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Abstract: The objective of the current research work is to study the differences between the predicted
ablation volume in homogeneous and heterogeneous models of typical radiofrequency (RF) procedures
for pain relief. A three-dimensional computational domain comprising of the realistic anatomy of the
target tissue was considered in the present study. A comparative analysis was conducted for three
different scenarios: (a) a completely homogeneous domain comprising of only muscle tissue, (b) a
heterogeneous domain comprising of nerve and muscle tissues, and (c) a heterogeneous domain
comprising of bone, nerve and muscle tissues. Finite-element-based simulations were performed
to compute the temperature and electrical field distribution during conventional RF procedures for
treating pain, and exemplified here for the continuous case. The predicted results reveal that the
consideration of heterogeneity within the computational domain results in distorted electric field
distribution and leads to a significant reduction in the attained ablation volume during the continuous
RF application for pain relief. The findings of this study could provide first-hand quantitative
information to clinical practitioners about the impact of such heterogeneities on the efficacy of RF
procedures, thereby assisting them in developing standardized optimal protocols for different cases
of interest.

Keywords: radiofrequency therapies; pain relief; bioheat transfer; coupled thermo-electric analysis;
multiscale models for biological tissues; feedback control systems; AI and machine learning algorithms;
finite element method; coupled mathematical models; clinical applications of computational modeling

1. Introduction

Globally, pain management is an enormous challenge that places significant physical, social and
economic burdens on society. In accordance with the International Association for the Study of Pain
(IASP), pain is defined as “an unpleasant sensory and emotional experience associated with actual
or potential tissue damage, or described in terms of such damage.” Furthermore, pain is always a
highly subjective and integrative experience that is associated with biological, psychological, and social
factors. This complex definition of pain continues to evolve with advancements in medical science and
technology [1]. As per the current definition of pain, a plethora of pain and pain states exist, such as
nociceptive pain, neuropathic pain, acute pain, chronic pain, etc. Developing an effective treatment
option for tackling acute and chronic pain is the main focus of pain management therapists, owing to
the significant effects they have on the quality of life of patients, including disability, mood swings,
anxiety, and overuse of medicine, to name a few [2]. Notably, acute pain lasts for less than three days
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and tends to diminish afterward with the passage of time as healing occurs, whereas chronic pain
is the extension of acute pain that can go well beyond the expected healing duration post-injury or
surgery and typically lasts for more than three months, and in some cases may last indefinitely [1,2].
A multitude of drug-based and non-drug based options exists for the management of pain, which
often utilizes multimodal and multidisciplinary approaches, viz., pharmaceutical, physical therapy,
rehabilitation and surgery [1–4].

Chronic pain is one of the major public health problems affecting billions of people all around the
world. In Canada, for example, chronic pain imposes a significant burden on healthcare resources,
accounting for approximately $7.2 billion annually [5,6]. There has been widespread reliance on the
usage of opioids as a pain medication for mitigating chronic pain, which can do more harm than
good [7]. Several inexpensive alternative treatment options have also been explored in clinical practices
for mitigating chronic pain and minimizing the usage of opioids. Among the available treatment
modalities for chronic pain relief, minimally invasive radiofrequency ablation offers several advantages,
such as it is precise, reproducible, cheap and highly effective [8,9]. The application of radiofrequency
(RF) has been growing rapidly and increasing in popularity for treating different types of pain, such as
in the management of low back pain, knee pain, hip pain, migraine, etc. [10–17]. Generally, the power
delivery during such pain management procedures is done using either a continuous or a pulsed
mode [14]. In the conventional continuous power delivery mode, RF currents applied between the
electrode (accurately placed on the target nerve) and the dispersive ground electrode (placed on
the patient’s skin) results in temperatures above 50 ◦C. The high temperature obtained during the
continuous RF procedure results in coagulative necrosis of the neural tissue that further leads to protein
denaturation and axon destruction, which ultimately stops the transmission of nociceptive signals
from the periphery, thereby mitigating pain. In contrast to the continuous RF mode, which relies on the
high temperature to cause neural ablation, the pulsed delivery mode utilizes the application of short
pulses of RF current to the neural tissue from the RF generator that is followed by silent phases to allow
time for heat dissemination [14,18,19]. The electric field generated due to these applied pulses disrupts
the functioning of neuronal membrane, along with genetic changes that affect cytokine release [8].
Thus, the mechanism of action of both these modes is quite different. Importantly, the pulsed mode
is a theoretically nonablative procedure, since the maximum temperature during such procedures is
usually not allowed to exceed 42 ◦C, thus making it less destructive in comparison to the continuous RF.
Although the exact explanation of the complete mechanisms of action involved during the pulsed RF
procedure for treating chronic pain remains elusive, extensive research is being undertaken to quantify
its associated effects [13,20]. Despite the increasing use of various radiofrequency therapies in clinical
practices for treating pain, controversy still exists over their efficacy and treatment outcomes [6].

