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Abstract: Two-dimensional (2D) materials such as graphene, graphene oxide (GO), metal carbides
and nitrides (MXenes), transition metal dichalcogenides (TMDS), boron nitride (BN), and layered
double hydroxide (LDH) metal–organic frameworks (MOFs) have been widely investigated as poten-
tial candidates in various separation applications because of their high mechanical strength, large
surface area, ideal chemical and thermal stability, simplicity, ease of functionalization, environmental
comparability, and good antibacterial performance. Recently, MXene as a new member of the 2D
polymer family has attracted significant attention in water purification, desalination, gas separation,
antibacterial, and antifouling applications. Herein, we review the most recent progress in the fabrica-
tion, preparation, and modification methods of MXene-based lamellar membranes with the emphasis
on applications for water purification and desalination. Moreover, the antibacterial properties of
MXene-based membranes show a significant potential for commercial use in water purification.
Thus, this review provides a directional guide for future development in this emerging technology.

Keywords: two-dimensional; MXenes; membrane; water purification; antibacterial

1. Introduction

The modern world is facing a huge crisis for clean drinking water. Specifically, the pop-
ulations of underdeveloped and developing countries have been exposed to multiple water-
borne fatal diseases, waterborne epidemics, and waterborne insect-based outbreaks [1–6].
Water purification and desalination are considered to be the biggest challenges of this cen-
tury and various technologies have been developed to fulfil increasing water demands for
drinking and agriculture around the world since the 1950s [7–9]. Most were unsuccessful
due to high costs, environmental incomparability, a low efficiency and stability, and several
fouling issues. Recently, membrane technology has been proven to be versatile for water
purification, desalination, and industrial wastewater applications and has significantly
improved the quality of life on the planet [10]. Membrane technology possesses a num-
ber of advantages such as a reasonable cost, environmental compactness, energy saving,
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simplicity, and good selectivity compared with traditional separation methods including
adsorption, absorption, filtration, and distillation [11–13].

Currently, a number of materials such as carbon nanotubes (CNTs), MOFs, COFs,
zeolite, polymers, ceramics, graphene, GO, and boron nitride [14–28] have been widely
explored in various water purification separation processes. Among them, polymers are
commercially used in materials, biomaterials, and membrane technology due to their high
packing density, biocompatibility, low cost, and large-scale application in organic and
biomedical engineering [29–36]. However, issues such as swelling in organic solvents,
fouling in an aqueous medium, and a low stability at high temperatures limit their ap-
plication [37]. There is a dire need of an alternative polymer material that overcomes the
aforementioned limitations.

The recent emergence of 2D MXenes has shown their potential as an ideal material for
separation applications owing to their outstanding stability in water, impressive strength,
single atomic thickness, good antibacterial properties, high adsorption, and molecular
filtration abilities [38–62]. The common formula of MXene is Mn+1XnTx (n = 1–3), where M
is the transition metal (i.e., V, Mo, Cr, Hf, Zr, Ta, Ti), X represents carbon and nitrogen atoms,
and Tx stands for the terminated OH, O, and F atoms. Due to these surface termination
groups, MXene is easily dispersed in water as well as in several organic solvents making it
an ideal material for various separation applications in water purification, desalination,
organic separation nanofiltration, and biomedical applications. Despite these advantages,
only a few MXene members have been explored as separation membranes for water
purification and antibacterial studies.

It is necessary to evaluate the current development of MXene-based lamellar mem-
branes for antibacterial and separation utilization. In this short review, the current fabri-
cation and development methods of MXene-based membranes are summarized. MXene-
based membranes for desalination, water refinement, and antibacterial applications are
discussed in detail. Lastly, this review concludes with several future prospects and recom-
mendations to improve the physicochemical properties of membranes.

