
Discriminating Micropathogen Lineages and Their
Reticulate Evolution through Graph Theory-Based
Network Analysis: The Case of Trypanosoma cruzi, the
Agent of Chagas Disease
Sophie Arnaud-Haond1*, Yann Moalic1, Christian Barnabé2, Francisco José Ayala3, Michel Tibayrenc4
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Abstract

Micropathogens (viruses, bacteria, fungi, parasitic protozoa) share a common trait, which is partial clonality, with wide
variance in the respective influence of clonality and sexual recombination on the dynamics and evolution of taxa. The
discrimination of distinct lineages and the reconstruction of their phylogenetic history are key information to infer their
biomedical properties. However, the phylogenetic picture is often clouded by occasional events of recombination across
divergent lineages, limiting the relevance of classical phylogenetic analysis and dichotomic trees. We have applied a
network analysis based on graph theory to illustrate the relationships among genotypes of Trypanosoma cruzi, the parasitic
protozoan responsible for Chagas disease, to identify major lineages and to unravel their past history of divergence and
possible recombination events. At the scale of T. cruzi subspecific diversity, graph theory-based networks applied to 22
isoenzyme loci (262 distinct Multi-Locus-Enzyme-Electrophoresis -MLEE) and 19 microsatellite loci (66 Multi-Locus-
Genotypes -MLG) fully confirms the high clustering of genotypes into major lineages or ‘‘near-clades’’. The release of the
dichotomic constraint associated with phylogenetic reconstruction usually applied to Multilocus data allows identifying
putative hybrids and their parental lineages. Reticulate topology suggests a slightly different history for some of the main
‘‘near-clades’’, and a possibly more complex origin for the putative hybrids than hitherto proposed. Finally the sub-network
of the near-clade T. cruzi I (28 MLG) shows a clustering subdivision into three differentiated lesser near-clades (‘‘Russian doll
pattern’’), which confirms the hypothesis recently proposed by other investigators. The present study broadens and clarifies
the hypotheses previously obtained from classical markers on the same sets of data, which demonstrates the added value of
this approach. This underlines the potential of graph theory-based network analysis for describing the nature and
relationships of major pathogens, thereby opening stimulating prospects to unravel the organization, dynamics and history
of major micropathogen lineages.
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Introduction

At odds with theoretical predictions about their considerable

cost, sexuality and recombination are ubiquitous, at least in

metazoa. This is the ‘‘paradox of sex’’. Theoretical models may

overlook important factors such as drift, and spatio-temporal

variation of selective pressure, that could reduce the advantages

conferred by recombination [1–3]. Recombination may be

positively selected by breaking down the negative associations

generated by random drift [4], and may allow the emergence of

unique multilocus genotypes gathering advantageous alleles that

arose in different individuals at the same locus [5] or at other loci

[6]. It may be noted, however, that several authors do not consider

that generation of new, better-adapted multilocus associations is

the main reason for maintenance of genetic recombination in

micropathogens, be they viruses [7] or bacteria [8]. They have

rather proposed that recombination is a side effect of other

evolutionary mechanisms, such as DNA repair for example [9].

A large number of microbial pathogens owe their persistence in

a changing environment to new epistatic combinations optimized

for pathogenic properties or drug resistance arising from either

regular or sporadic recombination events [10,11]. Microbial

pathogens offer a large spectrum of clonal versus recombinant

reproductive modes, from a high rate of systematic outcrossing by

normal meiosis (or ‘‘symmetric recombination’’) as it is the case in

some African populations of the malaria agent (Plasmodium
falciparum [12]), to predominantly clonal evolution for the agent

of Chagas disease (Trypanosoma cruzi, [13]). Clonality here is

understood as encompassing all situations where genetic recom-

bination is severely restrained and is not frequent enough to break
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the prevalent pattern of clonal evolution [14]. Yet, even in

predominantly clonal species, some sort of recombination may be

expected even at very low frequency [2]. The understanding of the

evolutionary dynamics of pathogenicity and drug resistance

requires knowledge of the distribution of the genes implicated,

and of the mechanisms that drive their dynamics. The pattern and

rate of recombination should also be known in order to map the

genome and the allelic variants involved in pathenogenicity

variation and drug resistance [15], as well as for the epidemiologic

characterization of strains and lineages by Multilocus Genotyping

(MLG), Multilocus Sequence Typing (MLST) or other markers

[16–18]. Wherever clonality predominates, genotypic associations

are expected to be stable in space and time, whereas the opposite is

expected in the case of frequent and widespread recombination.

The understanding of the factors influencing the occurrence and

extent of recombination is, therefore, a prerequisite to the

development of efficient epidemiological tracking methods and

reliable control strategies.

The improvement of population genetics tools during the past

thirty years has made it possible to design efficient methods to

discriminate and characterize pathogen strains and lineages

[12,19,20], as well as to estimate the impact of clonality on their

evolution [12–14,16].Estimates of recombination rates and iden-

tification of recombinant lineages require, however, a large

number of neutral markers [19,20], and accurate phylogenetic

reconstructions. Whereas predominant clonality facilitates phylo-

genetic reconstruction even for recently diverged taxa, the

usefulness of classical phylogenetic trees is limited by the

occurrence of sporadic recombination. The sporadic exchange of

genetic material among long divergent lineages may indeed be

more accurately illustrated by a reticulate network than a

dichotomic tree. Various methods have been developed to draw

networks of haplotypes in order to illustrate uncertainties in

mutational pathways separating sequences, or to reconstruct

reticulate phylogenies accounting also for reticulate events such

as recombination or hybridization [21,22]. However, to our

knowledge, no studies have relied on the application of graph

theory-based network analysis (Euler, 1736 in [23]).

