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Abstract

Relapse after clinical remission remains a leading cause of cancer-associated death. Although the 

mechanisms of tumor relapse are complex, the ability of cancer cells to survive physiologic stress 

is a prerequisite for recurrence. Ewing sarcoma (ES) and neuroblastoma (NB) are aggressive 

cancers that frequently relapse after initial remission. In addition, both tumors over-express the 

polycomb group (PcG) proteins BMI-1 and EZH2, which contribute to tumorigenicity. We have 

discovered that ES and NB resist hypoxic stress-induced death and that survival depends on PcG 

function. Epigenetic repression of developmental programs is the most well established cancer-

associated function of PcG proteins. However, we noted that voltage-gated potassium (Kv) 

channel genes are also targets of PcG regulation in stem cells. Given the role of potassium in 

regulating apoptosis, we reasoned that repression of Kv channel genes might play a role in cancer 

cell survival. Here, we describe our novel finding that PcG-dependent repression of the Kv1.5 

channel gene, KCNA5, contributes to cancer cell survival under conditions of stress. We show that 

survival of cancer cells in stress is dependent upon suppression of Kv1.5 channel function. The 

KCNA5 promoter is marked in cancer cells with PcG-dependent chromatin repressive 

modifications that increase in hypoxia. Genetic and pharmacologic inhibition of BMI-1 and 

EZH2, respectively, restore KCNA5 expression, which sensitizes cells to stress-induced death. In 

addition, ectopic expression of the Kv1.5 channel induces apoptotic cell death under conditions of 

hypoxia. These findings identify a novel role for PcG proteins in promoting cancer cell survival 

via repression of KCNA5.
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Introduction

The ability to resist cell death is a hallmark of cancer (1). Cancer cells are able to survive 

despite exposure to cell intrinsic (e.g. metabolic and genotoxic) and extrinsic (e.g. hypoxia, 

nutrient deprivation) stress (1). This ability to survive conditions of stress allows cancer 

cells to escape physiologic death responses that are induced upon exposure to hostile 

microenvironments. In rapidly growing solid tumors the cancer outstrips its blood supply, 

thereby subjecting the cancer cells to a hostile microenvironment that is characterized by 

oxygen, growth factor and nutrient deprivation (1, 2). Furthermore, chemotherapy and 

radiation exacerbate the hostile local microenvironment by inducing tumor necrosis. Despite 

exposure to these tremendous stresses, however, solid tumors often recur after clinical 

remission and relapse remains a leading cause of cancer-associated death. The mechanisms 

of tumor relapse are both diverse and complex but elucidating how cancer cells resist stress-

induced death has the potential to uncover novel opportunities for cancer therapy.

Stem cells harbor the ability to self-renew indefinitely and are epigenetically programmed to 

resist differentiation and to survive in hypoxic niche environments (3). Tumor cells often 

hijack normal stem cell processes to support their propagation and this is particularly evident 

in cancer cell populations that display tumor-initiating properties (1, 4). Although the 

mechanisms that support maintenance of stem cell traits are complex (3), chromatin 

repressive complexes are essential mediators of stemness and also crucial contributors to 

cancer pathogenesis (5). Among the best characterized of the chromatin repressive 

complexes are the polycomb group protein complexes PRC1 and PRC2 (reviewed in (5) and 

(6)). Polycomb proteins function to silence target gene loci via direct post-translational 

modification of histones. In particular, the PRC1 complex proteins BMI-1 and RING1B 

cooperate to induce ubiquitination of histone 2A at lysine residue 119 (H2AubK119), while 

the PRC2 member EZH2 mediates methylation of histone 3 at lysine residue 27 

(H3K27me3) (5). Together these chromatin marks support maintenance of a repressed 

chromatin state that inhibits transcriptional activation (6). Both BMI-1 and EZH2 are highly 

over-expressed by many human cancers and play central roles in tumor initiation and tumor 

progression (6). In particular, over-expression of polycomb proteins is evident in tumor-

initiating cell populations (7) and in the aggressive pediatric solid tumors Ewing sarcoma 

(ES) and neuroblastoma (NB) (8–12). The precise targets of polycomb-dependent regulation 

are cell type and context specific but, in general, polycomb repressive complexes support 

maintenance of stemness and oncogenesis by suppressing the expression of tumor 

suppressor genes and developmental regulators (6, 13)

Controlled regulation of intracellular levels of elemental ions is essential for normal cellular 

homeostasis. Transmembrane channels control ion flux across cellular membranes and there 

is abundant evidence that deregulation of calcium and sodium channel function can 

contribute to cancer pathogenesis in diverse fashions (14, 15). In addition, altered 
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expression, regulation and function of potassium ion channels has been implicated in several 

cancer hallmarks including abnormal proliferation, resistance to cell death, and enhanced 

migration (16). In the current study we have identified the voltage-gated potassium channel 

Kv1.5-encoding gene, KCNA5, as a novel target of polycomb-dependent repression in 

aggressive cancer cells. Significantly, our studies show that epigenetic repression of KCNA5 

contributes to selective survival of cancer cells under conditions of hypoxic stress and 

implicate activation of the Kv1.5 channel as a central mediator of hypoxia-induced apoptotic 

cell death.