2. Fabrication of MXene-Based Membranes

MXene (Figure 1a) is a younger member of the 2D family and has been widely fabri-
cated into both laminar as well as pristine nanosheet membranes using different methods.
The ideal filtration membranes should be defect free, ultrathin, a dense film and mechani-
cally robust with a high selectivity for small molecules along with good antifouling and
antibacterial properties. Generally, methods such as spin coating, spray coating, vacuum
filtration, Langmuir–Blodgett, drop casting, or direction evaporation and dip coating are
used for the fabrication of 2D MXene lamellar membranes. Gogotsi et al. [63] used a
vacuum filtration method for first time to prepare freestanding and PVDF-supported 2D
Ti3C2Tx-based membranes. Such membranes demonstrated good hydrophilic properties
because of the presence of the useful group in conjunction with excellent elasticity as well as
a good mechanical strength, which is an ideal potential in separation membranes. Among
these methods, the VF method is widely used for the fabrication of 2D MXene-based
membranes due to its simplicity and ease of operation (Figure 1b). Ding et al. [64] also
reported 2D MXene (Ti3C2Tx) with enhanced properties using a vacuum filtration method
on a porous support whereas Kang et al. [65] fabricated MXene (Ti3C2Tx) and GO-based
composite membranes by the same method. Sun and coworkers also fabricated GO/MXene
lamellar membranes by the filtration method [66]. Wang and co-researchers worked out an
improvement of the microstructure and physiochemical properties of an MXene membrane
by mixing it with a polymer matrix. Recently, Wang et al. [67] reported Ti3C2Tx lamellar
membranes produced by employing a multivalent ion as a hydrogel pillar in the interlayer
spacing. Researchers for obtaining the uniform composition mixed a solution of sodium al-
ginate (SA) and MXene Ti3C2Tx; this composite, SA-Ti3C2Tx, was then used for the lamellar
SA-Ti3C2Tx membranes. Fascinatingly, a molecule of SA attached onto the MXene sheets
by hydrogen bonding and Van der Waals forces. Finally, pillared SA-Ti3C2Tx laminates
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were arranged by submerging an SA-Ti3C2Tx membrane into a solution of different types
of multivalent cations such as Ca2+, Ba2+, Mn2+, and Al3+. The pillar membrane showed a
homogeneous structure similar to a nacre-like composite and it considerably decreased
the swelling effect. Liu et al. [68] fabricated Ti3C2Tx-CNT hybrid membranes using vac-
uum filtration (Figure 1c,d). Liu and coworkers also fabricated pristine Ti3C2Tx and CNT
membranes for comparative studies using the VF method (Figure 1g,h). They improved
the mechanical stability and permeance of MXene by incorporating CNTs into Ti3C2Tx
nanosheets. Huang et al. [48] used a phase inversion process to fabricate a PES-Ni@MXene
membrane by using an external field and incorporated magnetic Ni@MXene nanoparticles
with the upper layer of the PES membrane during a wet phase inversion process. MXene-
based lamellar membranes were also prepared by a layer-by-layer (LbL) method [69].
Tian et al. assembled a tris(2-aminoethyl) amine (TAEA) molecule and Ti3C2Tx MXene
using an LbL assembly and obtained highly ordered multilayer of MXene/TAEA with
an interlayer distance ~1 Å. This strategy was a good addition to fabricate MXene-based
multilayered membranes for large-scale applications.
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Figure 1. (a) MXene precursors and their common synthesis methods. Reprinted with permission from [70]. Copyright 2020
Springer Nature Group. (b) Fabrication of MXene/polymer-based composite membrane by the VF method. Reprinted with
permission from [63]. Copyright 2015 American Chemical Society. (c,d) Fabrication of pristine Ti3C2Tx and Ti3C2Tx-CNT
composite membranes. (e) The digital photograph of the solutions. (f) AFM study of Ti3C2Tx nanosheets. (g,h) Digital
photos: surface; cross-sectional SEM images of pristine Ti3C2Tx, Ti3C2Tx-CNT, and CNT membranes, respectively. Reprinted
with permission from [68]. Copyright 2020 American Chemical Society.