Chagas disease is mainly transmitted in America from southern

United States to northern Argentina. It affects about 20 million

people mostly in Latin America, and it is considered by the World

Health Organization as a priority endemia. T. cruzi, exhibits

predominant clonal evolution [13,24], with 6 main genetic

subdivisions (Discrete Typing Units or DTUs [25] or ‘‘near-

clades’’ [14], as previously described [26,27]. We have coined the

term ‘‘near-clade’’ to designate genetic clusters observed in a

predominantly clonal population, which cannot be equated to real

clades because some occasional recombination interferes at an

evolutionary scale [14].

The 6 T. cruzi near-clades have been recently numbered I to VI

[28]. They are stable in space and time and represent the relevant

lineages for epidemiological tracking and evolutionary studies.

Their distribution may vary according to the geographic location,

the type of cycle (either domestic or sylvatic) and the host

[26,28,29]. Despite this predominantly clonal evolution at the level

of the whole species, sexual reproduction was recently suggested to

occur in southern Ecuador in localized cycles for the near-clade

TcI [30], although the evidence presented is questionable [31].

Moreover, experimental recombination has been obtained, with

an asymmetric horizontal transfer similar to the ones occurring

among bacteria [10]. Lastly, it is widely accepted that some of the

T. cruzi near-clades have a hybrid origin. Several scenarios of

hybridization have been proposed [16,32–35], based on interpre-

tation of phylogenetic trees. Recombination probably plays a

crucial rule in the evolution of this pathogen on an evolutionary

scale [14], and a clearer picture of the evolution of T. cruzi
lineages may therefore be obtained using a network, best adapted

to represent ‘‘genealogies-like’’ patterns, expected when both

parental and daughter lineages are susceptible to be present in the

same datasets [32,33,34]. Apart from illustrating the reticulate

evolution better than a phylogenetic tree, a network can be

analysed using network tools specifically developed to better

describe the clustering of some groups of lineages (near-clades) and

their specific position in the evolution and diversification of near-

clades (Figure 1).

T. cruzi near-clades exhibit distinct properties, particularly in

terms of experimental pathogenicity in mice, transmissibility to the

insect vector, and resistance to drugs [36–40]. A refined

understanding of clonal evolution vs. recombination is therefore

important: (a) for the fine characterization and classification of

natural isolates, and (b) to improve the understanding of the

dynamics and evolution of lineages and genes of interest such as

those involved in pathogenicity and drug sensitivity.

In the present study, we have taken into account the impact of

occasional recombination on the evolution of T. cruzi near-clades

by applying a graph theory-based network analysis to the most

extensive genetic data available thus far. It consists of 434 isolates

sampled across the whole ecogeographical range of T. cruzi and

characterized by Multilocus Enzyme Electrophoresis (MLEE) at

22 loci [26]. This study has identified 262 MLGs. It has been

shown that MLEE variability correlates positively with many other

genetic markers [28] and gene expression revealed by proteomic

diversity [41], which is strong evidence for linkage disequilibrium

(non-random association of genotypes occurring at different loci)

and predominant clonal evolution [14]. The results obtained on

MLEE data were compared with those obtained from 19

microsatellite loci and 66 MLGs [35]. We have also tested here

the recently proposed hypothesis that T. cruzi near-clade TcI

exhibits a ‘‘Russian Doll’’ pattern; that is to say, it reproduces in

miniature the population structure of the whole species, with

strong linkage disequilibrium and lesser near-clades [31]. The

hypothesis was based on the analysis of previous studies relying on

various genetic markers, which had suggested structuration within

TcI [42,43].

Results

Clustering and identification of near-clades
The analysis made with the Shared Allele Distance (SAD)

standardized between 0 and 1 resulted in a network where nodes

represent MLGs and links among them depend on the strength of

their pairwise SAD. The networks are scanned for successive

thresholds called Dp that can be understood as an estimate of the

percentage of shared markers among the stocks and near-clades.

The network of 262 distinct MLGs from the 434 isolates

analysed by MLEE when scanned starting from the percolation

threshold Dp = 0.35 (Figure 2a) shows the existence of 6 main

clusters corresponding to the main near-clades described in

Trypanosoma cruzi [28]. The clustering at this threshold (Table 1)

is high (,CC. = 0.88) and significantly different from the one

expected if links were distributed randomly among nodes

(CCo = 0.18, p,1023). This indicates the existence of a hierar-

chized structure in the dataset.

Almost identical results were obtained when scanning the

network of 81 stocks analyzed for the 66 MLGs discriminated

using 19 microsatellite loci [35], with a similar (,CC. = 0.88)

and significant clustering (CCo = 0.40, p,1023) at a much higher

percolation point (Dp = 0.71; Figure 2b).

Evolutionary Networks of Pathogen Lineage
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In both cases, the lowest threshold (thr) maintaining ‘among

near-clade’ connection (thr = 0.07 for MLEE, Figure S1, 0.42 for

microsatellites; Figure 2) corresponds to the persistence of links

between TcV and VI when all other near-clades are disconnected.

This confirms the genetic proximity between TcV and TcVI. The

network can be scanned at decreasing thresholds starting from Dp

down to this last point of ‘among near-clade’ disconnection. The

clustering is also significant for successive network topologies

unravelled through this scan, and clusters disconnect in an order

corresponding to their genetic divergence as estimated through the

Shared Allele Distance (Figure S1).