Computational modeling and simulations are vital tools for providing a quick, convenient and
inexpensive evaluation of the treatment outcomes of such therapies, including the thermal ablative
procedures. Computational modeling has been used in the past at different stages of thermal ablative
procedures, which include the design and development of new protocols, as well as optimization
and improvement of existing protocols of clinical systems [21–26]. Computational models also serve
as a means of understanding the interaction between various physical phenomena and the effects
of various intrinsic and extrinsic factors on the treatment outcomes of RF-based clinical techniques.
The application of computational tools is widespread among different thermal ablative modalities,
including those for treating tumors, but very few computational studies have been reported in the
literature for treating pain [27–29]. Moreover, most of the computational studies reported to date have
been conducted considering homogeneous tissues. The latter assumption means that although the
ultimate goal of such works was to attain the ablation of the target nerve, in reality, its incorporation
into the computational domain has been routinely neglected. Although the previously reported
computational studies on the RF application for chronic pain management have addressed several
important concerns and advanced this field of research by providing a quantitative prediction of
the electrical field, the evaluation of the thermal field and ablation volume without accounting
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for heterogeneity within the computational domain, typically results in severe inaccuracies being
introduced into the associated models.

Thus, the present study aims at quantifying the effects of heterogeneity in the computational
domain of interest on the characteristics obtained during radiofrequency therapies for treating pain,
exemplifying our main results for the ablation volume characteristics in the continuous RF procedure.
The present paper has been originally initiated from a presentation of its part at the International
Conference on Bioinformatics and Neurosciences (ICoBN 2019) held in Vancouver, Canada, August
26–28, 2019 [30]. As part of our comprehensive analysis that develops and extends the idea of [30],
three different computational domains were considered: (a) a completely homogeneous domain
comprised of muscle tissue alone, (b) a heterogeneous domain comprising of nerve embedded within
the muscle tissue, and (c) a heterogeneous domain comprising of target bone, nerve and muscle
tissues. Furthermore, a comparative study of continuous RF was conducted with and without utilizing
a temperature-controller. This is an automated control loop proportional-integral-derivative (PID)
controller within the computational domain that continuously modulates the applied voltage to keep
the maximum temperature below the predefined value to avoid the occurrence of charring at the
electrode tip.

2. Materials and Methods

This section provides the details of the computational domain, governing equations for the
coupled thermo-electric model of the RF procedure, numerical setup and modeling details, along
with the main material properties and thermo-electric characteristics considered in the present study.
The details of the fidelity and integrity of the developed computational model are also provided in
this section by comparing the predicted treatment outcomes from the present model and previously
reported studies available in the literature.

2.1. Computational Domain

A schematic of a three-dimensional heterogeneous computational domain comprising of muscle,
bone and nerve tissue [31], with an embedded 22-gauge monopolar RF electrode with a 5 mm active
tip length [27] is shown in Figure 1. As mentioned earlier, the effect of heterogeneity on the efficacy
of continuous RF procedure was quantified considering three different cases for the computational
domain: (a) a complete homogeneous computational domain comprising of only muscle tissue, (b) a
computational domain comprising of a 4 mm cylindrical nerve embedded within the muscle tissue,
and (c) a completely heterogeneous computational domain comprising of bone, nerve and muscle
tissues. Further possible advancements of the proposed model for case (c) are discussed later in the
paper. The thermo-electric and biophysical properties considered in the present study are summarized
in Table 1 [27,29,31,32]. In the present analysis, the thermo-electric characteristics of the bone presented
in Table 1 correspond to the cortical bone (see Section 4.2 for additional details pertinent to this and
other tissues considered here).

Table 1. Thermo-electric and biophysical properties of different materials considered in this study.

Material
(Tissue/Electrode)

Electrical
Conductivity
σ [S/m]

Specific Heat
Capacity

c [J/(kg·K)]

Thermal
Conductivity
k [W/(m·K)]

Density
ρ [kg/m3]

Blood
Perfusion
ωb [s−1]

Muscle 0.446 3421 0.49 1090 6.35 × 10−4

Bone 0.0222 1313 0.32 1908 4.67 × 10−4

Nerve 0.111 3613 0.49 1075 3.38 × 10−3

Plastic 10−5 1045 0.026 70 –
Electrode 7.4 × 106 480 15 8000 –

Blood – 3617 – 1050 –
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Figure 1. Schematic of three-dimensional computational domain comprising of nerve, bone and muscle
tissues with an inserted monopolar radiofrequency (RF) electrode.

2.2. Governing Equations for Coupled Thermo-Electric Model

The RF procedure can be modeled as a coupled electro-thermal problem whereby electromagnetic
energy is used to heat the biological tissue. In the lower frequency range of 500 kHz, as is generally
used during RF procedures, a simplified version of Maxwell’s equations (known as the quasi-static
approximation) can be used for computing the electric field distribution within the biological tissue
without compromising accuracy. It is given by:

∇·(σ(T)∇V) = 0 (1)

where σ is the temperature-dependent electrical conductivity (S/m), which has been modeled as a
linear (+ 2% per ◦C) function of temperature in the present study [33–35], and V is the electric potential
(V) that is related to the electric field “E” (V/m) by the standard potential field approximation given by:

E = −∇V (2)