Results

Polycomb proteins promote cancer cell survival under conditions of hypoxic stress

Most pediatric solid tumors, including NB and ES, respond to chemotherapy and tumors 

exhibit extensive necrosis at the time of surgery. However, a significant number of patients 

relapse following initial clinical remission demonstrating that at least some cells are capable 

of surviving the stress of a necrotic microenvironment. In order to explore the potential 

mechanisms that underlie resistance to stress-induced death we studied non-malignant and 

cancer cells in in vitro conditions that mimic the hostile microenvironment of a necrotic 

solid tumor. Specifically, cells were exposed to either ambient, unstressed conditions (21% 

oxygen, 10% FBS) or microenvironmental stress (1% oxygen, 0% FBS) and cell viability 

monitored over time. Exposure of non-malignant endothelial (HUVEC) and atrial (HL-1) 

cells to stress resulted in significant cell death that was evident within 24 hours and 

increased over time (Figure 1A). In contrast, ES (Figure 1B) and NB (Figure 1C) cells 

exhibited no significant loss of viability after up to 72 hours. Thus, these studies confirmed 

that ES and NB cells are relatively resistant to microenvironmental stress.

NB and ES are highly undifferentiated tumors that are thought to arise from stem and 

progenitor cells of neural crest (NB, ES) and/or mesenchymal (ES) origin. Stem cells thrive 

in conditions of hypoxia, leading us to hypothesize that the ability of NB and ES to survive 

stress may be linked to their primitive stem-like biology. Both ES and NB cells express high 

levels of the polycomb complex proteins BMI-1 and EZH2 and over-expression of these 

proteins contributes to stemness, tumorigenicity and tumor progression (8–12, 17). To test 

whether polycomb proteins contribute to survival of cancer cells under conditions of stress 

we evaluated viability in NB and ES cells that had been modified to down-regulate 

polycomb function. First, we assessed survival of cells that had been engineered to down-

regulate BMI-1 as a result of RNA interference (Figure S1A). Significantly, NB and ES 

cells with reduced levels of BMI-1 showed no change in viability in ambient conditions but 

died upon transfer to stress conditions (Figure 2A–B). Next, we used the pharmacologic 

inhibitor GSK-126 to inhibit the methyltransferase activity of EZH2 (18). Once again, 

inhibition of polycomb function had no impact on cell survival under ambient conditions but 

resulted in loss of cell viability under conditions of stress (Figure 2C–D). Thus, survival of 

both ES and NB cells under conditions of hypoxia and nutrient deprivation is, at least in 

part, dependent on the continued activity of the polycomb proteins BMI-1 and EZH2.
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KCNA5 is repressed by polycomb in cancer cells

Having established that polycomb proteins promote cancer cell survival under conditions of 

stress we next sought to define the mechanism underlying the death-resistant phenotype. 

Polycomb proteins repress thousands of gene loci in a highly context specific manner. In 

human embryonic stem cells they specifically bind the promoters of nearly 2,000 protein-

encoding genes involved in orchestration of normal embryonic development (13). In 

addition, in stem cells, fibroblasts and cancer cells the most prevalent targets of polycomb 

regulation are transcription factors that instruct cell fate and organogenesis and genes that 

are known to function as tumor suppressors, such as the cell cycle inhibitor CDKN2A (6, 13, 

19). However, we noted on further analysis of the published data that promoters of 

potassium ion channel genes were also discovered to be highly enriched (p<3.8×10−11) 

among directly bound polycomb targets in stem cells (See Supplementary Table 10 in (13)) 

and also figured prominently among polycomb-regulated targets in human embryonic 

fibroblasts (See Supplementary Table 3 in (19)). Potassium flux out of a cell is a key 

requirement for apoptosis (20, 21) and, although altered expression of over 20 potassium ion 

channels has been described in human cancers, only two (Kv1.5 and Kv7.1) are down-

regulated in tumors (16). Significantly, BMI-1 dependent silencing of the KCNA5 gene, 

which encodes Kv1.5, was recently shown to promote ischemic tolerance in neurons (22). 