Just below the percolation threshold (Dp = 0.35) of the MLEE-

based network, the independent splits of the clusters corresponding

to TcI and IV (Figure 2a) from the main network mark the

disconnection of clusters corresponding to TcII and III, which

remain indirectly linked only through stocks of TcV and TcVI. At

a lower level, TcVI appears only linked to TcV after thr = 0.195

and the complete isolation of TcV from TcII and TcIII occurs

simultaneously below thr = 0.18 (Table 1). The clustering is

significant for successive networks scanned in an order following

the integration of links corresponding to increasing genetic

divergence as estimated with the Shared Allele Distance. This

shows how successive clusters connect to each other, until the

emergence of the ‘‘giant cluster’’ encompassing all stocks analyzed.

The network can be scanned at decreasing thresholds starting

from Dp down to this last point of ‘among near-clade’

disconnection. The clustering is also significant for successive

network topologies unraveled through this scan, and clusters

disconnect in an order corresponding to their genetic divergence

as estimated through the Shared Allele Distance (Figure S1).

All stocks were assigned to defined lineages corresponding to

clusters disconnecting at increasing thresholds, in a similar ranking

for MLEE- and microsatellite-based networks (Table 1). One

main difference observed with the microsatellite data is the

existence of a dichotomy in the TcII cluster, with one sub-cluster

of TcII individualized from the principal cluster (thr = 0.58), while

the other one remains more closely related to the remaining TcV

and TcIII down to a lower threshold (thr = 0.53). At this point,

TcV separates itself simultaneously from both TcII and TcIII,

when the only cluster remaining is TcV-TcVI down to thr = 0.425

where the last connected near-clades also split. At this level, TcV

also individualizes itself simultaneously from TcII and III

(thr = 0.53). TcVI is disconnected from TcII far before (Dp = 71)

but separates itself from TcIII at a similar level than TcV

(thr = 0.585).

Another exception is a stock recognized as TcVI (Y cl2, Brener)

that remains connected to the cluster of TcV according to MLEE

data, after having been disconnected from all other stocks of TcVI.

Finally, the Neighbor-Nets phylogenetic networks built also on

the basis of ASD distance mainly corroborate the clusters

corresponding to the near-clades previously identified, although

they also reveal a composite cluster that includes two TcV (Brazil

NIH 1954 and 92.80) in the near-clade containing TcVI stocks

according to MLEE data. Neighbor-Net results also show

numerous ‘‘boxes’’ built by parallel lines identifying the same

split or branch and indicating clashing patterns of relationships.

Such incompatible splits, numerous in this case both for MLEE

and microsatellite data (Figure S2), are expected under the

hypothesis of an extensive number of hybridization events (Huson

& Bryant, 2006). Besides the illustration of clustering and indices of

reticulate events, MLEE NeighborNet showed distances that also

support the existence of a cluster TcII,III,V,VI, with TcII

appearing more distantly related from the three other near-clades.

However, this split appears less clearly on the basis of microsat-

ellite data.

General properties of the system
The distribution of degree is rather homogeneous for both

global networks, together with a lack of correlation between degree

(number of links) and clustering, and a positive relationship

between the degree of a node (MLG) and the average degree of the

connected MLGs. The highest values of betweenness-centrality

are consistently observed among genotypes connecting the clusters

corresponding to previously recognized near-clades. No relation-

ships were observed between degree and betweenness-centrality.

Network analysis at the sub-near-clade level
The MLEE network topology for TcI shows a large diversity of

interconnected genotypes with an absence of modularity (no

significant clustering), illustrated by the lack of emergence of sub-

clusters in the network. The low threshold value (Dp = 0.24) at

which the percolation is reached illustrates the sharing of more

than 75% of alleles among these genotypes.

Using the microsatellite data of Lewis et al. [35], three clusters

emerged in the network exhibiting significant clustering (,CC.

= 0.55, P,1023), essentially corresponding to 3 geographic areas:

USA, Brazil and Andes (Argentina, Peru, Chile; Figure 3) linked

through Venezuela (M13 and M18), Colombia (458) and Bolivia

(Sjmc7 and Sjm32). All three clusters disconnect at the same

threshold (Dp = 0.37). Besides the different level of diversity with

the two kinds of markers, it should be noticed that only one stock is

shared between the 2 datasets (92101601P).

Discussion

The homogeneous distribution degree, lack of correlation

between degree and clustering, and a positive relationship between

the degree of a node (genotype) and the average degree of the

connected MLGs (a property called assortativity) highlight a rather

balanced level of connections among stocks in a hierarchically

organized system. In fact, the strong modularity of the networks

obtained with both MLEE and microsatellite data clearly

illustrates the existence of discrete sets of stocks corresponding to

the six major near-clades recognized in Trypanosoma cruzi [28].

As expected, the network topology also provides a clarified picture

of their phylogenetic history, made of both clonal divergence and

sporadic hybridization.

