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Abstract: Sleep apnea syndrome (SAS) is a very common disease involving intermittent hypoxia (IH),
recurrent symptoms of deoxygenation during sleep, strong daytime sleepiness, and significant loss of
quality of life. A number of epidemiological researches have shown that SAS is an important risk
factor for insulin resistance and type 2 diabetes mellitus (DM), which is associated with SAS regardless
of age, gender, or body habitus. IH, hallmark of SAS, plays an important role in the pathogenesis of
SAS and experimental studies with animal and cellular models indicate that IH leads to attenuation
of glucose-induced insulin secretion from pancreatic β cells and to enhancement of insulin resistance
in peripheral tissues and cells, such as liver (hepatocytes), adipose tissue (adipocytes), and skeletal
muscles (myocytes). In this review, we focus on IH-induced dysfunction in glucose metabolism and
its underlying molecular mechanisms in several cells and tissues related to glucose homeostasis.

Keywords: type 2 diabetes; intermittent hypoxia; glucose-induced insulin secretion; pancreatic β cell
proliferation; hepatokines; adipokines; myokines; sleep apnea syndrome

1. Introduction

Sleep apnea syndrome (SAS) is characterized by repeated bouts of hypoxemia during sleep and
is associated with daytime sleepiness and decline in quality of life [1]. SAS affects 32% of the adult
population [2]. Type 2 diabetes mellitus (DM) is a metabolic disease characterized by reduced insulin
sensitivity and increased insulin resistance, β cell dysfunction especially in glucose-induced insulin
secretion, and elevated hepatic glucose production [3].

There is a significant association between SAS and type 2 DM with 15–30% of SAS patients having
DM [4,5]. The relationship between SAS and type 2 DM is independent of obesity and family history
of type 2 DM [6]. SAS is an independent risk factor for onset and progression of T2DM [4] and for
insulin resistance [7]. Presence of type 2 DM in SAS is independent of age, sex, family history, and
body habitus such as obesity [8]. The incidence of type 2 DM correlates with the severity of SAS; the
correlation between hemoglobin A1c (HbA1c) values and the apnea-hypoxia index was reported to be
r = 0.345, p = 0.016 [9]. The severity of SAS is related to the poor glycemic control in type 2 DM and
a positive correlation was reported between the presence of SAS and HbA1c (r = 0.24, p = 0.02) [10].
SAS is characterized by recurrent upper airway collapse during sleep and, consequently, the subjection
of tissues and cells to intermittent hypoxia (IH) [11]. Organs and tissues in SAS patients are exposed to
varying oxygen pressures, where low oxygen pressure (hypoxemia) alternated with normoxia [12].
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IH causes oxidative stress abnormalities that are similar to those seen with ischemia-reperfusion
injury [13–16] and lead to redox-activated signal transduction pathways in inflammation [17–19].
The close relationship between nocturnal IH and impaired glucose metabolism shown in several
studies suggests the possibility that IH plays a key role in the onset and progression of type 2 DM in
SAS patients [20]. An association has been shown between nocturnal IH and risk of developing type 2
DM in community-dwelling Japanese participants [21]. The deleterious effects of IH on pancreatic β

cell function, insulin resistance, and atherogenesis have been shown in animal studies [22–24]. IH,
therefore, plays a key role in the pathogenesis of type 2 DM (it is described as SAS in the manuscript),
and experimental studies of SAS/IH demonstrate that IH has similar effects on glucose metabolism [25].
Despite this, the pathophysiological and molecular mechanisms of IH-induced impaired glucose
metabolism are incompletely understood. The present review summarizes the current understanding
of the pathophysiologic and molecular mechanisms involved in the glucose metabolic dysfunction
caused by IH.