Further, the current density “J” (A/m2) can be derived from the electrical conductivity and field as
follows:

J = σ(T)E (3)

The volumetric heat generated, Qp (W/m3), within the biological tissue by electromagnetic field
during the RF procedure is given by:

Qp= J·E (4)

The Fourier-conduction-based Pennes bioheat transfer equation was used for computing the
temperature distribution within the biological tissue during the continuous RF procedure for pain
relief. It is given by:

ρc
∂T
∂t

= ∇·(k∇T) − ρb cbωb(T − Tb) + Qm + Qp (5)
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where ρ is the density (kg/m3), c is the specific heat (J/(kg·K)), k is the thermal conductivity (W/(m·K)),
ρb is the density of blood, cb is the specific heat capacity of the blood, ωb is the blood perfusion rate (1/s),
Tb is the blood temperature (37 ◦C), and T is the unknown temperature within the biological tissue to be
computed from Equation (5). The term ρb cbωb(T − Tb) accounts for the heat sink effect caused by small
capillary vasculature, Qp is the volumetric heat source (W/m3) quantified using Equation (4), Qm is the
metabolic heat generation (W/m3), which was neglected in the present study due to its insignificant
contribution as compared to Qp [27], and t (s) is the duration of the continuous RF procedure.

Further, in the present computational study, the blood perfusion rate was modeled utilizing a
temperature-dependent piecewise model. Accordingly, a constant predefined value of blood perfusion
rate prevails below the tissue temperature of 50 ◦C and ceases beyond that owing to the collapse of
microvasculature [31], and is given by:

ωb(T) =
{
ωb,0 for T < 50◦C
0 for T ≥ 50◦C

}
(6)

where ωb,0 is the constant blood perfusion rate of the tissue domain given in Table 1 and T, as before, is
the unknown temperature computed from Equation (5).

The ablation volume (
.

V) was computed using the isotherm of 50 ◦C (i.e., the volume of tissue
having a temperature ≥ 50 ◦C post-RF procedure) [31] within the computational domain, and it is
given by:

.
V =

y

Ω

dV (mm3) (where Ω ≥ 50◦C) (7)

The continuous RF procedure was modeled by applying a constant voltage (V) of 15 V with a
reference impedance (Zref) of around 50 ohms, resulting in the constant power (P = V2/Zref) of 4.5
W [36]. Further, the temperature-controlled RF procedure was performed utilizing a closed-loop
feedback PID controller that varies the applied input voltage to keep the target temperature below the
pre-set temperature of 85 ◦C, and is given by:

V(t) = Kpe(t) + Ki

t∫
0

e(τ)dτ+ Kd
d
dt

e(t) (8)

where V(t) is the applied voltage (V) during the RF procedure for mitigating pain, e is the error, t is
the treatment time (s) and Kp (= 0.02), Ki (= 0.01) and Kd (= 0.001) are the proportional, integral and
derivative gains, respectively [33,37,38].

2.3. Numerical Setup and Modeling Details

The coupled thermo-electric models of continuous RF application for treating pain were solved
by utilizing the finite element method (FEM), and implemented in the COMSOL Multiphysics 5.2
software [39] using an adaptive time-stepping scheme. The continuous RF procedures were performed
by applying a constant voltage of 15 V at the active tip of the RF electrode. Further, the dispersive
(ground) electrode was modeled by applying 0 V on the outer boundaries of the computational domain.
The initial voltage and temperature prior to the application of the RF procedure within the entire
computational domain were considered to be 0 V and 37 ◦C, respectively, and the thermal and electrical
continuity boundary conditions were imposed at each interface. Additionally, the computational
model for temperature-controlled RF was developed utilizing an automatic PID controller [33–35] to
limit the maximum temperature to 85 ◦C and its treatment outcomes were compared to the model with
a constant voltage source of 15 V. In its essence, we are dealing here with a feedback control system, and
we used this controller to improve the system by combining its closed-loop control with the open-loop
feedback control. This compensates for the difference (error) between the set-point and the system
response to the feedback control. As a result, the system can, in principle, utilize artificial intelligence
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(AI) and machine learning algorithms [40–44]. In the present computational study, the treatment time
of the continuous RF procedure was set to 60 s.

The discretization of the computational domain was done by utilizing the heterogeneous
tetrahedral mesh elements constructed with COMSOL’s built-in mesh generator. An extra refinement
close to the active tip of the electrode was applied, where the highest electrical and thermal gradients
are expected. Further, a mesh convergence analysis was conducted to determine the optimal number
of mesh elements that would result in a mesh-independent solution. Figure 2 presents the meshed
computational domain of the heterogeneous model comprising of 174,486 elements and 476,384 degrees
of freedom. All the numerical simulations were conducted on a Dell T7400 workstation with Quad-core
2.0 GHz Intel® Xeon® processors.
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tetrahedral elements.

