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Abstract

The inflammasome is a cytosolic multiprotein complex that plays a
crucial role in inflammation and cell death. The sensor proteins in
the inflammasome complex detect various microbial and endoge-
nous stimuli, leading to subsequent caspase activation. The activa-
tion of caspases results in the maturation of pro-inflammatory
cytokines IL-1b and IL-18 or pyroptosis. Inflammasome dysfunction
is associated with the pathogenesis of various diseases, including
autoimmune disease and cancer. It appears that the interactions
between the gut microbiota and the inflammasome play crucial
roles in the gastrointestinal tract. The gut microbiota induces the
expression and activation of inflammasome proteins, which contri-
bute to both homeostasis and disease in the gut. Likewise,
although controversial, mounting evidence suggests that
inflammasome activation can modulate the composition of the gut
microbiota, which, in turn, affects disease progression. In this
review, we summarize the current concepts and recent insights
linking the inflammasome and gut commensal microorganisms.
We describe how the reciprocal interaction between the
inflammasome and the commensal microbiota relates to physio-
logical and pathophysiological consequences in the host.
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Introduction

The term inflammasome was introduced in 2002 to describe an

inducible high molecular weight complex containing nucleotide-

binding domain, leucine-rich repeat containing protein (NLR) family

pyrin domain containing 1 (NLRP1), PYCARD (ASC), and caspase-1.

Consistent with the NLRP1 inflammasome, an inflammasome

complex usually consists of three components: a sensor component,

an adapter molecule, and an effector component. To date, several

kinds of inflammasomes have been identified and broadly classified

into three groups based on the sensor component: NLR-associated

inflammasomes, absent in melanoma-2 (AIM2)-like receptor (ALR)-

associated inflammasomes, and the pyrin inflammasome (Vanaja

et al, 2015; Broz & Dixit, 2016). Inflammasomes can be activated by a

variety of pathogen-associated molecular patterns (PAMPs) and

damage-associated molecular patterns (DAMPs). The inflammasome

activation by PAMPs and DAMPs leads to the activation of caspase-1,

thereby cleaving pro-forms of interleukin (IL)-1b and IL-18 to generate

mature forms of these cytokines (Schroder & Tschopp, 2010; Vanaja

et al, 2015; Broz & Dixit, 2016). Moreover, inflammasome activation

can cause pyroptosis, which is a form of inflammatory cell death.

The gastrointestinal tract is continuously exposed to a dense

microbial community, called the microbiota (Sender et al, 2016).

The commensal microbiota modifies numerous aspects of host phys-

iology and pathophysiology, including complex mutual interactions

with the host’s immune system (Medzhitov, 2007; Gensollen et al,

2016). Inflammasome proteins are expressed in both immune (e.g.,

macrophages, dendritic cells) and non-immune cells (intestinal

epithelial cells, fibroblasts) (Kummer et al, 2007; Elinav et al, 2011).

Given their role as microbial sensors (Zheng et al, 2020), the activa-

tion of inflammasomes by the commensal microbiota may contri-

bute to physiological and pathophysiological consequences in the

host (Strowig et al, 2012).

Herein, we review current concepts and recent insights linking

the inflammasome and commensal microorganisms. We highlight

the mechanisms by which the inflammasome and commensal

microbiota regulate each other, and how the reciprocal interaction

between the inflammasome and commensal microbiota relates to

physiological and pathophysiological consequences in the host.

NLRP1 inflammasome

NLRP1 was the first NLR shown to form an inflammasome complex

by recruiting ASC and caspase-1 (Martinon et al, 2002). Polymor-

phisms of human NLRP1 are associated with increased risk for
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many diseases, such as vitiligo (Jin, Birlea, et al, 2007; Jin, Mail-

loux, et al, 2007), Addison’s disease (Magitta et al, 2009; Zurawek

et al, 2010), type 1 diabetes (Magitta et al, 2009), and systemic

lupus erythematosus (Pontillo et al, 2012). In addition, the NLRP1

inflammasome has been considered to be an important mediator,

maintaining the host intestinal microbiota and controlling intestinal

pathophysiology, as occurs in response to inflammatory bowel

disease (IBD) (Cummings et al, 2010; De Iudicibus et al, 2011).

Genome-wide association studies (GWASs) have identified NLRP1

mutations associated with Crohn’s disease or its extraintestinal

manifestations, such as erythema nodosum and pyoderma

gangrenosum (Cummings et al, 2010). Further, a retrospective anal-

ysis of metadata from colonic mucosal biopsies collected from

patients with active ulcerative colitis (UC) revealed a higher expres-

sion level of NLRP1 (Williams et al, 2015).