2. Intermittent Hypoxia in Pancreatic β Cells

IH during sleep leads to alterations in pancreatic β cell function such as glucose-induced insulin
biosynthesis, which includes preproinsulin mRNA transcription, proinsulin synthesis (translation), and
insulin secretion. The progression to type 2 DM depends on the impairment of glucose-induced insulin
secretion from pancreatic β cells as well as the presence of insulin resistance in peripheral target tissues
and organs, including the liver, adipose tissue, and muscle. Recent reports have suggested a number of
factors that may impair pancreatic β cell functioning. Hyperglycemia is known as a natural occurring
and very potent factor in promoting β cell replication [26,27], which can provide an increased source
of insulin to combat insulin resistance/glucose intolerance. However, IH is also reported to cause β cell
replication and apoptosis without hyperglycemia [28,29], suggesting a possible mechanism by which
IH acts as a β cell replication factor. On the other hand, it is reported that IH reduces β cell apoptosis
through the upregulation of anti-apoptotic B cell lymphoma 2 (Bcl-2)-associated X protein (Bax) and
the downregulation of apoptosis-producing Bcl-2 [30]. It is also reported that, in an animal experiment,
chronic IH was a possible contributor to mitochondrial-derived reactive oxygen species in pancreatic β
cell injury and dysfunction [23]. Cellular studies have demonstrated that IH significantly decreases the
gene expression of cluster of differentiation (CD)38 (ADP-ribosyl cyclase/cyclic ADP-ribose [cADPR]
hydrolase: EC 3.2.2.6) [31], which is an important component involved in glucose-induced insulin
secretion through the mobilization of Ca2+ from the intracellular Ca2+ pool via type 2 ryanodine
receptor Ca2+ channel, by cADPR in primary cultured rat and mouse pancreatic islets and animal
model experiments [32–36]. IH also increased rodent pancreatic β cell replication by upregulation
of the regenerating gene (Reg) family genes, which encode autocrine and paracrine growth factors
for β cell replication [37–39], and by the upregulation of an antiapoptotic hepatocyte growth factor,
the upregulation of which may combat the presence of β cell dysfunction and insulin resistance [40]
(Figure 1).
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Figure 1. A possible model of intermittent hypoxia (IH)-induced dysfunction/proliferation of 
pancreatic β cells. IH in sleep apnea syndrome (SAS) patients induces β cell dysfunction by 
attenuation of the CD38-cADPR signal system [31–36]. IH also stimulates β cell proliferation via 
upregulation of Reg family gene expression [40]. As a result, of the malfunctioned (decreased 
glucose-induced insulin secretion and increased basal insulin secretion), β cell numbers are 
increased. 

3. Intermittent Hypoxia and the Liver 

3.1. IH Induces Liver Damage 

IH has been shown to cause damage of liver cells (hepatocytes) and elevate the levels of serum 
liver enzymes such as alanine aminotransferase (EC 2.6.1.2), aspartate aminotransferase (EC 2.6.1.1), 
and alkaline phosphatase (EC 3.1.3.1) [41–43]. In animal studies using mouse models, IH exposure 
caused hepatic steatosis, necrosis of hepatocytes, and inflammation of the liver with neutrophil 
accumulation and collagen deposit. The mechanisms involve increases in proinflammatory 
cytokines (such as interleukin [IL]-1β, IL-6, tumor necrosis factor-α [TNF-α], and chemokine [C-X-C 
motif] ligand 2 [CXCL2]) and oxidative stress, resulting in DNA damages and the apoptosis of 
hepatocytes [41–43]. de Rosa et al. showed that after 3–5 weeks of IH in C57BL/6 mice, both 
hypoxia-inducible factor (HIF)-1 and phosphorylated (activated) nuclear factor-κB (NF-κB) were 
upregulated in the liver [44]. IH was also shown to increase proinflammatory cytokines, such as 
TNF-α and CXCL2, in obese mice exposed to four weeks of IH. Another study observed increases in 
NF-κB activation and liver proinflammatory cytokines such as IL-1β, IL-6, and CXCL2 in lean mice 
exposed to longer periods of IH [41]. IH also results in upregulation of nitric oxide synthase 2 
(NOS2: EC 1.14.13.39) and reduced activity of liver antioxidant enzymes such as superoxide 
dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6), both of which can contribute to inducing DNA 
damage and apoptosis [44]. Although IH induced several inflammatory responses in the liver, which 
particular cells (whether hepatocytes, hepatic stellate cells, sinusoid endothelial cells, Kupffer cells, 
pit cells, or intrahepatic biliary epithelial cells) are primary targets in IH-induced liver damage 
remains elusive. Liver damage by IH is thought to be significantly involved in the pathogenesis of 
non-alcoholic fatty liver disease (NAFLD). NAFLD is strongly associated with obesity, diabetes, and 
metabolic syndrome (obesity, hyperlipidemia, type 2 DM, and high blood pressure) [42]. With the 
global trend toward obesity, the incidence of NAFLD in obesity has risen rapidly to almost 70% and 
is recognized as the hepatic component of metabolic syndrome [45]. A recent prospective study 
showed that NAFLD occurs in more than 70% of patients with type 2 DM [46] and can be regarded 