Thus, we hypothesized that tolerance of hypoxic stress in cancer cells might be mediated by 

polycomb-dependent repression of the KCNA5 locus. To address this we first interrogated 

publicly available microarray databases to determine if expression of the KCNA5 transcript 

is altered in NB and ES. As shown in Figure 3A, basal levels of KCNA5 are reduced in both 

tumor types compared to non-malignant embryonic and adult tissues. In addition, levels of 

KCNA5 expression were found to be higher in a subset of ES tumors that did not express 

high levels of BMI-1 (23), thus providing indirect evidence that BMI-1 might repress 

KCNA5 in ES (Figure 3B). Further support for this relationship was evidenced by an inverse 

relationship between BMI-1 and EZH2 expression and KCNA5 expression in primary NB 

tumors (Figure S1B). To directly assess whether KCNA5 is targeted for polycomb-mediated 

silencing in ES and NB, we performed chromatin immunoprecipitation (ChIP) experiments 

using antibodies to the polycomb-dependent histone modifications H2AubK119 and 

H3K27me3. H2A119ub is mediated by the BMI-1 partner protein RING1B and H3K27me3 

by EZH2. In each of the cancer types we detected enrichment of both polycomb-dependent 

modifications at the KCNA5 promoter, in particular H2A ubiquitination was highly enriched 

over background in both ES and NB cells (Figure 3C–D). Moreover, exposure of the cells to 

stress resulted in near two-fold increase in the H2A119Ub mark demonstrating that the cells 

acutely respond to microenvironmental stress by further repressing the KCNA5 promoter 

(Figure 3E). Consistent with polycomb-dependent repression of the locus in ES and NB 

cells, we detected little to no KCNA5 transcript in ambient conditions and no measurable 

increase was detected following exposure to stress (Figure 3F and Figure S1C). In contrast, 

KCNA5 transcription was increased in BMI-1-knockdown (Figure 3F) and EZH2 inhibitor-

treated cells (Figure S1D) following transfer to stress conditions. Thus, the KCNA5 

promoter is subject to epigenetic regulation by polycomb group proteins in ES and NB and 

persistent polycomb-dependent repression of the locus prevents up-regulation of the 

transcript when cells are exposed to microenvironmental stress.
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The Kv1.5 channel regulates hypoxic stress-induced cell death

After confirming that polycomb proteins epigenetically repress KCNA5 in ES and NB cells 

we next sought to define the functional consequences of this repression. Specifically, we 

wished to determine whether loss of Kv1.5 channel function contributes to cell survival 

under conditions of hypoxic stress. To address this we took advantage of the pharmacologic 

compound diphenyl phosphine oxide-1 (DPO-1), a highly specific inhibitor of the Kv1.5 

channel which effectively blocks potassium efflux through the channel with an IC50 = 310 

nM (24) (Figure S2A). Non-malignant cells were exposed to DPO-1 and then transferred to 

stress conditions as above. Consistent with Kv1.5 being a key mediator of stress-induced 

death, channel blockade using DPO-1 rescued cell viability in both HUVEC and HL-1 cells 

(Figure 4A). Viability of cells under ambient conditions was unaffected by channel blockade 

(Figure 4A). To confirm these results we next exposed cells to 4’aminopyridine (4’AP), 

another potent inhibitor of the Kv1.5 channel (IC50 = 50 M) (25) (Figure S2A). 

Pharmacologic blockade of Kv1.5 using 4’AP also largely prevented death of stress-exposed 

HUVEC and HL-1 cells (Figure S2B). Thus, these findings indicate that hypoxic stress-

induced death of non-malignant cells is, at least in part, dependent on a functional Kv1.5 

channel.

Next, we tested the impact of Kv1.5 channel blockade on cancer cells that had been 

sensitized to stress-induced death as a consequence of polycomb modulation. Significantly, 

exposure of BMI-1 knockdown cancer cells to DPO-1 prevented stress-induced cell death 

(Figure 4B). Viability of ES cells was restored by DPO-1 while partial rescue was evident in 

the NB cells (Figure 4B). To test whether blockade of Kv1.5 would also restore the viability 

of EZH2-inhbited cells we exposed GSK-126 treated cells to DPO-1 prior to transfer to 

stress conditions. As shown (Figure 4C), DPO-1 restored cell viability in GSK-126 treated 

cells. Exposure of unmodified ES and NB cells to DPO-1 had no significant impact on cell 

death and cells remained viable in both ambient and stress conditions (Figure S2C). 

Together these data reveal the critical nature of polycomb proteins in promoting cancer cell 

viability under conditions of stress. In particular, they confirm that survival under conditions 

of hypoxic stress is, at least in part, dependent on polycomb-dependent suppression of the 

Kv1.5 channel. In addition, they further implicate both PRC1 and PRC2 in mediating 

epigenetic repression of the KCNA5 locus.