In an animal model of IBD, it has been reported that NLRP1 exac-

erbates colitis through the interaction with commensal microbes

(Fig 1). Tye and colleagues revealed that the NLRP1 inflammasome

modulates the gut microbiota of littermate control mice (Tye et al,

2018). Mice deficient in Nlrp1 display an increased abundance of

butyrate-producing bacteria of the order Clostridiales, which

protects against DSS-induced colitis. Butyrate has been shown to

have beneficial effects on IBD pathologies by enhancing intestinal

barrier functions, including mucus production and the expression of

tight junction proteins (Van Immerseel et al, 2010). Therefore, the

NLRP1 inflammasome may have a negative impact on IBD through

reducing butyrate production by the gut microbiota. How does the

NLRP1 inflammasome modulate the composition of the gut micro-

biota? In this context, IL-1b signaling is dispensable for the micro-

biota modulation by NLRP1. Instead, IL-18 activation by NLRP1

contributes to DSS-induced colitis phenotype (Tye et al, 2018).

Consistent with the negative impact of IL-18 on butyrate-producing

bacteria in mice, the expression level of IL-18 in human intestinal

biopsy samples reveals a negative correlation with the population of

Clostridiales (Tye et al, 2018). NLRP1 is expressed in various

organs, including glandular epithelial structures such as the stom-

ach, intestine, lung, nerve, and testis (Kummer et al, 2007). At the

cellular level, NLRP1 is expressed in a broad array of cell types,

including granulocytes, monocytes, dendritic cells, and B and T cells

(Kummer et al, 2007). Among these cells, it has been shown that

non-hematopoietic compartments are responsible for the exacerba-

tion of DSS-induced colitis (Tye et al, 2018).

In contrast to the colitogenic role of NLRP1, there is evidence

that the NLRP1 inflammasome attenuates intestinal inflammation

(Williams et al, 2015). Williams and colleagues reported that

Nlrp1b-deficient mice are more susceptible to DSS-induced colitis

than wild-type (WT) littermates (Williams et al, 2015). Given that

the treatment with antibiotics reversed this phenotype in Nlrp1b-

deficient mice, it is plausible that the increased susceptibility to coli-

tis is through the modulation of microbiota caused by the loss of

NLRP1b (Williams et al, 2015). Likewise, co-housing with Nlrp1b-

deficient mice can transmit the susceptible phenotype to WT mice

(Williams et al, 2015). Thus, NLRP1 deficiency induces the expan-

sion of colitogenic bacteria. Note, however, that the impact of the

genotype of the NLRP1 allele is weaker than maternal influence

when comparing littermates bred from homozygous and heterozy-

gous parents (Ringel-Scaia et al, 2019). As in the contradictory

report by Tye and colleagues, a bone marrow chimeric experiment

revealed that the NLRP1 inflammasome functions in a non-

hematopoietic compartment. Several possibilities may explain this

discrepancy. One possibility is the genetic variability of the mouse

strains. Unlike humans, mice possess three paralogs of Nlrp1 (a, b,

and c) (Sastalla et al, 2013). The mice used in the study were Nlrp1

deficient, lacking all three alleles of Nlrp1, whereas the Nlrp1b-

deficient mice used by Williams and colleagues retain a functional

Nlrp1a. Another possibility is a difference in the cytokines

Glossary

Antimicrobial peptides
Antimicrobial peptides (AMPs) are synthesized natural antibiotics
produced by nearly all organisms, from bacteria and archaea to plants
and animals.
Commensal bacteria
“Commensal” originates from the Latin meaning “sharing the same
table”, an alternative term for microbiota. Commensal bacteria are
defined as the normal beneficial gut resident bacteria of importance
for digestion of food and protecting the gut against pathogenic
bacteria.
Damage-associated molecular patterns (DAMPs)
Intracellular molecules released from damaged or dying cells that can
activate the innate immune system through their interaction with
pattern recognition receptors (PRRs.)
Dysbiosis
Dysbiosis is the condition that describes an imbalance of beneficial
and pathogenic bacteria in the microbiota, and it has a negative
impact on the physiology of the host.
Inflammasome
Multimeric protein complex consists of an inflammasome sensor,
the adaptor protein ASC, and cysteine protease caspase-1. Its
primary function is to process pro-IL-1b and pro-IL-18 into their
mature forms and to execute inflammatory cell death termed
pyroptosis.

Inflammatory bowel disease (IBD)
A group of intestinal disorders characterized by chronic inflammation
of the bowel. Ulcerative colitis (UC) and Crohn’s disease (CD) are the
two most common types of IBD.
Lipoteichoic acid (LTA)
LTA is a cell wall component exclusive to Gram-positive bacteria and
is shed during bacterial replication and after therapeutic
administration of antibiotics. LTA is considered an immunostimulatory
functional equivalent to lipopolysaccharide (LPS), a major cell wall
component of Gram-negative bacteria.
Pathogen-associated molecular patterns (PAMPs)
Conserved molecular structures shared by several pathogens that are
recognized by innate immune receptors.
Pyroptosis
A gasdermin D (GSDMD)-dependent programmed cell death is
initiated by caspase-1 or caspase-11 activation. It occurs most
frequently on infection with intracellular pathogens.
Toll-like receptors (TLRs)
Germline-encoded receptors recognize pathogen-associated molecular
patterns. TLR signals result in the activation of cells and the
production of pro-inflammatory mediators.
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associated with disease phenotype. In contrast to the results

reported by Tye and colleagues, the Williams laboratory observed

that both IL-1b and IL-18 are responsible for the attenuation of coli-

tis. Collectively, these two studies show that the NLRP1 inflamma-

some has the physiological capability to influence the composition

of the intestinal microbiota through IL-18 and/or IL-1b. However,

further study is necessary to reveal the functional consequence of

NLRP1-mediated modulation of the commensal microbiota.