Figure 1. A possible model of intermittent hypoxia (IH)-induced dysfunction/proliferation of pancreatic
β cells. IH in sleep apnea syndrome (SAS) patients induces β cell dysfunction by attenuation of the
CD38-cADPR signal system [31–36]. IH also stimulates β cell proliferation via upregulation of Reg
family gene expression [40]. As a result, of the malfunctioned (decreased glucose-induced insulin
secretion and increased basal insulin secretion), β cell numbers are increased.

3. Intermittent Hypoxia and the Liver

3.1. IH Induces Liver Damage

IH has been shown to cause damage of liver cells (hepatocytes) and elevate the levels of serum liver
enzymes such as alanine aminotransferase (EC 2.6.1.2), aspartate aminotransferase (EC 2.6.1.1), and
alkaline phosphatase (EC 3.1.3.1) [41–43]. In animal studies using mouse models, IH exposure caused
hepatic steatosis, necrosis of hepatocytes, and inflammation of the liver with neutrophil accumulation
and collagen deposit. The mechanisms involve increases in proinflammatory cytokines (such as
interleukin [IL]-1β, IL-6, tumor necrosis factor-α [TNF-α], and chemokine [C-X-C motif] ligand 2
[CXCL2]) and oxidative stress, resulting in DNA damages and the apoptosis of hepatocytes [41–43].
de Rosa et al. showed that after 3–5 weeks of IH in C57BL/6 mice, both hypoxia-inducible factor
(HIF)-1 and phosphorylated (activated) nuclear factor-κB (NF-κB) were upregulated in the liver [44].
IH was also shown to increase proinflammatory cytokines, such as TNF-α and CXCL2, in obese
mice exposed to four weeks of IH. Another study observed increases in NF-κB activation and liver
proinflammatory cytokines such as IL-1β, IL-6, and CXCL2 in lean mice exposed to longer periods of
IH [41]. IH also results in upregulation of nitric oxide synthase 2 (NOS2: EC 1.14.13.39) and reduced
activity of liver antioxidant enzymes such as superoxide dismutase (EC 1.15.1.1) and catalase (EC
1.11.1.6), both of which can contribute to inducing DNA damage and apoptosis [44]. Although IH
induced several inflammatory responses in the liver, which particular cells (whether hepatocytes,
hepatic stellate cells, sinusoid endothelial cells, Kupffer cells, pit cells, or intrahepatic biliary epithelial
cells) are primary targets in IH-induced liver damage remains elusive. Liver damage by IH is thought
to be significantly involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). NAFLD
is strongly associated with obesity, diabetes, and metabolic syndrome (obesity, hyperlipidemia, type 2
DM, and high blood pressure) [42]. With the global trend toward obesity, the incidence of NAFLD
in obesity has risen rapidly to almost 70% and is recognized as the hepatic component of metabolic
syndrome [45]. A recent prospective study showed that NAFLD occurs in more than 70% of patients
with type 2 DM [46] and can be regarded as a risk factor for type 2 DM, independent of age or
other factors such as obesity [47]. NAFLD patients usually have hepatic insulin resistance, which
is associated with NAFLD-related lipid accumulation, inflammation, endoplasmic reticulum stress,
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and oxidative stress [48]. Moreover, hepatic insulin resistance is the key cause of impaired fasting
glucose, which contributes substantially to the development of type 2 DM [49]. IH exposure in mice
increases hepatic lipogenic enzymes such as stearoyl-coenzyme A desaturase-1 (EC 1.14.19.1) via the
upregulation of sterol regulatory element–binding protein-1 and high-density lipoprotein receptor [50],
leading to the development of NAFLD and metabolic syndrome. In another study, IH was reported to
be associated with fibrosis and inflammation of the liver but not with macrophage accumulation [51].
Animal studies, especially in obese mice model, strongly support the pathophysiological contribution
of IH to the progression of NAFLD [42,52].