2.4. Model Validation

The developed computational model’s fidelity and integrity were evaluated by comparing the
simulated results of the present model with that of previously reported experimental and numerical
findings reported in [45]. All the material properties, dimensions, initial and boundary conditions
were considered similar to those of [45]. Table 2 presents the comparative analysis of the rise in
temperature (∆T, i.e., the difference between the attained temperature after 120 s of RF procedure and
the ambient temperature), that was simulated/computed from the present numerical study to that
of the experimental and numerical findings of [45]. As presented in Table 2, the rise in temperature
(∆T) predicted by the present numerical study after 120 s of RF procedure for different considered
cases was found to be in reasonable agreement with the experimental and numerical findings of [45].
Furthermore, Figure 3 presents the predicted temperature distribution from the current model after
60 s of RF procedure at the applied voltage of 13 V and the ambient temperature of 37 ◦C and utilizing
the same material properties to those of [45]. The outer periphery of the temperature distribution
presented in Figure 3 represents the ablation volume quantified using the 50 ◦C isotherm, and its shape
agrees well with the existing knowledge about continuous RF procedure [45]. Importantly, the lateral
(W = 4.4 mm) and longitudinal (L = 6.8 mm) dimensions predicted from the present model were
found to be in good agreement with those of [45], which were reported to be around 4 mm and 7 mm,
respectively. Additionally, the longitudinal extension of the ablation zone dimensions (corresponding
to 50 ◦C isotherm) in the forward direction from the tip point of electrode and in backward direction
from the insulation margin was found to be about 1 mm, analogous to that presented in [45].
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Figure 3. Temperature distribution (in ◦C) along with lateral (W) and longitudinal (L) dimensions of
the ablation zone obtained after 60 s of continuous RF procedure with the applied voltage of 13 V and
an ambient temperature of 37 ◦C.

Table 2. Comparison of the rise in temperature (∆T) reported by Cosman Jr. and Cosman Sr. [45] in
terms of both numerical and experimental findings to that computed from the present model after 120
s of the continuous RF procedure.

Applied
Voltage(V)

Electrical
Conductivity
σ [S/m]

Ambient
Temperature

[◦C]

Numerically
Predicted ∆T

from the
Previous

Study [45] [◦C]

Experimentally
Measured ∆T

from the
Previous

Study [45] [◦C]

∆T Computed
from the

Present Study
[◦C]

7 0.38 26 6.8 7 6.75
13 0.44 26 27.7 26 26.83
16 0.47 26 44.8 41 43.39
16 0.47 34 44.8 48 43.40

3. Results and Discussion

One of the key objectives of the present numerical study is to quantify the effect of heterogeneous
surroundings in the computational domain on the efficacy of continuous RF procedure for pain relief.
In pursuing this goal, the variations in temperature distribution and ablation volume were computed
for the homogeneous domain (comprising of only muscle tissue) and the heterogeneous domain
comprising of: (a) nerve and muscle tissues, and (b) bone, nerve and muscle tissues. Figures 4 and 5
present the variation in the temperature distribution for different cases considered here obtained after
60 s of continuous RF procedure in a plane along the electrode axis (i.e., front view of Figure 1) and
in a plane normal to the electrode axis (i.e., top view of Figure 1), respectively. As is evident from
Figures 4 and 5, the uniformity of the temperature distribution is ruined for the cases where nerve and
bone are modeled within the muscular domain.
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Figure 5. Temperature distribution (in ◦C) obtained after 60 s of continuous RF procedure in a
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Three points of interest (as shown in Figure 6a) were defined to analyze the thermal performance
of the continuous RF application for treating pain. Importantly, point P1 lies 1 mm away from the tip
of the electrode along the electrode axis, while P2 and P3 lie 1 mm away in a transversal plane in the
opposite direction from the middle of the active part of the electrode. It is noteworthy that point P2
lies on the nerve and bone side of the computational domain of the heterogeneous model, whereas
point P3 lies on the side surrounded by muscles alone. Figure 6b presents the variation in temperature
with respect to time at point P1 for the considered cases. As is evident from Figure 6b, the introduction
of heterogeneity within the computational domain results in a significant decrease in the predicted
temperature at a particular instance. The predicted temperature at point P1 at the end of 60 s of the
continuous RF procedure was found to be 75.70 ◦C, 70.73 ◦C and 67.03 ◦C for the homogeneous muscle
domain, the heterogeneous muscle and nerve domain, and the heterogeneous muscle, nerve and bone
domain, respectively. The variations in the temperature distribution with respect to time at P2 and
P3 points are presented in Figure 6c,d, respectively. Again, a significant decrease in the predicted
temperature with the introduction of heterogeneity in the computational domain can be clearly seen in
these figures. This variation in the predicted temperature during the continuous RF procedure can be
attributed to differences in the thermo-electric parameters of the muscle, nerve and bone tissues, as
summarized in Table 1. The introduction of the nerve in the homogeneous muscle domain results in the
lower electrical conductivity that leads to a distorted electrical field distribution. In turn, this results
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in lower volumetric heating as compared to the completely homogeneous computational domain
comprising of muscles alone. Furthermore, the introduction of bone, which has lower electrical and
thermal conductivities as compared to muscle tissue, does not allow efficient heat conduction from the
electrode during the continuous RF procedure for treating pain.
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Figure 6. (a) Schematic of three points (P1, P2 and P3) chosen for the evaluation of thermal performance
during the continuous RF procedure. Variation in temperature distribution as a function of time at: (b)
P1, (c) P2 and (d) P3, for different cases considered in the present study.