From the above studies, it was concluded that the vacuum filtration method was
mostly used to fabricate MXene membranes. However, there are several disadvantages
associated with the vacuum filtration method. It needs a large volume of solvent, takes
long time, and is definitely difficult to scale up. Therefore, alternative methods such as the
shear alignment method, printing method, and spin coating method should be utilized to
fabricate state-of-the-art MXene-based laminar membranes with advanced physicochemical
properties to fully utilize the power of this wonder material.

3. Water Purification and Desalination Applications

Water pollution and desalination are the most important issues in recent days, which
greatly affect the quality of life on earth. The commercially used membranes for water
purification and desalination are suppressed by antifouling problems that decrease the
life of the membrane and increase the operational cost. Therefore, researchers focus on
introducing novel materials to enhance the antifouling property of the membrane to save
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energy and the operational cost. Recently, MXene-based membranes have been widely
used for wastewater treatment, water purification, and desalination applications, as shown
in Table 1 [71–82]. Initial work by Gogotsi et al. [63] demonstrated 2D MXene-based
membranes with PVDF supported particular ion separations; for instance, Mg2+, Ca2+,
Li+, Al3+, Ni2+, Na+, and K+. The fabricated membrane exhibited a good permeability of
~37.4 L m−2h−1 bar−1. Metal ions having lesser hydration radii and a larger charge than
the space between the MXene interlayers (~6 A◦) indicated a slow permeability compared
with single-charged cations. Such membranes have been inspected for antibacterial and
biofouling properties of a single and a few layers of Ti3C2Tx MXene flakes in a colloidal
solution. Liu et al. [83] produced a Ti3C2Tx membrane on polyacrylonitrile for NaCl salt
separation. A 60 nm-thick membrane exhibited 99.5% separation efficiency and water
permeance up to ~85 L m−2 h−1 bar−1 at 65 ◦C. Mahmoud et al. [84] boosted the an-
tifouling properties, water permeance, and rejection through an MXene/Ag composite;
the fabricated composite was 470 nm of thickness with 21% loading of AgNPs. Com-
pared with pristine MXene laminates (~118 L m−2 h−1 bar−1), the prepared composite
membrane showed ~420 L m−2 h−1 bar−1 water permeance under the same condition.
This membrane also proved to have the highest stability in synthetic sea water. Lu et al. [85]
validated a self-crosslinked MXene membrane (SCMMs) for the monovalent separation
of ions. The terminal functional groups of MXene nanosheets were crosslinked with each
other through a self-crosslinking reaction (–H + –OH = –O– + H2O). By this approach,
the swelling of MXene decreased up to 15.4 Å compared with a pristine MXene membrane
(16.6 Å) and showed outstanding constancy for 70 h. The permeation rate of SCMMs was
near to two orders of magnitude less than the pristine MXene membrane, which specified
the noticeably better enactment of the ion segregation by self-crosslinking between the
MXene nanosheets. These membranes also indicated comparatively few monovalent ion
permeation rates where the rates of permeation for Li+ (hydrated diameter of 7.65 Å),
Na+ (hydrated diameter of 7.16 Å), and K+ (hydrated diameter 6.62 Å) were 0.0283, 0.222,
and 0.232 mol h−1 m−2, respectively. Similar to other 2D materials, MXene also has a water
swelling property and delaminates easily because of hydrogen bonding and electrostatics,
that affect the separation efficiency of the membranes. Wang et al. [67] arranged pillared
lamellar membranes (M-SAT) with improved separation properties. Metal cations such as
Mn2+ and Ca2+ enlarged the d-spacing from 13.8 to 15.2 Å of a pristine Ti3C2Tx membrane.
These metal cations were presented as a support between the MXene nanosheets. An im-
provement in the selectivity of the 2D laminates highly depended upon the d-spacing.
An ultrathin M-SAT pillared membrane expressed 100% rejection of Na2SO4 salt with an
improvement in the d-spacing. As associated to the earlier reported MXene-based mem-
brane, this showed less swelling. Ding et al. [86] developed non-swelling MXene laminates
for water cleansing with enriched separation properties (Figure 2a,b) by inserting Al3+