3.2. Effects of IH on Hepatic Glucose Metabolism

The direct mechanism by which IH affects hepatic glucose metabolism is not well understood.
Savransky et al. report that IH upregulates glucose production, as supported by observation of higher
glycogen content [41,42]. Furthermore, IH increases not only glucose supply from hepatocytes but
also gene expression of several gluconeogenic enzymes such as phosphoenolpyruvate carboxykinase
(EC 4.1.32) and glucose 6-phosphatase (EC 3.1.3.9) in the liver, contributing to fasting hyperglycemia
and development of type 2 DM [53]. Gu et al. report that IH disrupts glucose homeostasis in
hepatocytes in an insulin-dependent and independent manner [54]. Recently, several proteins
that are exclusively or predominantly secreted by the liver, called hepatokines, were confirmed
as directly affecting glucose and lipid metabolism [55,56]. For example, selenoprotein P, a type
of hepatokines, is correlated positively with insulin resistance and could be a therapeutic target
for type 2 DM [57]. In cellular studies using human and rat hepatocytes, IH exposure causes
upregulation of mRNAs in selenoprotein P but not in α2 HS-glycoprotein, angiopoietin-related
growth factor 6, fibroblast growth factor 21, leukocyte cell-derived chemotaxin 2, Lipasin, and sex
hormone-binding globulin, or hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein
(HIP/PAP), but in the other Reg family (REG Iα, REG Iβ, REG III, and REG IV) it happened in
hepatocytes via downregulation of microRNA-203. HIP/PAP, a Reg family member [39], was reported
to be a hepatocyte mitogen [39,58,59] and the small interfering RNA for HIP/PAP attenuated the
IH-induced hepatocyte proliferation [59]. It may be that IH stress upregulates the levels of selenoprotein
P in human hepatocytes to accelerate insulin resistance and the levels of HIP/PAP mRNAs to proliferate
such hepatocytes via the microRNA-203 mediated mechanism [59] (Figure 2).
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Figure 2. A possible mechanism for IH-induced diabetes mellitus (DM) and its complications.
IH upregulates hepatokines such as selenoprotein P to increase insulin resistance and HIP/PAP [59]
to proliferate such hepatocytes via downregulation of microRNA-203, resulting in insulin resistance,
fat accumulation, and arteriosclerosis.
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4. Intermittent Hypoxia and Adipose Tissue

