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Hypoxia-induced and high altitude pulmonary hypertension are a major problem in the mountain areas of the world. The
asymmetric methylarginines (ADMA) inhibit nitric oxide (NO) synthesis by competing with L-arginine, and high levels of plasma
ADMA predict adverse outcomes in pulmonary hypertension. However, little is known about the regulation of the ADMA-NO
pathway in animals adapted to high altitudes. We measured the plasma ADMA concentration, endothelial NO synthase (eNOS),
dimethylarginine dimethylaminohydrolases (DDAH) protein expression, and DDAH activities in the lungs from yaks. Although
the yaks are hypoxemic, cardiac function and pulmonary arterial pressures are almost normal, and we found decreased DDAH
expression and activity in association with reduced plasma ADMA concentrations. The eNOS expression was significantly higher
in yaks. These results indicate that augmented endogenous NO activity in yaks through the ADMA-DDAH pathway and eNOS
upregulation account for the low pulmonary vascular tone observed in high altitude adapted yaks.

1. Introduction

It is well known that endogenous nitric oxide (NO) plays
a pivotal role in maintaining the low pulmonary vascular
tone patients with pulmonary hypertension [1]. Recent stud-
ies imply that asymmetric dimethylarginine (ADMA), an
endogenous guanido-substituted analogue of L-arginine, also
plays a critical role as a natural inhibitor of nitric oxide syn-
thase (NOS) in the regulation of endogenousNOproduction.
ADMA is synthesized via the methylation of protein arginine
residues by the enzyme protein arginine methyltransferase
1 (PRMT1) [2] and competes with L-arginine for NOS and
inhibits NO formation [3]. ADMA is mainly inactivated
by dimethylarginine dimethylaminohydrolases (DDAH) by
hydrolysis to L-citrulline. Because ADMA is degraded by
DDAH, the plasma and tissue levels of ADMA are thought
to be regulated by the DDAH activities. Previous studies
showed that the overexpression of DDAH reduced tissue

and plasma levels of ADMA which was associated with an
increased production of NO, a reduction in systemic vascular
resistance, and reduced atherosclerosis in transgenic mice
[4, 5].The DDAH activity also has a protective role in insulin
resistance [6, 7] and progression of chronic kidney disease,
which are both associated with reduced level of ADMA
and increased endogenous NO production [8, 9]. A reduced
expression or pharmacological inhibition of DDAH results in
elevated levels of ADMA associated with decreased reaction
of NO-mediated vasodilation [10] which supports the idea
that local tissue DDAH activity plays an important role in the
maintenance of vascular tone and NOS activity via ADMA
production. Notably, the plasma level of ADMA not only
is a simple biomarker of many diseases, but also could be
of functional importance and a key substance, especially
in the progression of cardiovascular and metabolic diseases
associated with endothelial dysfunction [11, 12]. Increased
plasma levels of ADMA may contribute to impaired NO
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synthesis leading to atherosclerosis, progression of cardio-
vascular disease, diabetes mellitus, and chronic renal disease
[13, 14]. A functional role of plasma levels of ADMA has
been attributed to endothelial cell dysfunction in pulmonary
hypertension [15–20], cardiovascular disease, chronic renal
disease, and portal hypertension in liver cirrhosis [21]. In
patients with pulmonary hypertension, elevated levels of
ADM are closely correlated with decreased exercise tolerance
[19], the severity of pulmonary hypertension, and a poor
prognosis [15, 18].

Pulmonary hypertension is a common complication
among highlanders and animals that live at high altitudes.
Chronic exposure to a decreased oxygen pressure causes
chronic hypoxemia and secondary pulmonary hypertension
and pulmonary vascular remodeling in human and animals
[22, 23]. After several weeks of exposure to high altitude,
lowlanders develop pulmonary hypertension, which is not
completely reversed by supplemental oxygen [24], suggesting
development of vascular remodeling of the lung [25]; this
vascular remodeling is also related to a decreased activity of
NOS [26, 27]. However, high altitude adapted animals, such
as yak, llama, and the Tibetan sheep, have low pulmonary
vascular tone, normal right ventricular function, and also
a decreased hypoxic pulmonary vasoconstriction response
[28–31]. We previously reported an enhanced effect of NOS
inhibition in the yak pulmonary circulation [32], consistent
with an augmented production of NO in yaks living at high
altitude.