Various methods have been developed to draw networks of

haplotypes in order to illustrate uncertainties in mutational

pathways separating sequences, or to reconstruct reticulate

phylogenies accounting also for reticulate events such as recom-

bination or hybridization [21,22]. It should be underlined that the

method proposed here profoundly differs from classical network

phylogenetic methods. The rationale behind the network con-

Figure 1. (modified from EDENetwork, [75]): Simplified network of Trypanosoma cruzi including stocks of near-clades I, II and III
(respectively yellow, blue and green nodes) and scanned for decreasing thresholds from the (a) fully connected network (all
pairwise links included) to the (b) percolation threshold (Dp, all links corresponding to distances superior to Dp excluded) and to
(c) a lower threshold chosen to illustrate the sequential split of clusters at decreasing thresholds, and main properties of nodes and
networks used herein.
doi:10.1371/journal.pone.0103213.g001
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Figure 2. Networks of Trypanosoma cruzi based on a) MLEE and b) microsatellites. Networks are represented at the percolation thresholds
for each dataset (MLEE: Dp = 0.35; microsatellites: Dp = 0.71). The evolution of the average cluster size (,S.; estimated excluding the largest cluster)
is represented on the bottom right of each network. An arrow represents the location on the curve where genetic distance (on the x-axis)
corresponds to the percolation threshold (Dp, just before the apparition of the secondary higher cluster, the size ,S. of which is projected on the y-
axis). Only links with genetic distances (shared allele distance = SAD) smaller than the percolation threshold are represented. A gradient of dark grey
to light grey represents decreasing distances among stocks, their relative position have no relationship with their distance but are arranged to
minimize the overlap of links and maximize clarity. The threshold at which the six recognized clusters of genotypes (corresponding indeed to the six
major near-clades) separate themselves from the most closely related ones are represented by red dashed lines with numbers corresponding to the
threshold values. Color code for the near-clades is yellow for TcI, blue for TcII, brown for TcIII, dark blue for TcIV, pink for TcV and green for TcVI.
doi:10.1371/journal.pone.0103213.g002
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struction and analysis stems from a totally distinct origin, namely

graph theory (Euler, 1766 in [23]). Facilitated by computing

improvements, this rather old concept has undergone recent

development [44,45]. It has recently been expanded to various

fields of biology, including food webs [46], biogeography [47,48]

and population genetics [49–52]. Thus far, this graph theory-

based network analysis has been used in epidemiology and

pathogen evolution only through modelling [41–44]. The present

analysis is therefore the first application of graph theory-based

network analysis to real data concerning a pathogen. Its

comparison with an improvement of classical phylogenetic

reconstruction to account for reticulate events, the network

phylogenies built using the algorithm Neighbor-Net (Huson &

Bryant, 2006) shows similar results in terms of clustering (Figure

S2), although the relationship among lineages appears clearer on

the graph-theory based networks that also allowed the level of

significance of clustering to be assessed (Figure 2 and Figure S1).

The case of Trypanosoma cruzi is exemplary for the application of

such kind of analysis to the evolution of clonal lineages. The

identification by pioneering MLEE studies of 3 ‘‘zymodemes’’ (sets

of isolates sharing the same MLEE profile) [53] has been further

completed, and the evolutionary nature of the zymodemes, which

correspond to clonal lineages undergoing occasional bouts of

recombination, have been elucidated by population genetics

means [13,14,24]. A reunified nomenclature has been recently

proposed [28] confirming the existence of 6 major subdivisions

[26,27,31] (TcI to VI) or near-clades [14]. The results obtained

here replaced in the perspective of these recent developments

provides additional support to these proposed subdivisions through

the analysis of graph theory-based network clustering and

modularity, while they allow to propose new scenarios that

emerge from the network topology. These results illustrate the

potential of graph theory-based network analysis to characterize

pathogen lineages, discriminate major groups with potentially

distinct clinical and epidemiologic properties, and retrace the

history of their emergence including complex and ancient events

of hybridization among pathogen lineages.

Clustering and identification of near-clades
The discrimination of near-clade appears clearly at the

percolation threshold on network (Figure 2), with the single

exception of TcVI Brener that remains clustered with TcV

instead of TcVI at the lowest threshold according to MLEE data.

This is possibly due to a high variance level for low distances, and

the assignment appears correct with the microsatellite dataset, for

which less stocks are available. The distinction between TcV and

TcVI is unclear with NeighborNet on the MLEE dataset (Figure

S2) as well as with Girvan Newman community analysis (Figure

S3). The relative divergence among near-clades however appears

clearly when scanning the networks at increasing thresholds, which

makes it possible with this method to distinguish between

clustering and divergence patterns that result from the most

recent events of diversification and emergence on one hand, and

the most ancient events on the other hand. The quantitative

difference of Shared Allele Distances observed between MLEE

and microsatellites (Table 1) is a likely consequence of the higher

mutation rate of the later [54], possibly combined with lower

stabilizing selective influence, resulting in stronger signatures of

divergence among stocks and near-clades with microsatellites at

micro-evolutionary levels. Qualitatively however, both networks

retrace similar histories of genotype clustering, and divergence

among near-clades (Figure 2&3), an information that appears less

clear on the unique snapshots offered by Neighbor-Net (Figure S2)

or community analysis (Figure S3).

The delimitation of the six recognized near-clades is confirmed

by the formation of clusters connecting their stocks as only the

lowest distances are introduced into the networks (Figure 2&3,

darkest links). This shows a relatively long-term independent

divergence of stocks belonging to distinct near-clades. In fact, the

first links among near-clades appear between TcV and VI at

thr = 0.09 for MLEE and thr = 0.43 for microsatellites (Fig-

ure 2&3; Table 1), once within-near-clade genotypes are fully

linked (Figure 2&3).