NLRP3 inflammasome

The NLRP3 inflammasome consists of three basic elements: NLRP3,

ASC, and procaspase-1 (Agostini et al, 2004). The NLRP3 inflamma-

some can be activated by a two-step mechanism in response to

numerous diverse stimuli derived from microbial and endogenous

molecules (Franchi, Munoz-Planillo, et al, 2012). In the first step,

termed the priming, certain PAMPs or DAMPs induce the expression

of NLRP3 and pro-form of IL-1b in targeted cells (Franchi, Munoz-

Planillo, et al, 2012). In the second step, the ligands for NLPR3, such

as ATP or the bacterial toxin nigericin, elicit the oligomerization of

NLRP3, followed by the assembly of NLRP3, ASC, and procaspase-1

into the NLRP3 inflammasome complex (Franchi, Munoz-Planillo,

et al, 2012). In addition to these well-known mechanisms of NLRP3

activation, posttranscriptional regulation through the ubiquitin–

proteasome system has been reported in large intestinal-resident

macrophages (Filardy et al, 2016). Uncontrolled activation of NLRP3

is known to be associated with the pathogenesis of various

inflammatory diseases in humans. For example, gain-of-function

mutations in the NLRP3 gene are linked to cryopyrin-associated

periodic fever syndromes (CAPS), a group of rare hereditary autoin-

flammatory diseases, including familial cold urticaria, Muckle–Wells

syndrome, and neonatal onset multisystem inflammatory disease

(Hoffman et al, 2001; Hoffman & Wanderer, 2010). In addition, a

case–control study suggested the association between NLRP3 and

intestinal inflammation. The NLRP3 rs10754558 single-nucleotide

polymorphism (SNP) is as a gain-of-function mutation (Hitomi et al,

2009) that is associated with ulcerative colitis, as the GG genotype

of rs10754558 was 2.48 times more common among patients with

this disease (Hanaei et al, 2018).

Several reports show that the NLRP3 inflammasome modulates

the intestinal microbiota (Zaki et al, 2010; Hirota et al, 2011; Yao

et al, 2017). Recognizing the need for standardized littermate-

controlled experimental design to investigate host genetics and

intestinal microbial interaction, Hirota and colleagues and Yao and

colleagues used Nlrp3-deficient mice and their WT littermate

controls. In contrast, the role of commensal microbes in NLRP3 acti-

vation in the context of the pathogenesis of inflammatory diseases is

studied extensively in animal models (Fig 2). In the CAPS mouse

model Nlrp3R258W, skin commensal microbes induce the activation

of the NLRP3 inflammasome, thereby promoting cutaneous

inflammation (Nakamura et al, 2012). Certain commensal patho-

bionts in the gut are reported to be capable of activating the NLRP3

inflammasome in mononuclear phagocytes residing in the intestinal

mucosa. Seo and colleagues identified the gut pathobiont Proteus

mirabilis as a potential activator of NLRP3 (Seo et al, 2015). Proteus

mirabilis produces hemolysin, which plays a central role in the

induction of IL-1b by macrophages through the activation of the

NLRP3 inflammasome (Seo et al, 2015). The NLRP3 activation by

P. mirabilis is critical for the exacerbation of colitis caused by the

colonization of this bacterium (Seo et al, 2015). More recently, Kita-

moto and colleagues demonstrated that Klebsiella and Enterobacter

species residing in the oral cavity are capable of activating the

NLRP3 inflammasome (Kitamoto et al, 2020). For example, K. aero-

genes, which accumulates in the oral cavity of mice that develop

periodontitis, induces a robust secretion of IL-1b by macrophages

through the activation of NLRP3 (Kitamoto et al, 2020). Importantly,

ingested K. aerogenes reaches the gastrointestinal tract, and the

ectopic gut colonization by this bacterium exacerbates intestinal

inflammation in DSS-induced colitis and Il10-deficient mice (Kita-

moto et al, 2020). Similar to P. mirabilis, the lack of NLRP3 or the

blockade of IL-1 signaling cancels the colitogenic effect of K. aeroge-

nes, suggesting the central role of the NLRP3–IL-1b axis in the

pathogenesis of oral commensal pathobiont-driven colitis (Kitamoto

et al, 2020). Likewise, IL-18, induced as a mediator downstream of

the NLRP3 inflammasome activation, impairs intestinal barrier

integrity through inhibition of goblet cell maturation (Nowarski

et al, 2015). Thus, mounting evidence supports the notion that the

NLRP3 inflammasome and its downstream mediators, such as IL-1b
and IL-18, play a central role in the induction and exacerbation of
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Figure 1. NLRP1 inflammasome may contribute to intestinal
inflammation through IL-18.

