020;
Yeo et al., 2020). Researchers (Fouladiha et al., 2021) have made
an in-depth addition to the iCHO1766 model by adding several
genes, metabolites, andmetabolic pathways, enabling it to analyze
and predict a wider range of metabolic reactions and improving
the accuracy and reliability of predictions. Metabolic gene editing
for CHO cells can effectively optimize the metabolism of the cells.

TABLE 2 | Cell-line-specific genome-scale metabolic models (Hefzi et al., 2016).

Name Organelles Metabolites Reactions Genes

iCHO1766 Cytosol, extracellular space, Golgi apparatus, intermembrane space of the mitochondria, lysosome, mitochondria,
nucleus, endoplasmic reticulum, peroxisome

4,456 6,663 1,766
iCHO-K1 2,773 4,723 1,298
iCHO-S 2,760 4,683 1,273
iCHO-
DG44

2,750 4,526 1,132
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However, to further increase the protein production, the
simultaneous pairing of expression vector, medium
composition, and culture condition optimization must be
considered so as to enable CHO cells to function as RTPs’
hosts and maximize protein production in a shorter time and
at the lowest cost.

CONCLUSION

In the past few years, we have witnessed the progress of the
CHO cells in many aspects. Among them, the importance of
optimizing the CHO cell line as the host cell for protein
expression cannot be overstated. Since the carbohydrate
metabolism of the cells directly determines whether there
is enough ATP to support cell proliferation and protein
expression, the engineering of carbohydrate metabolism in
CHO cells requires much deeper study. Researchers identified
and overexpressed or down-expressed several key enzymes in
three aspects: enabling fructose and galactose to replace
glucose as the start of glycolysis; solving the problem of
difficult translocation of pyruvate in the cytoplasm into
the mitochondria for consumption; and increasing the
efficiency of mitochondrial ATP production, which enables
CHO cells to maximize energy generation with minimal
carbohydrate utilization and suppress the accumulation of
metabolic waste. Furthermore, the optimization of cellular
metabolism is also directly reflected in the increase of protein
production. However, further research is still warranted. For
example, the latest metabolic studies such as NAMPT,
NMNAT, and SLC25A51 have not been applied to improve
protein expression, and the latest CRISPR technology still
needs a breakthrough, which is expected to achieve direct
mitochondrial genome editing. Big data and multi-omics
technologies are also beneficial to provide new research
directions and research ideas, assisting in the

comprehensive analysis of the metabolic condition of the
edited cells for metabolic engineering, effectively using these
tools will be the key to improving the research efficiency. It
should be noticed that most metabolic engineering studies are
still at the basic research level, which have the potential to be
applied in industrial production. And many excellent cell
engineering studies have been applied to improve protein
yield such as the genomic deletion/inactivation of the
dihydrofolate reductase gene which paved the way for an
economical utilization of CHO cells for biopharmaceutical
manufacturing (Wurm et al., 2011). Finally, CHO cells
integrated with all the research achievements will become
a better mammalian recombinant protein production
platform.
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