This first connection is consistent with our present knowledge,

since TcV and TcVI are the most recently emerged near-clades. A

recent phylogenetic analysis that used a molecular clock has

estimated their time of emergence at 60,000 and 30,000 years ago

[35], respectively, following a similar event of hybridization

between TcII and TcIII [32,34]. By increasing the threshold

and adding links that correspond to increasing Shared Allele

Distances, the evolving network topology corroborates the

hypothesis of either the same or two similar events involving the

same parental lineages. Connection between the two near-clades

TcV and TcVI occurs first, then TcIII and TcII are added to this

cluster–first through connection with TcV- at similar thresholds

(Dp = 0.18 and Dp = 0.53 for MLEE and microsatellites, respec-

tively). Finally, at the percolation threshold (Dp = 0.35 and

Dp = 0.71; Table 1) or slightly higher (Dp = 0.36), when the

highest cluster encompassing all near-clades is connected, the

super cluster TcII+III+V+VI connects itself to TcI and TcIV

through TcIII (Figure 2&3). This late connection of the clusters

corresponding to TcI and TcIV to the main network illustrates

their higher divergence from the other near-clades.

Although much progress has been made during the last decade

in the study of T. cruzi molecular evolution, with increasingly

variable markers, no unequivocal, reproducible and standardized

Table 1. Matrix detailing the thresholds below which no links exist between two near-clades, MLEE below diagonal and
microsatellites above.

Near-clades TcI TcII TcIII TcIV TcV TcVI

TcI 0.74 0.72 0.74 0.79 0.83

TcII 0.49 0.77 0.81 0.53 0.71

TcIII 0.35 0.34 0.75 0.53 0.59

TcIV 0.52 0.37 0.35 0.81 0.83

TcV 0.41 0.18 0.18 0.36 0.43

TcVI 0.47 0.20 0.20 0.35 0.07

doi:10.1371/journal.pone.0103213.t001
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method was available to ‘‘simultaneously distinguish the known
genetic lineages, describe inter-DTU relationships, and define high
resolution intra-DTU diversity for population genetics studies’’
[17]. The MLST approach proposed by Yeo et al. [17] aimed at

reaching this goal ([17], see also [55]). Based on both MLEE and

microsatellite typing, the SAD networks presented here fully

support the individualization of the previously recognized near-

clades. This method thus constitutes a reliable tool, provided that a

sufficient number of loci are used, to assign a new genotype to a

given near-clade, a first step towards any inferences about its

clinical and epidemiological properties. Such assignment can

apparently be made without ambiguity, at least with the stocks

analyzed here, with the exception of TcVI-Brener when MLEE

data are concerned. Within-near-clade genotypes are connected

by strong links at low threshold distance (Figure 2&3), compared

to weaker links appearing at higher distances that connect distinct

near-clades.

The clear delimitation of near-clades revealed by strong

clustering and modularity of the network, confirms the scarce

nature of genetic exchange among near-clades, and is in

agreement with the hypothesis that they are the result of

predominant, long-term clonal evolution [13,14,28,31].

The strong correlation between different markers (MLEE and

microsatellites), and the fact that network analysis uncovers the

same clusters as classical phylogenetic analysis confirms the

existence in T. cruzi of near-clades that are stable in space and

time. We have postulated [14] that such a robust clustering,

corroborated by different approaches and accumulating evidence

(congruence principle, [56]) characterizes predominant clonal

evolution, together with a strong linkage disequilibrium.

We discuss below the potential of network analysis to describe

inter-near-clade relationships, reveal intra-near-clade diversity and

infer their history of divergence and diversification.

Near-clade history of hybridization
Hybridization events are hypothesized to have occurred during

the evolution of T. cruzi near-clades. The first scenario proposed

by Westenberger proposed a sequence of two hybridization events.

The most ancient event is supposed to have occurred between TcI

and TcII to give rise to TcIV and TcIII. The most recent

hybridization, between TcII and TcIII, would have resulted in the

emergence of TcV and TcVI [32,35]. Although most subsequent

studies based on MLST supported the second hybridization event,

the hypothesis of the ancestral hybridization event having resulted

in TcIII and IV has been seriously questioned. One study based on

both mitochondrial and nuclear genes and suggesting a third

ancestral lineage at the origin of TcIII and a more complex and

still unravelled origin for TcIV [57]. Another study, based on the

analysis of 32 nuclear and mitochondrial unlinked loci, also failed

to support the hybrid origin of TcIII and TcIV as well as the

dichotomy corresponding to the originally defined two major

lineages TcI and TcII [58]. The topology of the networks built in

the present study clearly supports the hypothesis of the more

recent hybridization event proposed by Westenberger et al. [32]

and supported by more recent studies, whereas different interpre-

tations of networks can be suggested in relation to the hypothesis of

an ancient hybridization event at the origin of TcIII and TcIV.

While the nearly identical distance between TcIII and TcIV on

one hand, and TcI and TcII on the other hand, is expected in the

case of an hybridization event (Figure 2, Table 1, Table S1 &

Table S2), it may also support the hypothesis of a nearly

simultaneous divergence of their ancestors. Now, when screening

more carefully the relationship among these near-clades, TcIV

appears almost equally distant to the two large subdivisions TcI

and TcII-III-V-VI emerging at percolation when analyzed with

microsatellites data, but clusters preferentially with TcII-III-V-VI

when MLEE data are concerned (Dp = 0.35 versus Dp = 0.52 for a

connection with TcI; Table 1). This supports similar observations

based on MLST [17]. The different connection patterns of TcIV

with either microsatellites or MLEE may be due to the variance in

distance estimates explainable by the fact that a smaller set of

stocks have been used with microsatellites [35] than with MLEE

[26]. Differences based on the Gpi nuclear gene [18], as well as on

cytometric [33] or genetic analysis with distinct microsatellite loci

[33,59], were shown to be important between TcI and TcIV.