The inclusion of nerve and bone within the muscle tissue domain significantly hampers the thermal
and electrical performances of the continuous RF procedure for pain relief. Figure 7a,b represent the
temperature distribution at points P2 and P3 for the case of heterogeneous computational domains of
the muscle, i.e., including both nerve and bone, and including only nerve, respectively. The inclusion
of the nerve and/or bone within the homogeneous computational domain of the muscle (for simulating
realistic anatomical situations) on one side of the RF electrode restricts the efficient conduction of
the heat on that side owing to the lower thermal and electrical conductivities of bone and nerve in
comparison to the muscle tissue. These variations result in asymmetric deviation in the temperature
distribution on two equally spaced but oppositely placed points P2 and P3 on the transverse axis from
the middle of the active part of the electrode, as shown in Figure 7a,b. Note that, for the homogeneous
computational domain comprising of the muscle tissue, the temperature profiles at both points P2 and
P3 are symmetric and completely coincide with each other. However, the decrements in temperature
at points P2 and P3 after 60 s of continuous RF procedure were found to be 12.15% and 13.02% for the
heterogeneous computational domain of muscle tissue embedded with only nerve, and embedded
with both nerve and bone, respectively. Thus, consideration of the heterogeneous surroundings within
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the computational model significantly affects the thermal performance of continuous RF procedures
for pain relief.

Further, the comparison between the electrode tip temperature for the constant voltage and
temperature-controlled protocols of power delivery during the continuous RF procedure are presented
in Figure 7c. It is noteworthy that the temperature sensor for monitoring and maintaining the target
tip temperature during the temperature-controlled RF procedure was located at a distance of 1 mm
beneath the tip of the electrode, which was inspired by [27]. As evident in Figure 7c, the constant
voltage source can result in the attainment of a 100 ◦C temperature close to the active tip of the electrode,
which can then result in charring. This is a highly undesirable phenomenon during RF procedures that
leads to an abrupt decline in the electrical and thermal conductivities of the biological tissues, limiting
efficient conduction of thermal energy and thereby reducing the ablation size. Thus, the utilization of
temperature-controlled power delivery protocol during continuous RF procedures in clinical practices
can completely mitigate the chances of charring occurrence, whereby the applied voltage is varied
between the electrodes to keep the maximum temperature at the tip of the electrode as 80–90 ◦C [28].

Bioengineering 2019, 6, x FOR PEER REVIEW 10 of 21 

points P2 and P3 on the transverse axis from the middle of the active part of the electrode, as shown 
in Figure 7a,b. Note that, for the homogeneous computational domain comprising of the muscle 
tissue, the temperature profiles at both points P2 and P3 are symmetric and completely coincide with 
each other. However, the decrements in temperature at points P2 and P3 after 60 s of continuous RF 
procedure were found to be 12.15% and 13.02% for the heterogeneous computational domain of 
muscle tissue embedded with only nerve, and embedded with both nerve and bone, respectively. 
Thus, consideration of the heterogeneous surroundings within the computational model significantly 
affects the thermal performance of continuous RF procedures for pain relief.  

Further, the comparison between the electrode tip temperature for the constant voltage and 
temperature-controlled protocols of power delivery during the continuous RF procedure are 
presented in Figure 7c. It is noteworthy that the temperature sensor for monitoring and maintaining 
the target tip temperature during the temperature-controlled RF procedure was located at a distance 
of 1 mm beneath the tip of the electrode, which was inspired by [27]. As evident in Figure 7c, the 
constant voltage source can result in the attainment of a 100 °C temperature close to the active tip of 
the electrode, which can then result in charring. This is a highly undesirable phenomenon during RF 
procedures that leads to an abrupt decline in the electrical and thermal conductivities of the biological 
tissues, limiting efficient conduction of thermal energy and thereby reducing the ablation size. Thus, 
the utilization of temperature-controlled power delivery protocol during continuous RF procedures 
in clinical practices can completely mitigate the chances of charring occurrence, whereby the applied 
voltage is varied between the electrodes to keep the maximum temperature at the tip of the electrode 
as 80–90 °C [28]. 

 

Figure 7. Variation in temperature distribution as a function of time at points P2 and P3 for the 
heterogeneous computational domain comprising of: (a) nerve, bone and muscle tissues, and (b) 
nerve and muscle tissues. (c) Variation in the target tip temperature as a function of treatment time 

Figure 7. Variation in temperature distribution as a function of time at points P2 and P3 for the
heterogeneous computational domain comprising of: (a) nerve, bone and muscle tissues, and (b) nerve
and muscle tissues. (c) Variation in the target tip temperature as a function of treatment time for
constant voltage and temperature-controlled protocols of power delivery during the continuous RF
procedure for pain relief.
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The variation in the total ablation volume obtained for different cases considered in the present
study, viz., the homogeneous domain comprising of only muscle tissue and the heterogeneous
domain comprising of: (a) nerve and muscle tissues and (b) bone, nerve and muscle tissues, is
presented in Figure 8a. As seen from Figure 8a, the attained ablation volume significantly decreases
as the heterogeneity in the surroundings is introduced within the computational domain during the
continuous RF procedure for pain relief. The propagation of nerve damage with respect to time in the
heterogeneous computational domain during the continuous RF procedure is presented in Figure 8b.
The introduction of bone within the computational domain results in a 12.75% decrease in the nerve
ablation volume after 60 s of continuous RF procedure. Thus, consideration of the heterogeneous
surroundings to realistically replicate the anatomy becomes of utmost importance for accurately
predicting the treatment outcomes of the continuous RF procedures for pain relief.