4.1. Insulin Resistance Induced by Lipolysis of the White Adipose Tissue (WAT)

Obesity is strongly associated with SAS and exerts many of its complications in cardiovascular
and metabolic systems through the action of WAT. Recently, physiological and pathophysiological roles
of WAT have been explored [60–62]. WAT plays a major role in insulin resistance through the release
of free fatty acids (FFAs) during lipolysis [63], and these induce insulin resistance via their effects not
only on adipose tissue but also on liver and muscle cells. As adipose tissue accumulates fat, it increases
in volume and consequently become much more hypoxic [63–65]. In response to this hypoxia, the
WAT undergoes apoptosis and necrosis in cell death. Adipocyte death may contribute to elevation of
FFAs in circulation because dead adipocytes may release FFAs into bloodstream. Various studies have
shown that in obese humans or animals WAT is more hypoxic than in lean controls [66,67]. Hypoxia
is a key component in modulating the inflammatory responses of WAT [63,64]. When adipocyte
hypertrophy occurs and the adipocyte size exceeds the oxygen diffusion capacity, the adipose tissue
regional perfusion is reduced, and the adipocytes are in hypoxic condition [63].

4.2. Inflammation in Adipose Tissue by IH

Hypoxic stress accelerates adipocyte inflammatory signal transduction pathways in which HIF-1α
and NF-κB play important roles [65]. HIF-1 is recognized as one of master transcription factors
for numerous genes affecting various cellular and developmental processes, including angiogenesis,
cellular and systemic metabolism, vascular tone, and cell survival [68]. It has recently been shown that
HIF-1 activation occurs at the onset of obesity as a response to relative tissue hypoxia, leading
to a state of insulin resistance in adipocytes, with adipose tissue inflammation and metabolic
dysfunction [69]. Hypoxia has also been shown to inhibit insulin signaling by decreasing insulin
receptor tyrosine-phosphorylation and glucose transport in response to insulin, affecting adipocytes
in a HIF-1 dependent manner [70]. Adipose HIF-1 activation, HIF-1-mediated angiopietin-like 4
expression, and inhibition of lipoprotein lipase (EC 3.1.1.34) by IH have also been demonstrated in
apolipoprotein E-deficient lean mice [14]. Hypoxia increases macrophage infiltration in adipose tissue
and the expression/secretion of IL-6, IL-8, and TNF-α from adipose tissue [24]. A possible explanation
is proposed that primary human adipocytes exposed to IH in vitro are significantly more sensitive to
the stimulus than other primary cells through the activation of downstream NF-κB pathway by which
the expression of multiple inflammatory mediators, such as TNF-α and C-C motif chemokine ligand 2
(CCL2), play important roles in insulin resistance [71].

Pathological changes in adipose tissues are characterized by infiltration of macrophages and
other immune cells, including T-lymphocytes and mast cells. Macrophages are polarized toward the
pro-inflammatory subtype M1 and are arranged in a crown-like structure around necrotic adipocytes.
M1 macrophages produce various pro-inflammatory cytokines, such as IL-6 and TNF-α and express
NOS2 [72,73]. The resulting adipose tissue inflammation leads to a release of FFAs which activate
various signaling pathways, including c-Jun N-terminal protein kinases, the inhibitor of NF-κB kinase
subunit β and protein kinase R, collectively resulting in impairment of the insulin-signaling pathway,
with the downstream consequence of insulin resistance and metabolic dysfunction [74]. Recently,
Uchiyama et al. reported that IH upregulated mRNAs and the proteins TNF-α, CCL2, and resistin
in human and rodent adipocytes via downregulation of microRNA-452 [75]. TNF-α plays a key
role in obesity-related insulin resistance and increased TNF-α levels contribute to impaired glucose
homeostasis [76]. CCL2, also referred as monocyte chemoattractant protein-1, is a key regulator of
monocyte infiltration in adipose tissue and plays a central role in the development and maintenance
of chronic adipose tissue inflammation and insulin resistance [76,77]. Resistin is a pro-inflammatory
adipokine and was initially named because of its relationship to insulin resistance in rodents [72,77].
Such inflammatory adipokines play an important role in the onset and progression of insulin resistance
and type 2 DM (Figure 3). Additionally, as TNF-α, CCL2, and resistin were reported to associated
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with inflammation and macrophage infiltration [78–80], adipocyte dysfunction in vivo can be achieved
by a combination of TNF-α, CCL2, and resistin from IH-exposed adipocytes and other inflammatory
mediators such as IL-6 from infiltrated macrophages or lymphocytes.
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Figure 3. A possible mechanism of IH-induced insulin resistance via adipokines. IH stress upregulates
adipokines such as tumor necrosis factor-α (TNF-α), C-C motif chemokine ligand 2 (CCL2), and resistin
via downregulation of microRNA-452 in adipocytes to increase insulin resistance [75].