Because of these previous findings, we hypothesized
that elevated activity of DDAH in the lung tissue, which
suppresses ADMA expression, could be a regulatory factor of
the pulmonary vascular tone in yaks. In order to address this
hypothesis, we assessed eNOS andDDAHprotein expression
and activity of DDAH of lung tissues obtained from yaks
living at high altitude and we also measured nitrites and
ADMA concentrations in the yak plasma.

2. Materials and Methods
2.1. Animals. Young (2 years old)male yakswith an estimated
weight of 200 kg were used for the experiment. Yaks were liv-
ing at Archaly (2900–3000m above sea level). Male bovines
(2 years old) with an estimated weight of 200 kg were used
as a control group. The cattle were living in Bishkek (760m
above sea level).

2.2. Hemodynamic Studies. A balloon-tipped pulmonary
arterial catheter was inserted percutaneously into a right
internal jugular vein and advanced to the pulmonary
artery for measurement of pulmonary artery pressure (PPA)
and pulmonary capillary wedge pressure (PWP). A plastic
catheter was placed percutaneously into the right internal
jugular artery to monitor the systemic arterial pressure
and heart rate (HR). Arterial oxygen saturation (SaO

2
) was

measured by pulse oximetry. The cardiac output (CO) was
measured by the thermodilution method using a Swan-Ganz
catheter and a cardiac output computer (Vigilance).

2.3. Western Blot Analysis. Lung protein extracts were pre-
pared for Western blot analysis by homogenization of tissue

samples and the protein concentrationwas determined by the
Bradford method (BioRad). Homogenates (100 𝜇g for eNOS,
20𝜇g for DDAH I, or 50 𝜇g for DDAH II) were separated by
SDS-PAGE (7.5% for eNOS, 12% for DDAH I and DDAH II)
and then transferred to nitrocellulose membranes (BioRad).
Blots were blocked with TBS buffer (50mmol/L Tris-HCl, pH
7.4, 0.15mol/L NaCl, 0.1% Tween-20) plus 2% (wt/vol) BSA
or 5% (wt/vol) nonfat milk for 1 hour at room temperature
and then incubated for 1 hour at room temperature with
an eNOS monoclonal antibody (1 : 500 dilution in TBS plus
BSA, Transduction Laboratories), a DDAH I monoclonal
antibody, or a DDAH II polyclonal antibody. Immunore-
active proteins were detected following incubation with a
peroxidase-conjugated antibody and enhanced chemilumi-
nescence (Amersham). The relative protein expression was
quantified by densitometric analysis.

2.4. Measurement of DDAH Activity. Freshly prepared lung
tissue of yaks and cows was homogenized with sodium
phosphate buffer, pH 6.5, at 4∘C in a glass homogenizer.
The homogenate was centrifuged at 10,000 g for 30min to
obtain the supernatant. Briefly, the lysate was incubated with
4mmol/L ADMA and 0.1mol/L sodium phosphate buffer
(pH 6.5) in a total volume of 0.5mL for 2 hours at 37∘C. The
reaction was stopped by the addition of an equal volume of
10% trichloroacetic acid, and the supernatant was boiled with
diacetyl monoxime (0.8% in 5% acetic acid) and antipyrine
(0.5% in 50% sulfuric acid). The amounts of L-citrulline
formed were determined by spectrophotometric analysis at
466 nm. As the assay blank, the enzyme preparations heated
in a boiling water bath were subjected.