Bioengineering 2019, 6, x FOR PEER REVIEW 11 of 21 

for constant voltage and temperature-controlled protocols of power delivery during the continuous 
RF procedure for pain relief. 

The variation in the total ablation volume obtained for different cases considered in the present 
study, viz., the homogeneous domain comprising of only muscle tissue and the heterogeneous 
domain comprising of: (a) nerve and muscle tissues and (b) bone, nerve and muscle tissues, is 
presented in Figure 8a. As seen from Figure 8a, the attained ablation volume significantly decreases 
as the heterogeneity in the surroundings is introduced within the computational domain during the 
continuous RF procedure for pain relief. The propagation of nerve damage with respect to time in 
the heterogeneous computational domain during the continuous RF procedure is presented in Figure 
8b. The introduction of bone within the computational domain results in a 12.75% decrease in the 
nerve ablation volume after 60 s of continuous RF procedure. Thus, consideration of the 
heterogeneous surroundings to realistically replicate the anatomy becomes of utmost importance for 
accurately predicting the treatment outcomes of the continuous RF procedures for pain relief.  

 

Figure 8. Variations in (a) total ablation volume, and (b) nerve ablation, with respect to time during 
the continuous RF procedure for pain relief among different considered cases. 

4. Clinical Applications, Future Outlook and Model Developments 

In this section, we highlight the recent clinical studies related to the application of RF procedures 
in treating pain. Future research directions for the refinement of the proposed models by utilizing 
coupled multiscale and multiphysics models are also discussed. 

4.1. Heterogeneous Surroundings and Clinical Trials 

Radiofrequency ablation has been used for pain management since the mid-1970s [45] and has 
significantly evolved from a therapy that was mainly employed for mitigating neuropathic pain to 
one of the most promising and frequently applied techniques in clinical practices for alleviating axial 
spine and musculoskeletal pain [1,16]. Today, the application of RFA in treating pain has steadily 
expanded and accepted for the treatment of facet joint, sacroiliac joint dysfunction and osteoarthritis 
[8–13,15–20]. However, there are significant contradictions and inconsistencies in the reported clinical 
results on the efficacy of RF procedures. Most of the clinical studies available in the literature are 
retrospective studies or case studies limited to reporting high-quality randomized controlled trials 
[46–54]. Furthermore, inappropriate selection criteria and treatment parameters could result in poor 
treatment outcomes, whereas anatomical variations, which are still not well-established, could limit 
the accurate interpretation of the obtained results. Thus, additional large-scale clinical studies of RF 
application in pain management are needed with longer follow-up periods to demonstrate its efficacy 
along with quantification of associated long-term adverse effects.  

Figure 8. Variations in (a) total ablation volume, and (b) nerve ablation, with respect to time during the
continuous RF procedure for pain relief among different considered cases.

4. Clinical Applications, Future Outlook and Model Developments

In this section, we highlight the recent clinical studies related to the application of RF procedures
in treating pain. Future research directions for the refinement of the proposed models by utilizing
coupled multiscale and multiphysics models are also discussed.

4.1. Heterogeneous Surroundings and Clinical Trials

Radiofrequency ablation has been used for pain management since the mid-1970s [46] and has
significantly evolved from a therapy that was mainly employed for mitigating neuropathic pain
to one of the most promising and frequently applied techniques in clinical practices for alleviating
axial spine and musculoskeletal pain [1,16]. Today, the application of RFA in treating pain has
steadily expanded and accepted for the treatment of facet joint, sacroiliac joint dysfunction and
osteoarthritis [8–13,15–20]. However, there are significant contradictions and inconsistencies in the
reported clinical results on the efficacy of RF procedures. Most of the clinical studies available in
the literature are retrospective studies or case studies limited to reporting high-quality randomized
controlled trials [47–55]. Furthermore, inappropriate selection criteria and treatment parameters could
result in poor treatment outcomes, whereas anatomical variations, which are still not well-established,
could limit the accurate interpretation of the obtained results. Thus, additional large-scale clinical
studies of RF application in pain management are needed with longer follow-up periods to demonstrate
its efficacy along with quantification of associated long-term adverse effects.