Ectopic expression of Kv1.5 restores sensitivity of cancer cells to hypoxic stress-induced 
apoptosis

Potassium ion channels can affect cellular physiology through mechanisms that are both 

dependent or independent of their role as regulators of ion flux across the cell membrane 

(16) Having established that pharmacologic blockade of Kv1.5 prevents cell death under 

conditions of stress, we next sought to more directly test if this effect on cell survival was 

mediated by blockade of potassium efflux. To address this question we transduced TC-71 

ES cells with wild-type (WT) and non-conducting, pore-dead (PD) Kv1.5 mutant constructs 

or a control soluble GFP (sGFP) using adenoviral infection. Both Kv1.5 constructs carry 

full-length human KCNA5 cDNA, tagged in the extracellular loop with GFP, and the 

trafficking and biophysical properties of both WT and PD ectopic proteins recapitulate those 

of the endogenous channel (26, 27). However, unlike Kv1.5-WT, which is fully functional, 
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Kv1.5-PD generates a non-functional channel that cannot conduct potassium across the cell 

membrane as a result of an amino acid change (W472F) within the pore region (Figure 5A) 

(26). Confocal microscopy confirmed successful infection of ES cells with all constructs and 

cytoplasmic membrane localization of both Kv1.5-WT and Kv1.5-PD proteins (Figure 5B). 

Whole cell patch clamp experiments confirmed the presence of a robust and functional 

channel in Kv1.5-WT expressing cells and only background current in Kv1.5-PD that was 

equivalent to that of control sGFP infected cells (Figure 5C). To determine if the presence of 

ectopic channel altered cell viability we cultured infected cells in either room air (21% O2) 

or hypoxia (1% O2) for 24 hours. In these experiments, stress was limited to hypoxia alone 

without serum deprivation in order to more precisely assess the impact of channel re-

expression on the hypoxic response. Expression of either Kv1.5-WT or Kv1.5-PD had no 

impact on cell viability in ambient conditions but transfer to hypoxic conditions resulted in 

death of the Kv1.5-WT cells (Figure 5D). In contrast, Kv1.5-PD cells experienced no loss of 

viability in hypoxia (Figure 5D). To confirm that the hypoxia-associated death of Kv1.5-WT 

cells was due to efflux of potassium through the ectopic channel we exposed cells to DPO-1 

and 4’AP. Significantly, survival of Kv1.5-WT cells in hypoxia was largely restored if cells 

were treated with either of the two compounds (Figure 5E). Finally, to test the specificity of 

Kv1.5 as a mediator of hypoxia-induced death we tested whether ectopic expression of two 

other voltage-gated potassium channels, Kv1.4 and Kv1.3, would mimic the effect of Kv1.5. 

In contrast to Kv1.5, ectopic expression of Kv1.4 and Kv1.3 induced no appreciable death in 

cells that were exposed to hypoxia (Figure S3A). After 24 hours the Kv1.3 infected cells 

began to die but death was less than that of Kv1.5-transduced cells and equivalent to that of 

cells that were infected with control vectors sGFP and Kv1.5-PD (Figure S3A, B). Kv1.4 

infected remained viable at 24 hours, suggesting that the lower titer of the Kv1.4 virus 

afforded protection against the non-specific adenoviral death that we observed with Kv1.5-

PD, Kv1.3 and sGFP infection (Figure S3A, B). Thus, these data demonstrate that the effects 

of Kv1.5 in mediating hypoxia-induced death are not generalizable to other Kv channels.

Finally, we investigated the mechanism of cell death in Kv1.5 expressing cells. It has been 

previously shown that potassium efflux promotes caspase activation and apoptosis (28, 29). 

To determine if TC-71 cells expressing Kv1.5-WT protein were dying by apoptosis we 

assessed cleavage of caspase-3 in ambient and hypoxic conditions. Whereas Kv1.5-WT cells 

showed little evidence of caspase-3 cleavage in ambient conditions, after 8 hours in hypoxia 

cells with cleaved caspase-3 were readily detected (Figure 6A). By comparison, unmodified 

TC-71 cells showed no evidence of caspase cleavage in either ambient or hypoxic conditions 

but apoptosis could be dramatically induced in both conditions by etoposide, a cytotoxic 

topoisomerase II inhibitor that is routinely used in ES therapeutic regimens (Figure 6B). By 

contrast, cells with cleaved caspase-3 were only rarely detected in Kv1.5-PD and sGFP 

transduced populations in both ambient and hypoxic conditions (Figure 6C & D). Thus, 

these studies together demonstrate the specificity of Kv1.5 as a key mediator of hypoxia-

associated cell death and confirm that, under conditions of cell stress, efflux of potassium 

through the channel promotes apoptotic cell death.
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Discussion

Oxygen tension in normal tissues ranges from 2–9% but is often considerably less in stem 

cell niches and solid tumors (2). Normal sensing of oxygen tension is critical for cell 

proliferation and cell survival and cells that exist in hypoxic niches, such as cancer cells and 

stem cells, utilize sophisticated molecular tools to withstand the relatively ischemic 

microenvironment (3, 30–32). Cell proliferation and survival are also intimately linked to 

the concentration of intracellular ions including potassium, sodium and calcium (28, 33, 34). 