Nevertheless, some mitochondrial sequences belonging to strains

isolated from opossums in the USA and unambiguously identified

as TcI with nuclear markers, were shown to be nearly identical to

TcIV. Such great incongruence is likely explainable by a

mitochondrial introgression between distantly related near-clades

[35]. It is nevertheless thought that these events have been too

scarce to have a strong influence on the evolution of T. cruzi [60].

In line with these observations, the present network analysis

supports the hypothesis of a closer proximity between TcIV and

TcI with microsatellites than with MLEE. This could be due

possibly to ancient asymmetrical exchanges. Finally, the network

topology mostly distinguishes four groups, including TcI, TcII,

TcIII and TcIV, linked together through TcIII (for Tc I and

TcIV) and TcV (for TcII and TcIII). This topology is therefore

also compatible with the hypothesis of the evolution of three major

lineages (TcI, TcII and the ancestor of TcIII-TcIV) having later

led to the hybridization of two of them (TcII and TcIII), a

hypothesis also favoured by more recent sequence analysis [61].

In both networks in the case of TcV and in the MLEE network

in the case of TcVI, links to the putative parental near-clades TcII

and TcIII appear simultaneously at similar thresholds (Table 1),

and the cluster TcV-TcVI thus builds a bridge between the two

divergent near-clades TcII and TcIII. Such a striking equidistance

illustrates the similar amount of genetic material shared with both

parental near-clades. Rather than a chaotic lateral transfer

sometimes hypothesized and often observed in bacteria [62,63],

this topology is in agreement with the hypothesis of an origin of

hybridization through polyploidization followed by progressive but

rather homogeneous diploidization or aneuploidization

[10,16,32,34,57,64], as well as with recent estimates of private

and shared alleles among these near-clades with the microsatellite

dataset used here [35]. While it is still unknown whether TcV and

TcVI have derived from the same hybridization event or from two

distinct hybridization events involving the same parental near-

clades as suggested on the basis of the same microsatellite dataset

[35], joint network topologies together with the amount of shared

polymorphism among TcV and TcVI fits better the first

hypothesis. As a matter of fact, in the case of the second

hypothesis, one would expect less proximity of the two ‘‘daughter’’

near-clades and a higher variance in their connections with

Figure 3. Networks of TcI genotypes characterized with microsatellite data from Lewis et al. (A) Just above percolation distance
(Dp = 0.37), and (B) just below, illustrating the disconnection of the 3 clusters of nodes. According to color code, 3 geographical regions are
highlighted: USA (Violet), Brazil (Green) and Andes (Peru and Argentina in Dark Grey, Chile in Light Grey, Bolivia in Black). Colombia in Orange and
Venezuela in Yellow green show the intermediate position of stocks isolated in those countries, at the interface of the three clusters.
doi:10.1371/journal.pone.0103213.g003

Evolutionary Networks of Pathogen Lineage

PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e103213



parental near-clades, since not necessarily the same half of

parental genome would be shared (Table 1, Table S1). Besides,

TcVI connects to putative parents first through TcV, suggesting

either a possible founder effect at the origin of this lineage having

led to a closer relationship with TcV, or a backcross origin

involving TcV and TcIII early in the history of these hybrid

lineages. Both hypotheses may explain the inconsistency in the

position of two TcVI strains, including TcVI CL-Brener above

mentioned, which are linked either to TcVI or TcV according to

the dataset considered.

Finally, the numerous incompatible splits observed with

NeighborNet both for MLEE and microsatellite data (Figure

S2), are expected under the hypothesis of an extensive number of

hybridization events [21]. In the particular case of partially clonal

pathogens, we suggest that they may however be the result of a

limited number of hybridization events followed by the indepen-

dent evolution of lineages within each near-clade, particularly in

cases where the species considered evolve through predominant

clonal evolution and therefore preserve balanced proximity with

both parental genome.

Scarce genetic exchange, high imprint of clonality
The importance of clonality in the evolution of T. cruzi lineages

is confirmed by several properties of the networks. The balance of

connectivity degree distribution (and assortativity) within each of

the six robust clusters identified here suggests waves of nearly

synchronized events of within-near-clade divergence, preceding

long term diversification through predominant clonal evolution.

This is particularly well illustrated by the bimodal frequency

distribution of MLEE distances within TcII, TcIII, TcIV and TcV

(Figure 4), resulting in significant clustering in the corresponding

networks and suggesting: i) the occurrence of an ancient,

synchronized event of diversification among stocks separated by

very similar genetic distance (second peak with a wave of similar

distances); and ii) the occurrence of diversification through the

recent accumulation of somatic mutations (first peak at lower

distance).

Intra-near-clade structuring, when analyzed with a number of

stocks which is large enough to reliably reveal it, is especially clear

in the analysis of Genetic distance spectrum (GDS) or network

representing the frequency distribution of distances among stocks,

for microsatellite data (Figure 3 & 4). This is likely due to a higher

power of resolution of microsatellites due to their higher evolution

rate. Both GDS analysis (Figure 4) and network of TcI with

microsatellites (Figure 3) support scarce genetic exchange among

differentiated clusters within near-clades (‘‘Russian doll pattern’’;

[31]). Clusters emerging in the network of TcI show a segregation

of stocks in line with their geographical origin (Figure 3). This

suggests that, in the case of this stock sampling, geographic

isolation may in part explain the long-term divergence among

differentiated clusters of the same near-clade, and dispersion may

be limited enough at the scale of the American continent to induce

vicariance and clonal divergence. However, the Russian doll

pattern seen within TcI through various other studies show that

the lesser near-clades within this near-clade do not follow a model

of isolation by distance. Some of them are ubiquitous and

widespread, and they may occur sympatrically [31].