There has been continuous development in RF delivery systems and protocols in the quest to
increase the ablation volume, which will lead to enhanced efficacy of the RF procedure. Continuous
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RF is the conventional form of energy delivery, and it causes a decline in the transmission of pain
signals by damaging both sensory and motor nerve fibers [1,19]. Three different types of electrodes are
typically utilized for delivery of RF energy to the target neural tissue, viz., monopolar, bipolar and
cooled RF electrodes (arranged in ascending order of ablation volume generation). Another mechanism
of RF energy delivery to the target nerve is the pulsed RF procedure. As mentioned earlier, contrary to
the continuous RF that causes tissue destruction by heat, the pulsed RF is virtually painless and does
not lead to any neural coagulation and irreversible tissue damage. Instead, it leads to an alteration in
the pain signal transduction of the nerve fibers [1,19]. Although the efficacy of pulsed RF has been
well-documented, the exact mechanism of action in the mitigation of pain is not fully understood
yet [14,18,54,56–59]. Pulsed RF has shown promise in treating neuropathic pain and certain other
clinical conditions where continuous RF is potentially hazardous, such as radicular pain, headaches,
chronic shoulder pain, knee and hip pain, axial low back pain, and peripheral nerve pain [18,56,57].
However, further clinical studies are required to quantify the exact mechanism responsible for pain
mitigation and broaden the clinical utility of these interventional pain procedures.

4.2. Multiscale Models for Biological Tissues

In order to capture the nuances of the biological cells/tissues exposed to external forces, a multiscale
modeling approach provides an efficient and cost-effective alternative for bridging the different scales
during the computational analysis [60–63]. Thus, further refinements in the proposed pain management
models can be attained by using multiscale modeling approaches, whereby the damage caused due to
RF currents can be quantified at a cellular level. This can be accomplished by coupling predominant
phenomena during RF procedures that occur at different scales. Such multiscale models would not
only assist in a better understanding of the pre-existing bio-physical behavior during pain management
therapy, but also help in predicting the mechanisms that remain elusive to date and in generating
new hypotheses for quantifying small-scale effects. Furthermore, while dealing with the small-scale
effects of biological cells exposed to RF currents, the development and usage of stochastic models
is practically unavoidable [62,64,65]. Moreover, bones in general, and cortical bones in particular,
are biological tissues considered as part of our computational domain in the present study. They
may exhibit additional effects, based on coupled phenomena, that would be useful to incorporate
in further developments of the presented model. Among these, piezoelectricity plays a special role
(e.g., [66]). For example, for cortical bones, piezoelectric properties are often responsible for the
coupling between macroscopic and micro/nanoscopic scales, which may provide additional insight
into certain dysfunctions and diseases [66]. Such properties also provide a foundation for wider usage
of these biomaterials in tissue engineering [67]. In describing piezoelectricity, we couple electrical and
mechanical fields. The well-posedness of such models of coupled piezoelectricity, along with rigorous
energy bounds, were derived by one of us in a series of earlier papers, e.g., [68]. This was done for the
first time in a general, dynamic setting through the application of the Faedo–Galerkin procedure and
generalized solution technique. Coupled electro-mechanical models have been developed and used in
a wide range of applications [69–77].

Thermal field treatment requires special attention for problems like those considered in this study.
Notably, the thermal effects in this study were quantified considering the classical Fourier’s law of
heat conduction with the Pennes bioheat equation as presented in Equation (5), which assumes the
infinite speed of heat propagation. However, in biological tissues that have non-homogenous inner
structures, accounting for a finite speed of thermal disturbances becomes important, suggesting the
existence of non-Fourier conduction with a delay ranging from 10 to 20 s [38,78]. Several studies
have been reported providing a way to incorporate such non-Fourier heat transfer behaviors in their
computational models, e.g., [23,38,79–82]. Moreover, the attainment of elevated temperatures during
RF procedures can also result in thermo-elastic deformation, including thermal expansion and tissue
shrinkage, which is interlinked with many complex small-scale effects, such as protein denaturation,
collagen contraction and dehydration. Again, the exact mechanism of such associated effects at
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an elevated temperature within the biological tissue during thermal therapies are not completely
elucidated yet, but significant recent developments have been devoted to this area of research utilizing
both experimental and computational studies [23,78]. From a computational perspective, the coupling
between thermal and mechanical fields, e.g., for elastic tissues such as muscles, etc., can be done by the
development of coupled models of thermoelasticity, as well as efficient numerical methods for their
solution, e.g., [83–95]. Moreover, the development of such models also includes complex nonlinear
cases where numerous advances have been made in the improvement of numerical methodologies,
e.g., [96–99]. The coupling of the thermoelasticity and piezoelectric model, as is the case for bone
tissues, can be done by the development of piezothermoeleastic models [100–102]. This could lead to
the development of fully coupled thermo-electro-mechanical models of thermal therapies [23]. Also,
the development of such models is relevant to other areas of application, as well as in the development
of new methods [103,104]. Furthermore, the proposed model of RF application for mitigating pain
presented in this study assumed the quasi-static approximation of Maxwell’s equations (see Equation
(1)), whereby the extent of variation of electric and magnetic fields is negligible. Consequently,
the electromagnetic field is modeled only by considering the electric field component (neglecting the
magnetic field effects) because the wavelength of the electromagnetic field at RF frequency of around
500 kHz is several orders of magnitude larger than the size of the active electrode. However, models
exist in the literature that consistently include the magnetic field effects, e.g., [103]. The electrode-tissue
and plastic-tissue interfaces (as presented in Figure 1) can be more rigorously modeled by incorporating
electrode-tissue contact force [60,105–109], as well as other non-trivial effects, e.g., thermal degradation,
spiking, etc., in polymeric materials [110–112].