2.5. Measurement of Plasma Nitrite, ADMA, and Endothelin-1
(ET-1) Concentration. The concentrations of plasma ADMA
were measured using an ELISA immunoassay kit according
to the manufacture’s protocol (DLD Diagnostika Gmbh,
Germany).The nitrite concentration in plasmawasmeasured
using the Griess reagent system from Promega (USA), and
the plasma concentrations of ET-1 were determined by high
power liquid chromatography (HPLC).

2.6. Statistical Analysis. The results are expressed as mean ±
SD. The statistical analysis was performed using Student’s 𝑡-
test. Comparisons were considered statistically significant at
𝑃 < 0.05.

3. Results

3.1. Parameters of PulmonaryHemodynamics inHighAltitudes
Yaks. Pulmonary hemodynamic data in high altitudes yaks
are summarized in Table 1. Although the arterial oxygen
saturation of yaks is apparently below normal, the pulmonary
hemodynamics including the mean pulmonary arterial pres-
sure and the PVR were almost normal.

3.2. Nitrates, ADMA, and ET-1 Concentrations in Yaks
and Bovines. Although the average nitrate concentration is
slightly higher in yaks when compared to that in the bovine,
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Figure 1: Nitrates, ADMA, and endothelin-1 (ET-1) concentrations of plasma from yaks and bovines. Nitrate concentration, measured by
Griess method, showed no significant differences between yaks (𝑛 = 12) and bovines (𝑛 = 6) (a). ADMA concentration, measured by ELISA,
was significantly lower in yaks (𝑛 = 19) than bovines (𝑛 = 11) (b), and ET-1 concentration was significantly higher in yaks (𝑛 = 13) than
bovines (𝑛 = 10) (c). Data are expressed as mean ± SD. ∗𝑃 < 0.05 versus bovine.

Table 1: Pulmonary hemodynamics in yaks.

PAP mean, mmHg 18.5 ± 0.7
PAP systolic, mmHg 25 ± 1.4
PWP, mmHg 8.5 ± 0.7
CO, L/min 10.5 ± 0.7
PVR, dyne⋅sec⋅cm−5 76 ± 5.6
HR, b/min 59 ± 1.4
SaO
2
, % 87 ± 1.4

PAP: pulmonary arterial pressure, PWP: pulmonary capillary wedge pres-
sure, CO: cardiac output, PVR: Pulmonary Vascular Resistance, HR: heart
rate, and SaO2: arterial oxygen saturation. Data are expressed as mean ± SD
(𝑛 = 3).

there were no significant differences in serum nitrates con-
centrations between bovines and yaks. The serum levels of
ET-1 in yaks were significantly increased compared with that
from bovines, and the serum ADMA levels were significantly
decreased comparedwith that frombovines (Figures 1(a), 1(b)
and 1(c)).

3.3. eNOS, DDAH Protein Expression, and DDAH Enzyme
Activity. The Western blot analysis of lung homogenates
showed that the expression of the eNOS protein in the lungs
from yaks was markedly higher when compared with that
from bovines, and both the DDAH I and DDAH II protein
expression were apparently increased in the lungs from yaks
when compared with those from bovines (Figure 2).

The protein DDAH expression and the DDAH enzyme
activity in the lungs from yaks were significantly higher,
roughly twice, as high when compared with the bovine
samples (Figure 3).

4. Discussion

Our present experiments confirmed our previous studies
showing augmented NO activity in yaks living at high
altitudes. We had previously inferred this result from data
obtained following the administration of the NOS inhibitor,
Nw-nitro-L-arginine (NLA) [32]. We now find increased
DDAH expression and activity associated with low levels
of plasma ADMA in yaks. The increased DDAH protein
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Figure 2: Western blot analysis of eNOS, DDAH I, and DDAH
II protein in lungs from yaks and bovines. The photomicrograph
shown is a representative image from the experiments, and the bar
graph shows the density ratios of eNOS, DDAH I, and DDAH II
protein bands relative to those from bovines. The eNOS, DDAH I,
and DDAH II protein expression was apparently increased in lungs
from yaks compared with those from bovines. Data are expressed as
mean ± SD (𝑛 = 2).
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Figure 3: DDAH activity in lungs from yaks and bovines. The bar
graph shows DDAH I activity in the lungs from yaks and bovines.
The DDAH activity is significantly increased in lungs from yaks
compared with those from bovines. Data are expressed as mean ±
SD (𝑛 = 6). ∗𝑃 < 0.05 versus bovine.