The NLRP1 inflammasome suppresses beneficial bacteria through IL-18. IL-18,
likely via the induction of antimicrobial peptides (AMPs), inhibits the growth of
butyrate-producing bacteria, such as species in the order Clostridiales. The
reduced population of butyrate-producing bacteria impairs intestinal barrier
functions (e.g., mucus production, expression of tight junction proteins).
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intestinal inflammation (Bauer et al, 2010; Seo et al, 2015).

However, several studies report the opposite results. For example,

NLRP3 inflammasome activation in epithelial cells by GPCR signal-

ing contributes to protection from DSS-induced colitis (Macia et al,

2015). Zaki and colleagues showed that mice lacking Nlrp3 are

highly susceptible to DSS-induced colitis (Zaki et al, 2010), which is

consistent with some other reports (Allen et al, 2010; Hirota et al,

2011). These investigators observed that NLRP3 activation leads to

the secretion of IL-18, which protects the host from colitis (Zaki

et al, 2010). Likewise, Il18- and Il18r1-deficient mice display

increased susceptibility to DSS-induced colitis (Takagi et al, 2003).

IL-18 acts on intestinal epithelial cells and promotes barrier integrity

(Zaki et al, 2010). Moreover, IL-18 signaling modulates the

commensal microbiota to be more homeostatic by suppressing the

population growth of pathobionts (Zaki et al, 2010). This discrep-

ancy may, in part, be due to differences in the gut microbiota. For

example, some of these studies used non-littermate controls, and it

is possible that the knockout mice were WT control mice with a dif-

ferent microbial composition (Takagi et al, 2003; Allen et al, 2010;

Zaki et al, 2010). In this context, it has been reported that inflamma-

some activation is detrimental if the microbiota is normalized before

the induction of colitis (Blazejewski et al, 2017). Thus, despite

enduring controversy, the activation of the NLRP3 inflammasome

by certain pathobionts may play a crucial role in the development

or exacerbation of intestinal inflammation.

NLRC4 inflammasome

NLRC4 was first described in 2001 as a mammalian protein homolo-

gous to CED4 of Caenorhabditis elegans that recruits and activates

caspases through its CARD domain (Geddes et al, 2001; Poyet et al,

2001). Different from other NLR family members, the assembly and

activation of the NLRC4 inflammasome requires interaction with

NLR apoptosis inhibitory proteins (NAIPs) (Kofoed & Vance, 2011;

Zhao et al, 2011). In mice, seven NAIP paralogs have been identi-

fied. Mouse NAIP1 and NAIP2 bind the needle and rod proteins of

the type III secretion system (T3SS), whereas mouse NAIP5 and

NAIP6 bind cytosolic flagellin (Kofoed & Vance, 2011; Zhao et al,

2011). In contrast, the only known human NAIP can detect T3SS

needle protein and flagellin, but not T3SS rod protein (Zhao et al,

2011; Kortmann et al, 2015). The binding of a NAIP by its
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Figure 2. The dialogue between intestinal microbiota and physiological response via NLRP3 and NLRC4 inflammasomes.

The activation of the NLRP3 inflammasome and subsequent IL-1b production result in the exacerbation of intestinal inflammation (left panel). Hemolysin produced by
commensal Proteus mirabilis activates the NLRP3 inflammasome in CCR2+Ly6Chigh newly recruited monocytes through hemolysin A (HpmA). Likewise, ectopically
colonized oral pathobionts, such as Klebsiella aerogenes, activate the NLRP3 inflammasome in intestinal macrophages. In contrast, the NLRC4 inflammasome behaves as
a gatekeeper for intestinal pathogens (right panel). Commensal bacteria fail to activate the NLRC4 inflammasome in intestinal macrophages, whereas enteric pathogens,
such as Salmonella, succeed. Pathogen-elicited inflammasome-mediated IL-1b secretion, in turn, promotes the eradication of the pathogens through activation of the
host’s innate immune defense (i.e., neutrophil recruitment via the induction of adhesion molecules in the endothelial cells).
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corresponding bacterial ligand induces a physical interaction