Studies of hybridizing lineages of partially clonal algae have

already shown the usefulness of network analysis to disentangle the

influence of ancestral polymorphism and present introgression

through hybridization [50]. The results exposed here, although

they deal with a distinct system where suspected hybridization

events are very ancient, illustrate in a similar manner the power of

network analysis to assign lineages to a given pathogen cluster or

‘‘near clade’’ [14] with well characterized distribution and

properties, and to elucidate past events of introgression. This

study shows how data from very classical markers can be updated

and more precisely analyzed by appropriate methods. This study

opens promising prospects for the use of network analysis to

unravel biogeographical and evolutionary patterns and relation-

ships among pathogen lineages. As a matter of fact, many

pathogens, if not most, including viruses, bacteria, fungi and

parasitic protozoa, show common points with T. cruzi evolution,

namely preponderant clonal evolution with occasional genetic

exchange, and near-clading [14,31]. The added value of the

method is underlined by the fact that we have used ancient data

analyzed with other, more classical methods (usual phylogenies).

The present results clearly show that with the same experimental

data and the same sets of stocks, graph theory-based network

analysis evidences far more refined results.

The method proposed here will help inferring pathogen clinical

and epidemiological properties through a phylogenetic character

mapping approach [41].

Materials and Methods

Origin of the stocks & Experimental conditions
The stocks characterized by MLEE have been presented in

reference [26] and include 434 isolates delivering 262 distinct

MLEE discriminated using 22 allozyme loci. They have been

isolated over vast geographical ranges and spans of time, from a

diversified panel of hosts, including various mammal and

triatomine bug species. As underlined recently [14], such a

sampling at highest time and space scales is the best adapted to

analyze the overall population structure of a given species.

The microsatellite dataset from Lewis et al. [35] was addition-

ally analysed for comparative and corroboration purposes, since

this is the most recent and complete one presently available. We

chose to analyse the dataset with 19 loci published in Lewis et al.’s

[35]study, as it allowed reconstructing a network with a larger

number of stocks (81), resulting in 66 distinct MLG.

In order to explore the feasibility of biogeographical analysis at

the infra-near-clade level, we also explored the networks of MLEE

and microsatellites for the only near-clade TcI using the same

data, including therefore 144 distinct MLGs for MLEE and 28

distinct MLG for microsatellite data.

Network construction
The networks characterized for MLEE (262 MLGs) and

microsatellites (66 MLGs) were built separately and compared

after independent, yet identical, analysis based on graph theory

[65]. A network is represented by a graph consisting of two sets:

nodes and links that illustrate the pairwise relationships among

nodes. In this study, nodes correspond to each of the T. cruzi
MLGs in the datasets for i) MLEE; and ii) microsatellites, and links

represent the genetic distance between them.

The Shared Allele distance (SAD) was used as genetic distance

and calculated based on MLEE data. This genetic distance

measures the proportion of shared alleles [66]. For stock pairwise

comparisons, the proportion of shared alleles is estimated by:

PSA~
1

2nu

X

u

S,

where the number of shared alleles S is summed up over all loci u,

and nu is the number of loci
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Distance between nodes,

DSA~1{PSA,

This measure can be used to look at population substructure.

Bowcock et al. [67] have constructed dendrograms based on this

distance calculated from human microsatellite data. This distance

measure has also proved to be very successful at placing unknown

individuals into the correct subpopulation [68] or at characterizing

hybridization phenomena in sexual, diploid algae [50]. The

computation of the adjacency matrix (AM) of genetic distances

among genotypes with values ranging between 0 (identical

genotypes) and 1 (no alleles in common) is the first step for

network construction.

A fully connected network linking all genotypes is then built,

and a relevant criterion has to be chosen in order to take into

account the existence of connectivity between each pair of nodes.

This step is crucial for the resolution of the system dynamics and

Figure 4. Genetic Distances Spectrum. The frequency distribution of genetic distances among all stocks (upper line) and among stocks within-
near-clade (below) using Shared Alleles Distances with microsatellite (right) and MLEE (left) data.
doi:10.1371/journal.pone.0103213.g004
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its modularity. The strategy used in this study is based on the

percolation theory [69] that allows the splitting of the fully-

connected network into discrete clusters of nodes [48,50,52] on the

basis of inner properties of the network. Links are sequentially

removed starting from those corresponding to the largest distances,

with the aim to identify the threshold of genetic distance at which

the network studied is a minimal higher cluster composed of sub-

clusters linked through primary connections. Below this distance,

the network collapses into disconnected sub-clusters, and the

pattern of global connectivity is lost.

This critical threshold distance is also named percolation

distance (Dp). For a finite system, this point is derived by

calculating the average cluster size of all clusters excluding the

largest one,

vSw1~
1

N

X

svS

s2ns,

which depends on the last threshold distance value beyond which

links were removed. N is the total number of nodes not included in

the largest cluster, Smax is the size of the largest cluster and ns is

the number of clusters containing s nodes. The Dp is then

heuristically identified in the transitional region characterized by a

strong decrease in ,S.* (the average size of these ‘‘secondary’’

clusters excluding the largest one). The network topology and its

characteristics are analyzed at this Dp percolation distance,

meaning that the links retained in the network analyzed are the

ones corresponding to genetic distances lower than, or equal to,

Dp, while all links beyond this value are discarded. Additionally,

the network is also scanned and analyzed at different sequentially

decreasing distance thresholds around this percolation point, in

order to assess the consistency of its topology and the inferred

properties and interpretation.