ions between MXene nanosheets (Figure 2a). These ions produced a strong electrostatic
interaction with the functional groups of MXene. In the end, the membranes exhibited
less swelling in the water and the stability was increased for up to 400 h. Moreover, these
laminates presented 89.5–99.5% rejection against NaCl with better water permeance of
1.1–8.5 Lm−2 h−1 bar1, as shown in Figure 2c–f.
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Figure 2. Ti3C2Tx MXene membranes (MXM): (a) Schematic representation of Al3+ intercalation
between two adjacent MXene layers and thus a fixed d-spacing. The hydrated cation such as Na+ are
rejected and the water molecules can permeate through the MXM. (b) Digital photos of untreated
MXM and its blending state. (c–f) The ion permeation rate and DI permeance (c); time-dependent
Na+ permeation (d); comparison of the rates of ions in synthetic seawater (e); chlorine resistance (f);
of untreated MXMs and Al3+-intercalated MXMs. Reprinted with permission from [86]. Copyright
2020 Nature Publishing Group.

As for molecular separation, Wang et al. [87] demonstrated a novel type of 2D g-C3N4
nanosheet membrane with artificial nanopores for water purification. These nanosheet
membranes were exploited for the removal of distinct types of molecules, for example,
Evan blue (EB), rhodamine B (RB), gold nanoparticles (Au NPs), and cytochrome C (Cytc),
as shown in Figure 3a,b. The rejection percentages of 87.2%, 75.5%, 99.5%, and 93.1%
for EB, RB, Au NPs, and Cytc were obtained, respectively. The 160 nm-thick membrane
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showed water permeance up to ~29 L m−2 h−1 bar−1. Additionally, the permeability of the
membranes against variable thicknesses and pressures was also validated (Figure 3c,d).
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performance based on the thickness of the membranes; (b) against the diameter (size) of each probe
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(d) water permeability based on variable pressure. Reprinted with permission from [87]. Copyright
2020 American Chemical Society.

Han et al. [88] demonstrated PES/MXene ultrafiltration membranes for the separa-
tion of Congo red (CR) dye. The as-prepared membrane showed pure water permeance
of ~115 Lm−2 h−1 and a 92.3% rejection of the CR dye at 0.1 MPa. Kang and cowork-
ers fabricated a Ti3C2Tx/GO composite membrane with a thickness of 90 nm, as shown
in Figure 4a [65]. The interlayer of the as-prepared membrane was around 5 Å due to
swelling in the water. Such membranes showed > 99% for those molecules, which had
radii greater than 5 Å at a pressure of 5 bar and obtained 68%, 99.5%, 93.5%, and 100%
rejection of methyl blue (MB, hydrated radii 4.87), methylene blue (MLB, 5.04), rose Bengal
(RB, 5.88), and brilliant blue (BB, 7.98), respectively (Figure 4b,c). Recently, Liu et al. [66]
also fabricated an MXene/GO membrane and used it for the separation of small organic
dyes such as NR, MB, CV, and BB. The membrane showed a >99% rejection of these dyes.
Similar membranes also showed an excellent rejection of bovine serum albumin (BSA) and
humic acid (HA) molecules. However, these membrane showed less permeability com-
pared with previously reported MXene/GO membranes [65]. Various studies have shown
that pH, temperature, pressure, and water uptake significantly affect the microstructural
properties and separation performance of 2D membranes. Ding and coworkers used a
VF technique to develop a 2D Ti3C2Tx-based novel membrane on an AAO support [64].
The as-prepared membranes showed outstanding water permeability for DI water up to
~1000 Lm−2 h−1 bar1. Furthermore, the separation effectiveness of laminates with different
sizes of molecules was estimated by Ding et al. [64]. For molecules having a diameter
larger than 2.5 nm, the membrane showed more than a 90% rejection rate. Ma et al. [89]
fabricated a P84-copolyimide/MXene-based membrane with an excellent water perme-
ability of ~268 L m−2 h−1 bar−1 at 0.1 MPa and ensured a 99% rejection of gentian violet
dye. Shen et al. [77] reported MXene/PSF (Ti3C2Tx) membranes with a 99% rejection of
a BSA molecule and water permeance up to ~218 Lm−2 h−1 bar−1. Recently, Liu and
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coworkers demonstrated a Ti3C2Tx/CNT hybrid membrane for the recovery of precious
metals, i.e., gold (Au) [68]. The as-prepared membranes showed an excellent ability to cap-
ture Au (III) up to 99.8% and the water permeance reached up to ~437.6 Lm−2 h −1 bar−1,
approximately 202 times higher than the pristine MXene membrane reported.
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performance of a pristine GO, MXene, and MXene/GO composite membrane against different probe molecules. Reprinted
with permission from [65]. Copyright 2017 American Chemical Society.