between the NAIP and NLRC4, which leads to the formation of an

oligomeric NLRC4 inflammasome complex. This complex serves as

a platform for inducing caspase-1 activation through a CARD–CARD

interaction between NLRC4 and caspase-1. As for the NLRC4

ligands, the activation of the NLRC4 inflammasome is known to be

induced by Gram-negative pathogens through the translocation of

small amounts of flagellin or PrgJ-like rod proteins (T3SS rod

proteins) into the host cytosol (Franchi et al, 2006; Miao et al,

2010). Thus, in macrophages, NLRC4 can be activated by cytosolic

flagellin derived from Salmonella enterica serovar Typhimurium

(Salmonella) (Franchi et al, 2006). In addition to Salmonella, NLRC4

is capable of identifying other Gram-negative bacteria that possess

either flagellin or T3SS factors, including Pseudomonas aeruginosa

(Sutterwala et al, 2007), Legionella pneumophila (Zamboni et al,

2006), and Shigella flexneri (Suzuki et al, 2007). As for the patho-

physiological role of NLRC4, clinical studies have shown that gain-

of-function NLRC4 mutations are associated with autoinflammation

with infantile enterocolitis (AIFEC) (Canna et al, 2014; Romberg

et al, 2014), an extremely rare disease that is characterized by

macrophage activation syndrome and severe inflammation of

gastrointestinal tract.

Notably, the NLRC4 inflammasome also has the ability to

discriminate certain intestinal bacteria from others, akin to the

NLRP3 inflammasome (Fig 2) (Franchi, Kamada, et al, 2012; Seo

et al, 2015). The bacteria discriminating function of the NLRP3

inflammasome is evident in inflammatory monocytes, whereas the

NLRC4 inflammasome is expressed in resident intestinal mononu-

clear phagocytes (iMPs), including macrophages and dendritic cells,

and reacts to pathogenic microbes while maintaining tolerance to

commensal microbes (Franchi, Kamada, et al, 2012). As immune

cells in the intestine are continuously exposed to a large number of

commensal microbes, iMPs harbor mechanisms that limit excessive

immune responses against commensal microbes. Indeed, iMPs are

not activated by bacterial molecules, such as TLR ligands, derived

from commensals, nor do they secrete pro-inflammatory cytokines,

such as tumor necrosis factor (TNF)-a or IL-6 (Smythies et al, 2005;

Lotz et al, 2006; Franchi, Kamada, et al, 2012). In contrast, iMPs

constitutively express pro–IL-1b and NLRC4 (Franchi, Kamada,

et al, 2012). However, unlike other pro-inflammatory cytokines,

such as TNF-a and IL-6, the pro-form of IL-1b is not biologically

active, nor does it induce inflammation. As the commensal bacteria

fail to activate the NLRC4 inflammasome, iMPs do not secrete

mature, bioactive IL-1b when stimulated by these bacteria (Franchi,

Kamada, et al, 2012). On the other hand, iMPs need to respond if

stimulated by pathogenic microbes to provoke antimicrobial immu-

nity to combat the pathogens. In this regard, iMPs can secrete IL-1b
in response to pathogenic microbes, such as Salmonella, which acti-

vate NLRC4 inflammasome (Franchi, Kamada, et al, 2012). Thus,

iMPs discriminate pathogens from commensal bacteria through the

NLRC4 inflammasome sensor. IL-1b secreted from iMPs as a result

of NLRC4 activation stimulates endothelial cells to express adhesion

molecules, such as VCAM-1, ICAM-2, E-selectin, and P-selectin,

which enhance the recruitment of neutrophils to the intestinal

mucosa and eradicate invasive pathogens (Franchi, Kamada, et al,

2012). Similarly, the NLRC4 inflammasome intrinsic to intestinal

epithelial cells restricts Salmonella replication using a mechanism

that drives infected enterocyte expulsion (Sellin et al, 2014).

Moreover, NLRC4 inflammasome activation by commensal bacteria

confers disease tolerance on the host. Schieber and colleagues

revealed that colonization by the specific commensal Escherichia coli

O21:H+ strain, which is resistant to a broad spectrum of antibiotics

including ampicillin, vancomycin, neomycin, and metronidazole

(namely AVNMR E. coli), mitigates DSS-induced colitis, Salmonella-

induced colitis, and Burkholderia thailandensis-induced pneumonia

(Schieber et al, 2015). Colonization by the E. coli O21:H+ strain

induces insulin/insulin-like growth factor-1 (IGF-1) through the acti-

vation of NLRC4, which plays a central role in disease tolerance in

these models (Schieber et al, 2015). How the microbiota induces IGF-

1 systemically and locally remains under investigation. Although IGF-

1 is mainly regulated by growth hormone, previous reports have

shown that short-chain fatty acids (Yan et al, 2016) and amino acids

(Takenaka et al, 2000) can modulate IGF-1 production. This suggests

that NLRC4 activation accelerates host IGF-1 production by way of

metabolites produced by the microbiota.

