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Abstract 

Osteosarcoma (OS) is the most common primary malignant bone tumor in children and young adults and has a poor 
prognosis. Recent developments in the field of high-throughput sequencing technology, particularly in methylated 
RNA immunoprecipitation sequencing (MeRIP-seq), have led to renewed interest in RNA methylation. Among the 
various RNA modifications, N6-methyladenosine (m6A) modifications are the most common. Emerging evidence sug-
gests that m6A methylation can affect the complexity of cancer progression by regulating biological functions related 
to cancer. In this review, we will shed light on recent findings regarding the biological function of m6A methylation in 
OS and discuss future research directions and potential clinical applications of RNA methyltransferases in OS.
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Background
Osteosarcoma (OS) is the most common primary malig-
nant bone tumor in children and young adults and often 
occurs in the epiphysis of the long diaphysis [1]. It is 
derived from stromal cells, and tumor bone-like tissue 
and bone tissue are formed directly or indirectly through 
cartilage [2]. The annual incidence rate of OS is esti-
mated at two to four patients per million [3, 4]. OS is the 
important cause of cancer-related death among children 
and young adults [5]. The main treatment strategy for 
OS is neoadjuvant chemotherapy combine with surgical 
resection of the primary tumor and subsequent adjuvant 
chemotherapy [6]. However, due to delayed diagnosis, 
metastasis and recurrence, the 5-year overall survival 
rate is only approximately 20% [7]. Thus, it is imperative 

to understand the underlying molecular mechanism of 
occurrence, development, metastasis and prognosis of 
OS.

Previous studies have found that epigenetic modifi-
cations play a key role in the occurrence and develop-
ment of OS. Epigenetic modifications include chemical 
modifications of DNA, RNA and protein [8], which are 
characterized by changes in gene expression and func-
tion without changes in gene sequence [9]. RNA modi-
fications are abundant, diverse and ubiquitous. RNA 
modifications can regulate a variety of molecular pro-
cesses including RNA splicing, translation, localization, 
binding to proteins or other RNAs [10, 11]. RNA meth-
ylation is a posttranscriptional modification that exists 
in all organisms. It is closely related to important bio-
logical processes and thus to many human diseases [12, 
13]. Over the past decade, RNA methylation has been a 
popular topic of biomedical research. N6‐methyladeno-
sine (m6A) modification is the most commonly stud-
ied RNA modification. Current studies have shown that 
m6A methylation plays critical roles in the pathogenesis 
of many cancers, including lung cancer [14], liver cancer 
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[15] and gastric cancer [16]. Similarly, the functions of 
m6A are critical for tumor initiation, promotion, and 
progression in OS. This paper reviews the relationship 
between m6A methylation and OS: m6A methylation is 
involved in the occurrence, development, metastasis and 
prognosis of OS. We also discuss the potential clinical 
applications and future directions of m6A modification 
as a biomarker as well as a therapeutic target of OS. The 
information presented here provides new ideas for the 
treatment of OS. It will help better treat patients with OS 
in future.

m6A methylation
m6A methylation was first discovered in 1974 [17]. It 
is the most abundant internal modification of RNA in 
eukaryotic cells, accounting for more than 80% of all 
RNA modifications [18]. In recent years, with the rapid 
development of high-throughput and high-sensitivity 
sequencing methods, the universality and importance 
of m6A modification have gradually been recognized 
[19, 20]. m6A has a conserved modified gene sequence, 
which is distributed and enriched in the long exon, near 
the stop codon and 3′ untranslated regions (UTRs). m6A 
modification can transfer a methyl to the N-6 position of 
the adenosine in the nucleic acid [14, 21]. As a transcrip-
tome regulator of gene expression, m6A modification can 
affect pre-mRNA splicing and mRNA transport, degra-
dation and translation [22]. The process of m6A methyla-
tion is dynamic and reversible and is regulated by m6A 
methylation regulators ("writers", "erasers" and "readers") 
[23].