For comparative proposes, NeighborNet planar graphs of SAD

distances between stocks were constructed with SplitsTree 4.1

[21].

Network analysis
Networks are used to help understanding the structure and the

dynamics of a system of interactions (Figure 1). There are a series

of measures [70] that allow characterizing the network topology

and interpret it in terms of information flow (here genetic

similarity reflecting past common history/ancestor) through the

agents (here the genotypes). For example, the connectivity degree,

ki of a given node i, is the number of other nodes linked to it (i.e.,

the number of neighbor nodes). The number of links existing

among the neighbors of node i, is called Ei. This quantity takes

values between 0 and Ei
(max) = ki(ki21)/2, which is the case in a

fully connected neighborhood. This value is used to calculate the

clustering coefficient Ci of node i, defined as:

Ci~
Ei

Ei
(max)

~
2Ei

ki(ki{1)
,

Ci quantifies how close the node i and its neighbors are to being

a clique. The clustering coefficient [44] of the whole network ,

CC. is defined as the average of all the individual clustering

coefficients in the system. Ci values vary between 0 and 1. The

clustering coefficient informs about the hierarchical organization

of nodes into distinct clusters (here of stocks into near-clades). In

order to test the existence of such sub-structuring, i.e. the

significance of ,CC., its significance is assessed by comparing

the value in the real network to the average value ,CCo. of 1,000

randomized networks obtained by randomly rewiring the number

of links present at the chosen threshold among nodes.

The betweenness centrality [71] of node i, bc(i), counts the

fraction of shortest paths between pairs of nodes that pass through

node i. Let sst denote the number of shortest paths connecting

nodes s and t, and sst(i) the number of those passing through the

node i; then,

bc(i)~
X

s=t=i

sst(i)

sst

:

The betweenness centrality determines the relative importance of

a node within the network as an intermediary in the flow of

information. In the case of T. cruzi, high betweeness centrality is

expected to be observed if hybridization has occurred, in those

stocks or near-clades that would have an intermediate position

because they would be either ‘‘parental’’ or ‘‘offspring’’ lineages

and therefore exhibit a central position among other stocks or

near-clades.

The path length between any two nodes is defined as the

minimal number of steps (links) separating them. The diameter L
of the network is the maximal path length present in the network.

Finally, the density of links r is the ratio between the actual

number of links present in the network and the number of links in

a fully connected network [i.e., N(N21)/2].

Finally, the modularity properties of the network are also

investigated through the Newman and Girvan algorithm [72].

Modularity is a quality index for clustering, that estimates the

strength of the division of the network into modules (i.e. clusters, or

communities). Strong and significant structure with high values of

modularity, emerges when the nodes within clusters share dense

internal connections while only sparse links are observed between

different clusters. The number of communities is assessed and

tested against the same null model as other parameters (see here-

below). Networks are visualized and analysed using the Pajek

software [73].

In order to test the significance of the topology of the network,

1,000 networks were generated distributing randomly the same

number of links between the nodes while keeping the degree

distribution observed in the original network [74]. The random

distribution of each parameter describing the network was then

built on the basis of those 1,000 simulated random networks, in

order to test for the significance of the original parameters by

assessing their departure from this random distribution. Random

simulations were compiled by C++ scripts.

The method presented here is now available to a broad

spectrum of users through a user friendly software which was

completed recently to allow building networks with several

distances (including the distance chosen here), which choice will

depend on the dataset analyzed and the questions to be addressed.

Using this software it will be possible to both draw networks and

analyze their properties as performed here [75].

Supporting Information

Figure S1 Illustration of the MLEE network scanning at
decreasing thresholds, from the distance threshold 0.70
to 0.06. On the central curve detailing the evolution of the

average cluster size (,S.; estimated excluding the largest cluster,

is projected on the y-axis) as a function of the genetic distance (on

the x-axis), arrows indicate the threshold chosen for each of the

four network represented. Only links with genetic distances (shared
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allele distance = SAD) smaller than the chosen threshold (indicated

below each network) are represented. Color code for the near-

clades is yellow for TcI, blue for TcII, brown for TcIII, dark blue

for TcIV, pink for TcV and green for TcVI.

(TIF)

Figure S2 NeighborNet illustrating the reticulated rela-
tionship among stocks of Trypanosoma cruzi. The upper

panel shows results for MLEE and the lower panel shows results

for microsatellites. Color code for the near-clades is yellow for TcI,

blue for TcII, brown for TcIII, dark blue for TcIV, pink for TcV

and green for TcVI.

(TIF)

Figure S3 Communities detected using Girvan-Newman
algorithm on allozymes. The identification of several clusters

or modules (M) is illustrated A) at percolation distance (0.63) and

B) at the lowest threshold before complete disconnection. (0.07).

Color code for the near-clades is yellow for TcI, blue for TcII,

brown for TcIII, dark blue for TcIV, pink for TcV and green for

TcVI.

(TIF)

Table S1 Stocks bearing the first link connecting
clusters forming near-clades with allozymes.

(DOCX)

Table S2 Average genetic distance and confidence
interval (CI95) of intra and inter T. cruzi lineages inside
the matrix distance. A: Genetic distance based on Allozymes

and B: Generic distance based on Microsatellites.

(DOCX)
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