NLRP6 inflammasome

The initial study of the NLR family pyrin domain containing protein 6

(NLRP6/PYPAF5) in 2002 demonstrated that co-expression of NLRP6

and ASC in human cell lines results in the activation of caspase-1 and

NF-jB (Grenier et al, 2002). Despite contradictory evidence that

NLRP6 negatively regulates NF-jB signaling (Anand et al, 2012),

NLRP6 is unique in the NLR family as it can behave like both NLRs

and Toll-like receptors (TLRs). Structurally, NLRP6 comprises an N-

terminal PYD, a central NACHT domain, and a C-terminal leucine-

rich repeat (LRR) domain, similar to the NLRP3 protein. Further,

NLRP6 and NLRP3 proteins share similarities in amino acid

sequences—32% in humans and 33% in mice. However, NLRP6 and

NLRP3 recognize different ligands given the variations in their C-

terminal LRR domains (Li & Zhu, 2020). It has been reported that

bacterial infection induces NLRP6 co-localization with ASC in the

cytoplasm of bone marrow-derived macrophages, thereby leading to

the activation of caspase-1 and the secretion of mature IL-1b (Grenier

et al, 2002; Ghimire et al, 2018). Hara and colleagues showed that

lipoteichoic acid (LTA) from Gram-positive bacterial pathogens, such

as Listeria monocytogenes, induces the expression of NLRP6 and

caspase-11 via type I interferon (IFN) signaling. LTA also serves as a

ligand, binding to NLRP6 to activate the inflammasome via the ASC–

caspase-11–caspase-1 signaling cascade (Hara et al, 2018).

To date, most studies of NLRP6 have concentrated on defining its

role in the gastrointestinal tract, where it is primarily expressed (Eli-

nav et al, 2013). It has been repeatedly demonstrated that the

NLRP6 inflammasome is associated with the homeostatic mainte-

nance of the gastrointestinal tract (Fig 3). Accumulating evidence

indicates that (i) dysregulation of the NLRP6 inflammasome results

in intestinal dysbiosis (Elinav et al, 2011; Seregin et al, 2017), (ii)

the NLRP6 inflammasome can induce the production of antimicro-

bial peptides (AMPs) (Levy et al, 2015), and (iii) loss of the NLRP6

inflammasome results in autophagy dysfunction (Wlodarska et al,

2014). Elinav and colleagues showed that the fecal microbiota of

non-littermate Nlrp6-deficient mice consists of distinct bacterial

communities with a predominance of species from the phylum

Saccharibacteria (formerly known as TM7) and the family Prevotel-

laceae (Elinav et al, 2011). Of note, the transfer of the dysbiotic
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microbiota from Nlrp6-deficient mice to WT mice confers suscepti-

bility to DSS-induced colitis, suggesting that NLRP6 may be crucial

for the fine-tuning of the gut microbiota. An aberrant gut microbiota

caused by NLRP6 deficiency results in the expression of CCL5 in the

intestinal epithelial cells (Elinav et al, 2011). CCL5 induces the

recruitment of a variety of innate and adaptive immune cells carry-

ing CCR1, CCR3, CCR4, and CCR5 (Mantovani et al, 2004). The

elevation of CCL5, in particular, renders the host susceptible to coli-

tis. Similarly, Seregin and colleagues showed that deficiency in

NLRP6 increases the susceptibility to colitis in Il10�/� mice (Seregin

et al, 2017). Consistent with the report from Elinav’s laboratory,

NLRP6 deficiency leads to gut dysbiosis with the expansion of

Akkermansia muciniphila, a Gram-negative and strictly anaerobic

bacterium that belongs to the phylum Verrucomicrobia. Akkerman-

sia muciniphila, a member of the resident gut microbiota in mice

and humans, is capable of degrading mucin (Derrien et al, 2004).

Although it remains controversial whether A. muciniphila serves as

the pathobiont in intestinal inflammatory diseases, such as IBD (Png

et al, 2010; Kang et al, 2013; Rajilic-Stojanovic et al, 2013), exces-

sive mucin degradation by A. muciniphila clearly impairs the

intestinal mucus barrier. Indeed, the gut colonization by

A. muciniphila aggravates colitis in Il10�/� mice (Seregin et al,

2017). Similarly, Sun and colleagues revealed that inhibition of

Nlrp6 expression by corticotropin-releasing hormone leads to

intestinal inflammation and dysbiosis (Sun et al, 2013).

Multiple mechanisms have been proposed to explain how NLRP6

modulates the gut microbiota. Seregin and colleagues demonstrated

that NLRP6-dependent production of IL-18 is responsible for the

regulation of the gut microbiota. Both Il18�/� and Il18r1�/� mice

display an over representation of A. muciniphila, and the adminis-

tration of recombinant IL-18 reduces the abundance of

A. muciniphila in Nlrp6�/� mice (Seregin et al, 2017). IL-18 plays a

key role in host defense by regulating the intestinal mucus barrier

(Nowarski et al, 2015). Of these mechanisms, intestinal mucin

produced by goblet cells may affect the abundance of

A. muciniphila (Desai et al, 2016). Although Nlrp6�/� mice display

impaired maturation of goblet cells (Wlodarska et al, 2014), IL-18

inhibits goblet cell maturation, which can lead to a thinner mucus

layer (Nowarski et al, 2015). This suggests that alteration of

A. muciniphila abundance may be attributed to the promoted

mucus production. Note, however, that NLRP6 inflammasome func-

tion alone does not influence mucus production, as reported in stud-

ies that use proper littermate control animals (Volk et al, 2019). In

addition to its influence on the mucus layer, IL-18 may modulate
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Figure 3. The dialogue between intestinal microbiota and physiological response via NLRP6 and AIM2 inflammasomes.