Several studies have been reported in the literature for modeling blood perfusion within biological
tissues, at both micro- and macro-vascular levels [78,113–119]. Notably, micro-vascular perfusion refers
to the perfusion at a capillary (or small-scale) level while macro-vascular perfusion is associated with
the heat-sink effect caused by large blood vessels [120]. The blood flow at a micro-vascular level within
the biological tissue is typically modeled by utilizing the porous media theory, whereby the tissue is
assumed to be comprised of two phases: the solid phase comprising of cells and the extracellular space,
and the fluid phase comprising of capillary size blood vessels [94,95,118,119,121–123]. The blood flow
within the large blood vessels (> 2 mm in diameter) is modeled by additional coupling of the fluid
flow model with the proposed thermo-electric model presented in this study, whereby the geometry of
the blood vessel within the computational domain can be incorporated either by including a cylinder
or a vascular tree [113–117,124,125]. It is expected that further refinement of the model can be done by
deriving the computational domain from actual patient-specific data, which will provide more rigorous
analysis and would help medical practitioners to obtain more accurate and precise predictions of the
treatment outcomes during the RF application in pain management. Thus, the coupled multiscale
framework could assist us in quantifying the unknown biologically-relevant phenomena occurring at
cellular and sub-cellular scales and lead to a better understanding of the associated intricacies of RF
application in pain management.

4.3. Coupling Frameworks and Pain Relief Models

The application of machine learning has been growing rapidly in the biological, biomedical and
behavioral sciences. Importantly, both machine learning and multiscale modeling complement each
other in creating more robust predictive models in the current field of research [126,127]. Recently,
several studies have been reported in the literature that have explored the application of AI and
machine learning algorithms in the field of thermal therapies [40,128–136]. The integration of machine
learning with the coupled models could play a vital role in decision-making processes and the treatment
planning stage of such procedures, e.g., by providing a priori information about electrode placement for
enhancing treatment efficacy or by the real-time monitoring of the damage to the target tissue and other
critical structures. Furthermore, a general framework of incorporating human factors into mathematical
models of complex systems with control has been provided in [137,138]. This can be useful in the
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context of AI and the machine learning algorithms mentioned earlier in Section 2. Moreover, there has
been a surge in the development of neural tissue models for capturing the transduction, transmission,
perception and modulation of pain at molecular, cellular and neuron networks levels [78,139–143].
The aforementioned coupled multiscale thermo-electro-mechanical model can be readily integrated
with the Hodgkin–Huxley neural model for predicting the treatment outcomes in terms of decline in
the actual pain signals that can be coupled with the damage model presented in Equation (7). Such
coupling of the neuronal models with the proposed model would assist in our better understanding of
the molecular changes affecting the neuronal behavior, such as in quantifying the exact damage to the
axons during the application of RF procedures for treating pain. Future studies can be conducted by
incorporating the actual physiological neuronal geometries and modeling of biophysical phenomena
at sub-cellular scale, viz., accounting for changes in the concentrations of potassium, sodium, calcium
and magnesium at the membrane layer [78,144–148]. Such multiscale, multiphysics and fully coupled
models will provide a better understanding of the molecular changes affecting the neuronal behavior,
along with quantification of the mitigation of actual pain signals during RF procedures.

5. Conclusions

This work quantified the effects of heterogeneities, such as nerve and bone tissues, on the efficacy
of radiofrequency therapies, exemplifying main results on continuous RF procedures for pain relief.
Based on the developed coupled mathematical models and their finite element implementations,
a comparative analysis was conducted to evaluate the impact of different heterogeneities in the
surrounding computational domain on the temperature distribution and the obtained ablation volume.
Among other results, it was found that there was a decrease of 30.64% in the attained ablation volume
considering a heterogeneous domain comprising of bone, nerve and muscle tissues, as compared
to a homogeneous domain of muscle alone. Further, it was concluded that there is significant
variation in the predicted temperature distribution among the different cases considered in the present
study. Subsequently, this study emphasizes the importance of considering the effect of heterogeneous
surroundings on the predicted treatment outcomes of continuous RF procedures for treating pain. It is
expected that the results presented in this study will assist pain management clinicians and researchers
to better tackle the issue of the variability in thermo-electric and biophysical properties. This can be
achieved by proper treatment planning and consideration of the impact of each parameter on the
treatment outcomes. The work also critically analyzed possible directions for further improvement
of the developed models. This includes the incorporation of the neural model to replicate pain
transmission and mitigation during RF procedures for pain relief. In addition, patient-specific models
can be developed and integrated into the clinical workflow to quantify a priori estimates of the
treatment outcomes and the risks involved during such minimally invasive treatment procedures.
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