Many works have described MXene-based lamellar membranes for desalination and
water purification. Most of the MXene laminates were arranged on a polymeric substrate
for superior performance and rejection. MXenes also have a weak bond with substrates;
the resulting membranes can be easily destroyed and this greatly affects the separation
performance of the membranes. As with GO laminates, MXene has also showed a good
water permeance due to its hydrophilic nature. MXene-based membranes allowed cations
with a larger hydration radii than the interlayer space between the MXene interlayers
(0.6 nm). Furthermore, if the cations showed a greater charge, the membrane performed a
slow permeation compared with the single-charged cations. Hence, the physicochemical
and separation properties of MXene-based membranes can be improved by using suitable
intercalation or crosslinking to control the pore structure. Further 2D–2D intercalations can
also improve the permeance and selectivity of the membranes.

4. Antibacterial Activity of MXene-Based Membranes

Pathogenic contamination is considered to be the most harmful issue worldwide and
is responsible for various kinds of waterborne diseases [90]. It is directly responsible for
the biofouling of any water filtration membrane; therefore, it is important that a mem-
brane should be tested against antibacterial properties. Up to date, several bactericidal
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nanomaterials including graphene, TMDCs, and MXenes have been explored to meet these
challenges. The antibacterial activity of graphite, graphite oxide, GO, rGO, MoS2, and WS2
against Gram-negative and Gram-positive bacteria have already been tested. Recently,
MXenes with unique hydrophilic properties, a good adsorption, an ideal surface function-
ality, and excellent biocompatibility and photothermal properties have been widely tested
for wastewater treatment and desalination, water purification, ion separation and other
applications, as shown in Table 1. MXenes are expected to be resistant to biofouling and
offer bactericidal properties [91]. However, very few studies [91–99] have been carried
out in this direction. An initial work by Rasool et al. [97] reported that Ti3C2Tx mem-
branes could be an ideal platform for antibacterial studies (Figure 5a–d). Rasool et al. [97]
further used Ti3C2Tx-based membranes to measure the antibacterial properties against
Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) by using bacterial growth curves
based on optical densities (OD) and colony growth on agar nutritive plates (Figure 5b,c).
The membranes showed a high antibacterial efficiency against both Gram-negative E. coli
and Gram-positive B. subtilis compared with the GO membranes. Concentration-dependent
antibacterial activity was observed and more than 98% of bacterial cell viability loss was
found at 200 µg/mL in Ti3C2Tx for both bacterial cells within 4 h of exposure, as con-
firmed by a colony-forming unit (CFU) and regrowth curve (Figure 5d,e). In another
study, Ti3C2Tx/PVDF composite membranes were tested to measure the antibacterial
rate of E. coli and B. subtilis [91]. The composite membranes showed a ~73% and ~63%
antibacterial rate for B. subtilis and E. coli, respectively, compared with the control PVDF
membranes [91]. Additionally, the Ti3C2Tx membrane showed over a 99% growth inhi-