In particular, high levels of intracellular potassium inhibit caspase activation and promote 

cell survival, revealing a role for potassium efflux in execution of apoptotic cell death (29, 

35, 36). Intracellular potassium concentrations are controlled by transmembrane ion 

channels, which actively regulate the flux of potassium ions through central pores (37, 38). 

There are 78 different potassium ion channels (16, 39) and each is expressed in a context 

specific manner and alters potassium flux in response to different cellular signals (37, 38). 

Interestingly, recent studies of ion channel expression in cancer have suggested that 

deregulation of potassium channels is a characteristic of human tumors (reviewed in (16) 

and (40)). Moreover, recent high-throughput drug screening studies showed that the 

potassium ionophore salinomycin is selectively cytotoxic to cancer stem cell populations 

(41, 42). These findings together support further investigation of ion-channel targeted 

approaches as novel opportunities for cancer therapy.

In the current study we have focused on defining the mechanism of Kv1.5 channel 

suppression in aggressive pediatric solid tumors and the contribution of this suppression to 

tumor pathogenesis. Our results implicate polycomb-dependent epigenetic repression of 

KCNA5 as a key mechanism of channel inhibition and reveal the critical role of this 

inhibition in promoting cancer cell survival under conditions of microenvironmental stress, 

in particular hypoxic stress. In addition, the inability of an ectopic pore-dead Kv1.5 channel 

to restore stress-induced death demonstrates that survival of Kv1.5 suppressed cancer cells is 

linked to its canonical function as a potassium conductor rather than to other potential non-

canonical roles that might also impact on cell signaling (16)

The Kv1.5 channel is a voltage-gated potassium channel that conducts potassium in 

response to changes in cell membrane potential (39). In addition, Kv1.5 is a putative oxygen 

sensor and contributes to the regulation of cell proliferation and survival under conditions of 

hypoxia by altering intracellular potassium levels in response to shifts in redox states (25, 

43–46). The role of Kv1.5 as an oxygen-sensing channel is well established in both cardiac 

and pulmonary physiology and aberrant expression and regulation of Kv1.5 channels 

contributes to pulmonary hypertension and cardiac arrhythmias (45–49). It was recently 

shown that exposure of neuronal cells to acute hypoxia and glucose deprivation leads to 

apoptosis and that this ischemia-induced cell death is associated with up-regulation of Kv1.5 

expression (22). Significantly, tolerance to the ischemic insult could be elicited in this study 

if cells were first exposed to repetitive low-dose stress rather than an acute insult. At a 

molecular level this ischemic tolerance was found to be due to up-regulation of BMI-1 and 

recruitment of polycomb to the KCNA5 promoter (22). Thus, BMI-1 dependent repression of 

the KCNA5 gene can be an adaptive, physiologic response to chronic stress. Our current 

studies reveal that, in BMI-1 over-expressing cancer cells, this adaptive physiologic 
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response has been coopted to promote the survival of the cancer cells under conditions of 

acute stress. Whether this survival mechanism is an inherent feature of the cancer cell of 

origin (e.g. a stem cell) or an acquired characteristic that arises during the process of 

malignant transformation remains to be determined and will likely vary between different 

cancer types.

There have been several reports that Kv1.5 expression is reduced in human cancers (50–54) 

and in gliomas loss of expression is directly correlated with tumor aggression, suggesting 

that loss of the channel might contribute to tumor progression (55). Moreover, recent studies 

demonstrated that restoration of normal mitochondrial function and redox tension by use of 

the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate (DCA), resulted in de-

repression of KCNA5 transcription and induction of Kv1.5-dependent apoptosis (21). 