expression and DDAH activity in the lungs from yaks is
in line with previous findings showing regulatory effects
of DDAH expression in regard to the NO-ADMA-DDHA
pathway [33]. Impaired DDAH activity results in the accu-
mulation of ADMA in animals [34]. Our results of increased
expression and activity of DDAH in the lungs from yak
raise the possibility that the low pulmonary vascular tone in
yaks living at high altitudes is derived from enhanced NO
production and NOS activity due to decreased expression of
the endogenous NOS inhibitor in the lung tissue. In addition,
our findings of decreased levels of ADMA in plasma from
yaks support a role of ADMA as a biomarker of pulmonary
pressure regulation [15, 35].

The lungs are thought to be a major source of NOS and
ADMA [36]. Many previous studies have shown increased
plasma levels of ADMA in patients with various forms of
PAH, including idiopathic PAH [15, 16], PAH associated with
chronic thromboembolism [18], sickle cell disease-related PH
[20, 37], PAH associated with collagen vascular disease [19],
and congenital heart disease [17]. It is possible that shear
stress-induced PRMT activity [38] and downregulation of
DDAH induced by alveolar hypoxia [39] could be respon-
sible for the increased plasma ADMA expression. However,
because of the decreased SaO

2
and the normal pulmonary

arterial pressure of the yaks, we cannot explain the increased
expression of DDAH in our study as caused by pulmonary
vascular shear stress in the yaks. At present, the precisemech-
anism of high DDAH expression in yaks remains uncertain,
andwe speculate that an evolutionary process of yaks living at
high altitudes has altered the regulation of theADMA-DDAH
pathway in such a way as to provide protection against PAH
via augmented local activation ofNOproduction in the lungs.

Previous results showing decreased eNOS expression in
PAH patients and increased levels of ADMA [18] suggest
that circulating ADMA is a potential negative regulator of
eNOS expression in pulmonary arteries. Although it has
not been investigated whether circulating ADMA influences
eNOS expression, the inhibitory effect of ADMA in the
pulmonary vascular tone may be attenuated by the increased
NOS protein expression as we found in our yak study. There
is evidence that systemic infusion of ADMA also increases
the systemic vascular resistance and decreases the cardiac
output in humans [40] and this finding supports the role of
plasma ADMA levels in the pulmonary circulation of yaks as
an adaptive mechanism.

Despite the lower ADMA plasma levels and increased
eNOS expression in yaks, we could not find significant dif-
ferences in nitrate concentrations between yaks and bovines
(Figure 1(a)). This discrepancy may be explained by the
decreased oxygen concentration in the lungs and perhaps
by different diets of the two animal species. Our result
showing higher levels of ET-1 in yaks is consistent with
an alveolar hypoxia- or hypoxemia-induced activation of
hypoxia-induced factor alpha (HIF-1𝛼) and ET-1 pathways in
the yaks [41]. Because oxygen is necessary for NO production
by NOS, alveolar hypoxia will result in a reduced activity
of NOS [11]. In addition, it is known that exogenous food-
derived nitrate could also affect plasma nitrate levels, in
addition to the L-arginine-NO pathway [1].
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In conclusion, the results of this study show augmented
expression of DDAH expression and activity associated with
reduced levels of plasma ADMA in yaks. The results of
augmented activity of NOS in yaks could be explained by the
ADMA-DDAH-NO pathway. However, further investigation
regarding the plasma ADMA and DDAH activity of the
adapted animals and/or humans living at high altitudes is
necessary to determine whether decreased plasma ADMA
levels impact the eNOS expression in the lung and the
pulmonary arterial pressure.
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