5. Intermittent Hypoxia and Skeletal Muscles

Skeletal muscles are responsible for the majority of insulin-sensitive glucose uptake via glucose
transporter 4 (solute carrier family 2, facilitated glucose transporter member 4). In vivo research
presents data that are conflicting, some suggesting that IH induces insulin resistance while others show
improvements in insulin sensitivity. A study using a rodent model of IH showed not only decreases
in whole-body insulin sensitivity but also reduced glucose utilization and insulin sensitivity in the
musculus soleus, suggesting a clear reduction in glucose metabolism with reduced uptake in the muscle.
The impact of IH was most pronounced in oxidative muscle fibers (musculus soleus), while glycolytic
muscle (musculus vastus lateralis) and mixed oxidative and glycolytic (musculus gastrocnemius) fibers
were relatively unaffected. Thus, glucose uptake in oxidative muscle tissue is significantly impaired by
IH and this effect appears independent of obesity [22]. On the other hand, Mackenzie et al. [81] showed
that acute hypoxic exposure increased insulin sensitivity in individuals with type 2 DM, and ten nights
of moderate hypoxic exposure improved insulin sensitivity in obese males [82]. The question whether
IH causes insulin resistance or not is a complex one. There are few studies that have examined the effect
of IH on glucose uptake and metabolism in skeletal muscle. Recently, it was found that muscle cells
express and secrete several cytokines, and these are called myokines [83]. Most recently, IH was shown
to upregulate some myokines, such as IL-8, osteonectin (also known as secreted protein acidic and rich
in cysteine), and myonectin (also known as C1q/TNF-related protein 15 or erythroferrone), which are all
involved in inflammation and glucose metabolism, via transcriptional activation of the myokine genes
in human and mouse muscle cells [84]. IH-induced upregulation of myokines could be an important
research target for an understanding of why and how IH induced glucose intolerance develops.

6. Intermittent Hypoxia and Nervous System

Sympathetic excitation induced by IH has been extensively studied and is widely recognized to
contribute to the IH-induced cardiovascular complications [85]. In addition, catecholamines, secreted
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from hypothalamic-pituitary-adrenal (HPA) system, are known to reduce insulin sensitivity and
insulin-mediated glucose uptake in peripheral organs and tissues [86,87]. Furthermore, elevated
sympathetic excitation seems to be sustained during the day as well as being evident during sleep,
even if day time breathing seems to be normal in patients with SAS [88,89]. Several studies have
clearly demonstrated the elevation in sympathetic activity and its associated increase in blood pressure
in SAS patients was improved following short-term continuous positive airway pressure (CPAP)
therapy [90–93]. As catecholamines are widely known to reduce peripheral insulin-sensitive glucose
uptake and to increase insulin resistance [86], these findings strongly suggest that IH causes insulin
resistance in peripheral organs/tissues via the increased release of catecholamines from sympathetic
neural system. Although SAS and obesity are strongly related, it remains unclear which is the trigger.
Shobatake et al. show that IH stress upregulates the mRNA levels of major appetite regulatory
peptides, proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART),
in human neuronal cells. IH can have an anorexigenic effect on SAS patients through the transcriptional
activation of POMC and CART in the central nervous system via the activation of GATA transcription
factors [94]. Recently, IH was shown to upregulate anorexigenic hormone genes (peptide YY [PYY],
glucagon-like peptide-1 [GLP-1], and neurotensin) in human and rodent enteroendocrine cells via
epigenetic modification of chromatin structure [95]. Therefore, IH shows anorexigenic effects not only
through the central nervous system via expression of POMC and CART but also through the peripheral
nervous system via upregulation of PYY, GLP-1, and neurotensin.