Unfortunately, although these initial findings suggested that DCA might be useful as a 

relatively non-toxic anti-cancer agent, later studies failed to show significant impact of DCA 

in other preclinical models (56). In particular, pediatric tumors including NB and ES were 

found to be completely insensitive to the cytotoxic effects of DCA (56, 57). Our discovery 

that the KCNA5 locus is targeted for polycomb-dependent repression in these tumors 

suggests that the disappointing results that have been encountered with DCA as an anti-

cancer therapy may be due to the inaccessible chromatin state of the KCNA5 promoter in 

cancer cells that over-express BMI-1 and other polycomb proteins, such as pediatric solid 

tumor and cancer stem cells,

In summary, we have identified that epigenetic repression of the KCNA5 gene by polycomb 

proteins, in particular BMI-1, inhibits Kv1.5 expression and function in ES and NB. These 

findings provide new evidence that the Kv1.5 channel plays a seminal role in execution of 

hypoxia-induced apoptotic cell death in aggressive cancers. In addition, they suggest that 

cancer cells hijack physiologic regulation of the Kv1.5 channel to promote their survival in 

hostile microenvironments. Future studies are now needed to determine how this knowledge 

about altered epigenetic regulation of KCNA5 can be therapeutically exploited to maximize 

cell death in the context of aggressive solid tumors that are prone to relapse.

Materials and Methods

Cell Culture and Viability

ES cells were cultured in RPMI-1640 media (Gibco, Grand Island, NY, USA) and NB cells 

in MEM 1× media (Gibco, Grand Island, NY, USA). Media was supplemented with 10% 

FBS (Atlas Biologicals, Inc., Fort Collins, CO, USA) and 6 mM L-glutamine (Life 

Technologies, Grand Island, NY, USA). Identities were confirmed by short tandem repeat 

profiling. HuVEC cells were cultured in EBM-2 Basal Medium (Lonza, Pittsburgh, PA, 

USA) supplemented with EGM-2 SingleQuot Kit Suppl. & Growth Factors (Lonza, 

Pittsburgh, PA, USA). HL-1 cells were cultured in Claycomb media (Sigma-Aldrich, St. 

Louis, MO, USA-Aldrich) supplemented in 10% FBS (Sigma-Aldrich, St. Louis, MO, USA-

Aldrich), 2 mM L-glutamine, 100 µg/mL Penicillin/Streptomycin and 0.1 mM 

Norepinephrine (Sigma-Aldrich, St. Louis, MO, USA-Aldrich). Cells were maintained in 

ambient conditions at 37°C in 5% CO2. For growth factor deprivation and hypoxia studies 

FBS was removed and cells were placed in 1% O2 in an xVivo system (Biospherix, Lacona, 
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NY, USA). Viability was determined by cell counting and trypan blue. Data were 

normalized relative to 0 hours.

Pharmacologic inhibitor studies

4’Aminopyridine (4’AP) (50 µM, Sigma-Aldrich, St. Louis, MO, USA-Aldrich) was 

prepared in an aqueous solution and diphenyl phosphine oxide-1 (DPO-1) (310 nM, Tocris 

Bioscience, Bristol, UK) and GSK-126 (1 µM, 10 µM, Active Biochem, Maplewood, NJ, 

USA) were diluted in dimethyl sulfoxide (DMSO). Cells were pre-treated for 72 hours.

Generation of genetically modified cells

Cell lines were transduced with pLKO.1-puro vectors (Sigma-Aldrich, St. Louis, MO, USA-

Aldrich) containing one of two short hairpin RNAs targeting BMI-1 (shBMI-1#156: 5’-

CCTAATACTTTCCAGATTGAT-3’ or shBMI-1 #157: 5’-

CGGAAAGTAAACAAAGACAAA-3’) or a non-silencing control sequence (shNS: 5’-

CAACAAGATGAAGAGCACCAA-3’). Cells were selected in puromycin (2 µg/mL, 

Sigma-Aldrich, St. Louis, MO, USA-Aldrich) for 48 hours prior to experimentation.

Adenoviral constructs were generated using pAD/V5/-dest (Invitrogen, Grand Island, NY, 

USA). Virus was produced using ViraPower (Invitrogen, Grand Island, NY, USA) and 

purified using ViraPur Adenovirus mini purification (ViraPur, San Diego, CA, USA). Cells 

were infected with Kv1.5-GFP-WT, KV1.5-GFP-PD and soluble GFP 24 hour’s prior to use 

in an experiment. Response of the infected cells to hypoxia was tested by transferring cells 

to a 1% O2 chamber as above.

Quantitative Real-Time PCR (qRT-PCR)

Total RNA extraction was performed using RNeasy® Plus Mini kit (Qiagen, Valencia, CA, 

USA) and cDNA generated using iScript (Bio-Rad, Hercules, CA, USA). qRT-PCR was 

performed using validated SYBR primers (sequences available on request). Analysis was 

performed in triplicate using the Lightcycler® 480 System (Roche Applied Science, 

Indianapolis, IN, USA). Data were analyzed by normalizing average Ct values of the gene of 

interest to the geometric mean of reference genes (HPRT and GAPDH) using ΔΔCt method.