The NLRP6 inflammasome modulates the gut microbiota and maintains gastrointestinal homeostasis. NLRP6-dependent production of IL-18 contributes to the secretion
of antimicrobial peptides (AMPs) from intestinal epithelial cells. IL-18, likely through AMPs, suppresses the growth of colitogenic pathobionts, such as bacteria in the
family Prevotellaceae and the phylum Saccharibacteria (formerly known as TM7), whose colonization induces CCL5-mediated recruitment of inflammatory cells. Likewise,
the NLRP6–IL-18 axis is crucial for the regulation of the colonization of Akkermansia muciniphila. Hence, the NLRP6 inflammasome maintains intestinal barrier function
by suppressing mucin degradation by A. muciniphila. Of note, some contrary reports indicate that NLRP6 deficiency has no influence on the composition of the gut
microbiota. Thus, the interaction between the NLRP6 and the gut microbiota remains controversial. On the other hand, the gut microbial metabolite taurine induces
NLRP6 expression. Like NLRP6, the AIM2 inflammasome suppresses the growth of potential pathobionts, such as Enterobacteriaceae, through the IL-18–AMP axis.
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the abundance of A. muciniphila through the induction of antimi-

crobial peptides (AMPs) (Levy et al, 2015). It has been reported that

IL-18 signaling regulates the expression of AMPs, including

angiogenin-4 (Ang4), in the gastrointestinal tract (Levy et al, 2015).

AMPs can modulate the intestinal microbiota composition (Vaish-

nava et al, 2011; Cullen et al, 2015). Given that appropriate AMP

secretion by intestinal epithelial cells is crucial for the maintenance

of intestinal homeostasis (Ostaff et al, 2013; Mukherjee & Hooper,

2015), IL-18 may play a central role in reshaping the composition of

the gut microbiota by the NLRP6 inflammasome. In this regard, the

injection of Ang4 into mice deficient in ASC, a component of the

NLRP6 inflammasome complex, restores the gut microbial commu-

nity (Levy et al, 2015). Notably, the gut resident microbiota can also

act upstream of NLRP6. Microbial metabolites, such as taurine,

histamine, and spermine, appear to activate NLRP6-dependent

secretion of IL-18 and subsequent expression of AMPs (Levy et al,

2015). Thus, the gut microbiota acts both up- and downstream of

the NLRP6 inflammasome, and the reciprocal regulation between

the gut microbiota and the NLRP6 inflammasome plays a central

role in the fine-tuning of the gut homeostasis.

Of note, the impact of the NLRP6 inflammasome on the composi-

tion of the gut microbiota draws controversy. Two different groups

have reported that NLRP6 deficiency does not influence the composi-

tion of the gut microbiota (Lemire et al, 2017; Mamantopoulos et al,

2017) (Fig 3). In these studies, the microbiota of Nlrp6�/� mice and

littermate controls were compared, whereas earlier studies used non-

littermate controls (Elinav et al, 2011; Levy et al, 2015). Clearly, the

impact of the NLRP6 inflammasome on the gut microbiota depends

on the pre-existing community structure in the respective vivarium.

AIM2 inflammasome

AIM2 was first identified as a gene that was lacking in melanoma

cell lines using subtractive cDNA hybridization (DeYoung et al,

1997). AIM2 protein is a member of the PYHIN protein family that

is characterized by an N-terminal PYD and one or two C-terminal

HIN (hematopoietic expression, IFN-inducible nature, nuclear local-

ization) domains (Unterholzner et al, 2010). AIM2 is a non-NLR

protein that is capable of forming an inflammasome complex. AIM2

recognizes and directly binds to cytosolic dsDNA (viral, bacterial,

mammalian, and synthetic) via its HIN domain and recruits ASC to

activate caspase-1 (Burckstummer et al, 2009; Fernandes-Alnemri

et al, 2009; Hornung et al, 2009; Roberts et al, 2009). Although the

lack of sequence specificity makes self-DNA a potential ligand for

AIM2, the AIM2 inflammasome is an essential sensor for microbial

pathogens that invade the cytosol (Fernandes-Alnemri et al, 2010;

Rathinam et al, 2010; Sauer et al, 2010).