bition of both bacteria under the same conditions. Mayerberger et al. [92] demonstrated
Ti3C2Tz/chitosan composite nanofiber membranes for a passive antibacterial wound dress-
ing application. The as-prepared composite membrane showed a 95% and 62% reduction
in the colony-forming units of Gram-negative E. coli and Gram-positive Staphylococcus
aureus (S. aureus), respectively. Jastrzebsa and coworkers also reported the antimicrobial
properties of a Ti3C2 MXene-based nanocomposite, i.e., Ti3C2/SiO2/Ag, Ti3C2/Al2O3/Ag,
and Ti3C2/SiO2/Pd [93]. They also demonstrated the outstanding bioactive properties
of Ti2C and Ti3C2 MXenes against a Gram-negative bacterial strain [99]. Recently, Zhu
et al. [95] evaluated the effect of near-infrared (NIR) light on the antibacterial activities of
silver (Ag), Ti3C2Tx, and an Ag/Ti3C2Tx composite. The as-prepared Ag/Ti3C2Tx com-
posite showed a high efficacy against Gram-positive S. aureus and Gram-negative E. coli
bacteria in an in vitro antibacterial test. Upon NIR irradiation, the antimicrobial effect
of Ag/Ti3C2Tx significantly strengthened compared with the pristine Ag and Ti3C2Tx.
The growth of E. coli was completely inhibited during the initial 0–6 h by 200 µg/mL of
Ti3C2Tx due to the photothermal heat produced killing the bacteria in the surrounding area.
The Ag/Ti3C2Tx composite exhibited the best antibacterial activities with the same dose of
pristine Ag and Ti3C2Tx. After NIR irradiation, the Ti3C2Tx composite could completely
restrain the E. coli growth when used at 100–200 µg/mL.
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subtilis bacterial strains. Bacterial suspensions (107 CFU/mL) were incubated with different concen-
trations (0–200 μg/mL) of Ti3C2Tx and GO membranes at 35 °C for 4 h at a speed of 150 rmp. Re-
printed with permission from [97]. Copyright 2016 American Chemical Society. 
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Figure 5. Ti3C2Tx nanosheet membranes. (a) Antibacterial activities of Ti3C2Tx membranes in an
aqueous solution against E. coli and (b) B. subtilis with different concentrations, i.e., 0 µg/mL (A),
10 µg/mL (B), 20 µg/mL (C), 50 µg/mL (D), 100 µg/mL (E), and 200 µg/mL (F), respectively.
(c,d) Cell viability measurement and comparison studies of Ti3C2Tx and GO membranes against
E. coli and B. subtilis bacterial strains. Bacterial suspensions (107 CFU/mL) were incubated with
different concentrations (0–200 µg/mL) of Ti3C2Tx and GO membranes at 35 ◦C for 4 h at a speed of
150 rmp. Reprinted with permission from [97]. Copyright 2016 American Chemical Society.

Table 1. MXene-based membranes for the separation of ions, molecules, and pathogens from water.

Type of Membrane Fabrication Method Feed Solution/Concentration Rejection (%) Permeability
(Lm−2 h−1 bar−1) Ref.

Ti3C2Tx Vacuum filtration

RB 85

1084 [64]EB 90

CC
(Each 10–20 mg/L) 97

Ti3C2Tx Vacuum filtration

NaCl
(10,000 mg/L)

56–64 10 [100]BSA
(2000 mg/L)

Ti3C2Tx Vacuum filtration

CR 92

405 [74]

GN 80

MgCl2 2.3

Na2SO4 13.2

NaCl
(Each 100–1000 mg/L) 13.8%

Ti3C2Tx Vacuum filtration
E. coli >99

37.4 [91]
B. subtilis >99
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Table 1. Cont.

Type of Membrane Fabrication Method Feed Solution/Concentration Rejection (%) Permeability
(Lm−2 h−1 bar−1) Ref.