7. Therapeutic Interventions for IH/SAS and Type 2 DM

Although there are various treatments for SAS patients, CPAP therapy remains the gold standard
for treating SAS. Randomized, placebo-controlled trials have indicated that CPAP shows significant
improvement in quality of life of SAS patients. Several alternatives to CPAP therapy may be
considered, including mandibular advancement devices for increasing airway diameter through soft
tissue displacement, surgeries to the upper airway, maxillomandibular advancement, and gastric
bypass surgery (mainly Roux-en-Y gastric bypass) for weight loss in appropriately selected patients.
However, the impact of CPAP therapy on DM is less clear in research measuring the variable markers
of insulin sensitivity and insulin resistance. Several randomized controlled trials have reported distinct
improvements in metabolic control (insulin sensitivity/glucose tolerance) in patients with SAS who
were treated with CPAP as compared to sham-CPAP treated patients [96–98]. Moreover, many studies
have shown improvements in glycemic control such as hemoglobin A1c (HbA1c) after three months of
CPAP therapy [99–101]. Nevertheless, in a recent meta-analysis of randomized controlled studies that
examined the effects of CPAP on glycemic control measurements, CPAP does not show decreases in
HbA1c level or body mass indices in patients with SAS and type 2 DM, but it does show improved
insulin sensitivity [102]. Hecht et al. reported that CPAP neither influenced plasma insulin levels
nor the homeostasis model assessment index, adiponectin levels, or HbA1c value as part of their
meta-analysis of variables in SAS and they found that CPAP did not improve insulin sensitivity [103].
Lindberg et al. [104] reported improvement in serum fasting insulin levels but not in HbA1c levels with
CPAP therapy. These controversial results described here may be caused by differences in assessment
methods for insulin sensitivity, variations in study population characteristics such as age, sex, race,
severity of SAS, incorrect attachment of CPAP device, and duration of CPAP therapy. However, these
findings indicate that CPAP therapy for SAS patients can lead to significant improvement in glucose
tolerance and control, even in type 2 DM and pre-DM. As the molecular bases of SAS/IH are described,
the efficacies of CPAP and other therapies for SAS/IH-induced insulin resistance, for DM, and for SAS
itself, should also be assessed in relation to molecular markers.

8. Conclusions

Recently, there has been great medical and scientific interest in the interaction between SAS/IH
and metabolic dysfunction. SAS is commonly found in patients with type 2 DM. Recent research
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indicates that SAS could contribute to impaired glucose metabolism through the combined effects of
sleep fragmentation, sympathetic excitation, and oxygen stress induced by IH. IH plays a key role not
only in the pathogenesis of SAS but also in the pathophysiology of SAS-induced metabolic disorders
such as insulin resistance and type 2 DM. It is therefore important for the experimental research to use
IH models in animals and in vitro. IH plays a pivotal role in the development of glucose metabolic
dysfunction in SAS and contributes through multiple pathways to the complications of SAS, including
obesity (Figure 4). In order to clarify the mechanisms underlying these processes, molecular, clinical,
and translational research in vitro and in vivo is urgently required.
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DM Diabetes mellitus
FFAs Free fatty acids
GLP-1 Glucagon-like peptide-1
HbA1c Hemoglobin A1c
HIF Hypoxia-inducible factor
HIP/PAP Hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein
HPA Hypothalamic-pituitary-adrenal
IH Intermittent hypoxia
IL Interleukin
NAFLD Non-alcoholic fatty liver disease
NF-κB Nuclear factor-κB
NOS2 Nitric oxide synthase 2
POMC Proopiomelanocortin
PYY Peptide YY
Reg Regenerating gene
SAS Sleep apnea syndrome
SNP Single nucleotide polymorphism
TNF-α Tumor necrosis factor-α
WAT White adipose tissue
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