Western Blot and Immunocytochemistry

Levels of BMI-1 (Millipore, Mouse mAb #05-637), EZH2 (Cell Signaling Technology, 

Rabbit mAb #4905), or GAPDH (Cell Signaling Technology, Rabbit mAb #2118) were 

determined using standard western blot assays as previously described (58).

For apoptosis studies TC-71 cells were treated with 4 µg Etoposide or infected with Kv1.5-

WT, Kv1.5-PD or sGFP. After 24 hours, cells were placed in ambient (21% O2) or hypoxic 

(1% O2) conditions. After 8 hours, cells were fixed with 4% paraformaldehyde (10 min.), 

permeabilized with 0.1% Triton X-100 (10 min.) and blocked with 2% goat serum (20 min.). 

Cells were incubated with polyclonal anti-cleaved capase-3 (1:200 dilution, Cell Signaling 

Technology, Rabbit mAb #9661) in 2% goat serum (45 min.), followed by incubation with 

goat anti-rabbit Alexa Fluor-594 antibody (1:200 dilution, Life Technologies, Grand Island, 

NY, USA, Grand Island, NY, USA) in 2% goat serum (40 min.). Nuclei were labeled with 
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DAPI (Life Technologies, Grand Island, NY, USA, Grand Island, NY, USA) and mounted 

with ProLong Gold (Invitrogen, Grand Island, NY, USA, Grand Island, NY, USA).

Cell images were acquired on a Nikon TI81 A1R confocal microscope with a 60× by 1.40× 

N.A. oil objective. For every experiment 5–10 images were acquired for each condition and 

50–100 cells were analyzed. Z-stack images were compiled with ImageJ software (NIH, 

Bethesda, MD). The resolution obtained in these imaging experiments was 512 by 512 

pixels with a z resolution of 0.5µm for each filter set.

Electrophysiology

The isolation and recording of the Ikur current, specific current of the Kv1.5 channel, was 

recorded by a whole-cell patch clamping protocol as previously described (59). Total 

potassium current was recorded using 10mV step depolarizations, from a holding potential 

of −80mV, to +60mV. The intracellular pipette solution contained (in mM): KCl 148, 

MgCl2 1, EGTA 5, HEPES 5, K2ATP 5; and was adjusted to pH 7.2 with KOH. The bath 

solution contained (in mM): NaCl 148, NaH2PO4 0.4, MgCl2 1, KCl 5.4, CaCl2 1, HEPES 

15; and was adjusted to pH 7.4 with NaOH.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) was performed using 

established protocols, with modifications. Cells were fixed with 1% formaldehyde, lysed, 

and sonicated (Qsonica cup horn sonicator, 100% amplitude). DNA fragments were in the 

200–700 bp range. The following antibodies were then added to the pre-cleared sample and 

incubated overnight at 4°C: Anti-Trimethyl Histone H3Lys27 (Millipore 07-449, 2g) and 

Anti-Ubiquityl-Histone H2ALys119 D27C4 XP (Cell Signaling Technology #8240, 10l). 

The complexes were purified using protein-G dynabeads (Invitrogen, Grand Island, NY, 

USA) followed by elution and crosslink reversal. DNA was recovered using QIAquick PCR 

Purification Kit (Qiagen, Valenica, CA, USA). Target sequences were amplified by PCR 

using iTaq SYBR green (Bio-Rad, Hercules, CA, USA). Primer sequences for the KCNA5 

promoter were KCNA5 #1 (Forward: 5’-TCCAGCATCATCAGTTTCCA -3’ and Reverse: 

5’-TGGCTCTCATTATGCACCAG-3’) and KCNA5 #2 (Forward: 5’-

GCTGAAGGTTGCATCTGCT-3’ and Reverse: 5’- GGCCCTGACGTCAAGAAG-3’). 

Data were analyzed using the percent input method where Percent input = 100*2^(Average 

Ct Input – Average Ct IP).

Statistical Analysis

Statistics were performed using GraphPad Prism 6 (San Diego, CA, USA) and values of 

p<0.05 between groups were considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ES and NB cancer cells survive physiologic stress
Under conditions of stress (serum starvation and hypoxia) non-malignant HuVEC and HL-1 

cells experience a significant reduction in cell viability over a 72-hour time course (A). In 

contrast, ES cells, TC-71 and A4573, (B) and NB cells, LA1-55N and SH-SY-5Y, (C) 

survive. ** p<0.005 (mean ± SEM, n=3).
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Figure 2. Polycomb proteins promote survival of cancer cells under conditions of stress
Analysis of cell survival in control (shNS) and BMI-1 knockdown (shBMI-1) ES (A) and 