Ti3C2Tx Vacuum filtration

Na2SO4

50–99 5–15.25 [101]
Mg2SO4

MgCl2

NaCl

VOSO4

Ti3C2Tx-Ag Vacuum-assisted
filtration

RB 79.9

~420 [84]MG 92.3

BSA
(50–100 mg/L) >99%

Ti3C2Tx-GO Vacuum filtration

BB 95.4

~25 L [65]

Rose Bengal 94.6

MLB 40

MLR 5

MgSO4
<1

NaCl
(Each 10 mg/L)

Ti3C2Tx-GO Vacuum filtration

RB

>97 (dyes)

89.6 [102]

MB

CV

NR
(Each 10 mg/L)

Na2SO4 61

NaCl
(Each 5 mM) 23

Ti3C2Tx-GO Vacuum filtration

Chrysoidine G

>99% (dyes)
71.9 [80]

MLB

NR

CV

BB

HA

BSA

Na2SO4 61

NaCl
(Each 10 mg/L) 23

Ti3C2Tx-GO Vacuum filtration

MO

>95 ~8.5–11 [101]

MLB

Acid yellow 14

IC

Eosin
(Each 10 mg/L)

Ti3C2Tx-TiO2 Spin coating Dextran
(3000 mg/L) >95 ~90 [103]

CC: cytochrome C; MLB: methylene blue; RB: rhodamine B; EB: Evan blue; MO: methyl orange; IC: indigo carmine; HA: humic acid; BB:
brilliant blue; NR: neutral red; CV: crystal violet; CR: Congo red; GN: gentian violet; MG: methyl green; MLR: methylene red.
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5. Conclusions and Future Perspectives

Since the discovery of MXene, it has been widely investigated for various applications;
however, less work has been done on MXene-based membranes for water purification, de-
salination, and antibacterial applications [104,105]. In this review, we have summarized the
recent progress of MXene-based membranes for water purification and antibacterial appli-
cations from both a theoretical and an experimental point of view. Different fabrication and
modification methods for MXene laminates have been highlighted. The current challenge is
the scalable production of MXenes because these preparation methods are expensive with
a time-consuming synthesis, low yield, purity, and can be environmentally incompatible.

Most of existing studies were limited to a specific MXene, i.e., Ti3C2Tx. Therefore,
other members of same family need to be explored to fully utilize their power in separation
applications. In addition, MXene-based membranes are only used for particular types of
dye molecules and ions. The separation of small molecules (dyes or ions) that have a diam-
eter less than 5 Å is still a big challenge for MXenes. Moreover, MXene-based membranes
are still absent in other separation applications such as electrodialysis, organic separation
nanofiltration, and forward osmosis. In term of selectivity, permeance, and separation
applications, MXene is far behind graphene. Therefore, MXene needs to be explored for
novel types of separation in future and to improve its permeance and selectivity.

The stability of MXene in water-based applications is another key issue; it can easily be
degraded under humid conditions. MXene contains various functional groups responsible
for good hydrophilicity such as GO membranes. Due to the hydrophilic properties of MX-
ene, it can easily form hydrogen bonding with water molecules that results in degradation
and delamination into water. This can possibly be modified by MXenes with a number of
materials including polymers, nanoparticles, 2D sheets, and 3D materials. Efforts should
be carried out in this direction to improve the stability of membranes by utilizing their
functional groups with suitable crosslinking agents. Furthermore, focus should be given to
controlled interlayer spacing, shape, size, and atomic defects within MXenes to improve
the separation performance.

As for antibacterial studies, only Ti3C2Tx MXene has been tested against particu-
lar types of bacterial strain. More work is needed to use different type of MXenes and
pathogens with different concentration. The bactericidal mechanism is still not clear.
More theoretical and experimental investigations are required to fully understand the
mechanism. Overall, when compared with graphene, MXene is still in an early stage with
much more research needed, particularly on water purification, desalination, and antibac-
terial properties.
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