Like other inflammasome proteins, the AIM2 inflammasome has a

physiological function to control the gut microbiota (Fig 3) (Hu et al,

2015; Ratsimandresy et al, 2017). Hu and colleagues reported that the

AIM2 inflammasome senses microbial DNA derived from the commen-

sal microbiota, leading to the secretion of IL-18 and subsequent AMPs

in the gut (Hu et al, 2015). The lack of AIM2 results in gut dysbiosis,

thereby increasing the susceptibility to DSS-induced colitis (Hu et al,

2015). The dysbiotic gut microbiota in mice deficient in AIM2 is

accompanied by the expansion of colitogenic pathobionts, as the trans-

mission of microbiota in Aim2�/� mice renders the co-housed WT

mice susceptible to colitis (Hu et al, 2015). In this context, the Hu and

colleagues showed that an abundance of Enterobacteriaceae, including

E. coli, was 1,000-fold higher in feces collected from Aim2-deficient

mice compared to WT mice (Hu et al, 2015). Like NLRP6, the AIM2

inflammasome modulates the gut microbiota through the IL-18–AMP

axis (Levy et al, 2015). Consistent with this notion, Aim2-deficient

mice exhibit decreased levels of IL-18 and AMPs, such as REG3c and

REG3b (Hu et al, 2015). Also, the administration of recombinant IL-18

reduces the abundance of E. coli in Aim2�/� mice (Hu et al, 2015).

Consistent with Hu laboratory study, Ratsimandresy and colleagues

also proposed an alternative mechanism by which AIM2 controls the

gut microbiota (Ratsimandresy et al, 2017). The Ratsimandresy labora-

tory demonstrated that increased populations of Prevotella, Bacteroides,

and mouse intestinal Bacteroides (MIB) in Aim2�/� mice compared to

WT mice, confers the susceptibility to colitis on the host. To deter-

mine a mechanism, they focused on the role of IL-18 in the regulation

of IL-22 signaling. IL-22 is known to regulate the expression of AMPs

in intestinal epithelial cells, including REG3c and REG3b (McDonald

et al, 2006; Hill et al, 2013; Manta et al, 2013). IL-18 inhibits IL-22

binding protein (IL-22BP), a soluble IL-22 receptor protein that antag-

onizes the effect of IL-22 signaling, and whereby AIM2-mediated IL-

18 secretion reinforces IL-22 signaling via IL-22BP inhibition. Collec-

tively, these observations indicate the AIM2 inflammasome has a

function to maintain an intestinal microbial homeostasis through the

production of IL-18-mediated AMPs in the gut. Note, however, the

use of non-littermate rather than littermate control mice in the studies

conducted by Hu and Ratsimandresy and their colleagues (Hu et al,

2015; Ratsimandresy et al, 2017).

Concluding remarks

The genetic mutations in inflammasomes are linked to autoin-

flammatory disorders. As inflammasomes are a key regulator under-

lying chronic diseases driven by inflammation that often arise in

aging populations living a Western lifestyle, their physiological role

has earned more attention among investigators. Although a primary

function of inflammasomes is as an elaborate sensor, enabling a

host to discriminate beneficial bacteria from malicious bacteria,

inflammasomes are also the intermediaries in the cross talk between

a host and its intestinal inhabitants. As discussed in this review, the

environmental condition of the intestinal lumen is constantly trans-

lated into the host response to induce specific signals through IL-1b
or IL-18 production, which results in a modulation of the intestinal

microbiota by IL-22 and AMPs. In turn, the modulated microbiota

may enhance the host response through microbial metabolites, such

as short-chain fatty acids and bile acid derivatives. Thus, inflamma-

somes are indispensable in their ability to coordinate a precise recip-

rocal interaction in the body. On the other hand, the commensal

microbiota should be regarded as one of the most important factors

contributing to IBD pathogenesis. Our review of studies involving

inflammasome mutant mice provided evidence that inflammasome

activation through exposure to the normal commensal microbiota

can exacerbate an intestinal inflammation if the intestinal epithelial

integrity is impaired, or if the genetic background of the host contri-

butes some influence. Considering that IBD develops when geneti-

cally susceptible individuals with impaired epithelial function are

exposed to a trigger, such as the intestinal microbiota, the studies of
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inflammasome function suggest that inflammasomes recapitulate

the actual clinical picture that occurs in IBD patients.

Data obtained from mouse models provide valuable insight,

increasing the understanding of the association between the

inflammasome, intestinal microbiota, and disease. In the field of

gastroenterology, accumulated evidence using mouse models eluci-

dates the potential pathogenic link between the inflammasome and

IBD. Despite contradictory findings, it is likely that the aberrant acti-

vation of the inflammasome worsens IBD pathogenesis. Thus, inhi-

bitors of the inflammasome and its downstream mediators, such as

IL-1b and IL-18, may be optimal targets for the treatment of IBD. On

the other hand, the inhibition of the inflammasome may have no

effect or even a negative impact in individuals who lack increased

expression of inflammasome-related pathways. Given the ability of

the inflammasome to prevent the expansion of pathobionts, inhibi-

tion of the inflammasome may exacerbate disease. Thus, in the clin-

ical setting, the identification of patients who may respond to

inflammasome-targeted therapies may be critical.
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