NB (B) cells after transfer to stress conditions shows loss of viability in shBMI-1 cells over 

a 72-hour time course. Exposure of ES cells, TC-71 and A4573, (C) and NB cells, LA1-55N 

and SH-SY-5Y, (D) to the EZH2 inhibitor GSK-126 at 1 µM and 10 µM for 72 hours results 

in loss of viability when cells are exposed to stress for 24 hours. * p<0.05, ** p<0.005 and 

*** p<0.001 (mean ± SEM, n=3).
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Figure 3. Polycomb group proteins repress KCNA5 in ES and NB cells
(A) Publicly available microarray data were analyzed using the R2: microarray analysis and 

visualization platform (http://r2.amc.nl). Expression of KCNA5 is significantly lower in ES 

(GSE34620) and NB (GSE16476) tumors compared to normal embryonic (GSE15744) and 

adult (GSE7307) tissues. (B) Expression of KCNA5 is increased in ES tumors that do not 

express high levels of BMI-1 (GSE16016). * p<0.02 and *** p<0.001 (C) Site of PCR 

primers for evaluation of histone modifications at the KCNA5 promoter. (D) Chromatin 

immunoprecipitation-quantitative PCR (ChIP-qPCR) of ES and NB cells in ambient 

conditions shows enrichment of both H3K27me3 and H2AK119Ub marks at the KCNA5 

promoter (relative to IgG control ChIP). (E) ChIP of ES and NB cells in ambient and stress 

conditions shows a near 2-fold increase in enrichment of H2AK119Ub at the KCNA5 
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promoter after exposure to stress. Data are from 2 independent experiments and are 

expressed as mean +/− SEM. (F) qRT-PCR analysis demonstrates significant upregulation 

of KCNA5 expression in BMI-1 knockdown ES and NB cells after 8 hours in stress 

conditions. Expression normalized to the geometric mean of HPRT and GAPDH in each 

sample and expressed as fold change in stress relative to ambient conditions. * p<0.05 by 

Mann-Whitney Test (mean ± SEM, n=3).
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Figure 4. Stress-induced death is prevented by pharmacologic blockade of Kv1.5 channel 
function
Cell viability analysis demonstrates that treating cells with 310 nM DPO-1 largely prevents 

stress-induced death in non-malignant cells (A). Death is also prevented in cancer cells 

engineered to express reduced levels of BMI-1 (shBMI-1) (B) and in cancer cells that have 

been exposed to 10 µM GSK-126 prior to transfer to stress conditions (C). Viability in 

ambient conditions is unchanged by exposure to 310 nM DPO-1. * p<0.05 and ** p<0.005 

(mean ± SEM, n=3).
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Figure 5. Ectopic expression of the Kv1.5 channel restores stress-induced death in ES cells
(A) Cartoon of the wild-type (Kv1.5-WT) and pore-dead (Kv1.5-PD) channels, depicting the 

amino acid change W472F which prevents efflux of potassium out of the Kv1.5 channel. (B) 

GFP-fluorescent immunocytochemistry and confocal microscopy reveals robust expression 

of ectopic Kv1.5-WT, Kv1.5-PD and soluble GFP (sGFP) in TC-71 cells 24 hours post 

adenoviral infection. (C) Electrophysiology confirms induction of functional Kv1.5 current 

in TC-71 cells transduced with Kv1.5-WT but not with Kv1.5-PD or sGFP. (D) TC-71 cells 

expressing Kv1.5-WT channel have a significant reduction in cell viability at 8 and 24 hours 

in hypoxia while the TC-71 cells expressing the Kv1.5-PD channel are unaffected, in 

particular at 8 hours. (E) Pharmacological block of the Kv1.5 channel with either 50 µM 

4’AP or 310 nM DPO-1 largely prevents hypoxia-induced death in Kv1.5-WT expressing 

ES cells. ** p<0.005 and *** p<0.001 (mean± SEM, n=3).
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Figure 6. The Kv1.5-WT channel mediates cell death through caspase-3 activation
(A) Immunocytochemistry and confocal microscopy of Kv1.5-WT expressing TC-71 cells 

shows induction of caspase-3 cleavage in Kv1.5+ (GFP+) cells (Indicated by white arrows) 

following exposure to hypoxia. No significant cleavage is detected in Kv1.5+ cells in 

ambient conditions. (B) Cleaved caspase-3 staining is not detected in parent TC-71 cells in 

either ambient or hypoxic conditions. To serve as a positive control for cleaved caspase-3 

staining, cells were exposed to 4 µg Etoposide. This exposure resulted in robust induction of 

caspase-3 cleavage in both ambient and hypoxic conditions. Quantification of cells with 
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cleaved caspase-3 is shown for cells in A & B, under ambient (C) (21% O2) and hypoxic 

(1%O2) (D) conditions. ** p<0.005 (mean ± SEM, n=2–3. 150–400 cell nuclei were counted 

for each condition).
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