m6A writers
m6A writers are multicomponent methyltransferase 
complexes. Known components of such complexes 
are methyltransferase-like 3 (METTL3), methyltrans-
ferase-like 14 (METTL14), methyltransferase-like 16 
(METTL16), Wilm’s tumor-associated protein (WTAP), 
zinc-finger CCCH domain-containing protein 13 
(ZC3H13), vir-like m6A methyltransferase-associated 
(VIRMA, also called KIAA1429), RNA-binding motif 
protein 15 (RBM15/15B), etc. [24–26]. METTL3 was the 
first m6A writer protein to be identified. It is the most 
important component of the methyltransferase complex 
(MTC) but has no enzyme activity alone without MET-
TLE4 [27–30]. In the MTC, METTL3 and METTL14 
can form a stable METTL3-METTL14 complex at a ratio 
of 1:1 [31]. METTL3 is the active catalyzing enzyme, 
while METTL14 can enhance the activity of METTL3 
and stabilize the structure of the MTC [30]. In addition, 
METTL14 is responsible for promoting substrate bind-
ing. WTAP can bind to the METTL3-14 complex and 
participate in catalytic activity and element localization 

in nuclear speckles [32]. KIAA1429 can mediate mRNA 
m6A methylation in 3′UTRs and near stop codons [33]

m6A erasers
m6A erasers are demethylases that can mediate revers-
ible and dynamic m6A modification. Fat mass and 
obesity-associated protein (FTO) were the first m6A 
demethylase to be discovered [34]. FTO oxidizes m6A 
into N6-hydroxymethyladenosine and N6-formyladen-
osine and demethylates m6A both in  vivo and in  vitro 
[35]. The α-ketoglutarate-dependent dioxygenase alk B 
homolog 5 (ALKBH5) was the second m6A demethylase 
to be identified (in 2013) and is localized to the nucleus 
[36]. ALKBH5, as an FTO homolog but different from 
FTO, directly catalyzes modification of m6A to adeno-
sine without a detected intermediate [36].

m6A readers
The regulation of mRNA processing and metabolism by 
m6A largely depends on the effective recognition of m6A 
binding proteins. These binding proteins are called m6A 
readers. The YT521-B homology (YTH) domain fam-
ily  includes  YTHDF1, YTHDF2, YTHDF3, YTHDC1, 
YTHDC2, which can recognize m6A modifications and 
regulate multiple biological functions [37]. YTHDC1 is 
localized to the nucleus and can regulate RNA alterna-
tive splicing and nuclear export [38, 39]. Other family 
members are located in the cytoplasm and can identify 
specific m6A sites to exert posttranscriptional functions 
[40–43]. Other m6A readers, such as ELAV-like protein 
1 (ELAVL1) [44], insulin-like growth factors (IGF2BP1, 
IGF2BP2 and IGF2BP3) [45–47] and heterogeneous 
nuclear ribonucleoproteins (HNRNPC and HNRNPA2/
B1) [48, 49], have been identified.

The role of m6A methylation in OS
Recently, emerging evidence has revealed that m6A 
methylation is closely associated with processes related 
to the progression of OS, including tumor prolifera-
tion, apoptosis, migration, invasion, metastasis and drug 
resistance. In this section, we review the recent findings 
related to m6A methylation in OS (Table 1).

The role of m6A methylation in the proliferation 
and apoptosis of OS
Deregulation of cell proliferation and suppression of cell 
death together promote the progression of cancer [50]. 
Researchers have found that the m6A writer METTL3 
plays a role as an oncogene in the progression of OS and 
is located in the cytoplasm and nucleus of OS cells. Zhou 
et al. [51] found that silencing METTL3 in SAOS-2 and 
MG63 cells significantly inhibited the m6A methyla-
tion level, inhibited cell proliferation and promoted cell 
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apoptosis. However, the proliferation and apoptosis of 
U2OS cells was not significantly affected by METTL3 
overexpression. Further mechanistic analysis suggested 
that METTL3 promotes cell proliferation and inhib-
its apoptosis in OS cells by regulating the expression of 
ATPase family AAA domain containing 2 (ATAD2). In 

another study, METTL3 silencing inhibited the prolif-
eration of HOS and SAOS-2 cells by regulating the m6A 
level of LEF1 and activating the Wnt/β-catenin signal-
ing pathway [52]. Another study also showed that devel-
opmentally regulated GTP-binding protein 1 (DRG1) 
acts as an oncogene and mediates cell viability, cell cycle 

Table 1  Role of m6A modulators in osteosarcoma

m6A regulators Function Target Upstream Role in Biological function Mechanism Vitro/vivo References

METTL3 Writers ATAD2 – Oncogene Promotes cell prolif-
eration, invasion and 
migration; Inhibits 
apoptosis

– Vitro [51]

METTL3 Writers LEF1 – Oncogene Promotes cell pro-
liferation, invasion, 
migration and tumor 
growth

Activation of the 
wnt/β-catenin sign-
aling pathway

Vitro and Vivo [52]

METTL3 Writers DRG1 – Oncogene Promotes cell migra-
tion and colony 
formation; Inhibits 
apoptosis

– Vitro [53]

METTL3 Writers TRIM7 – Oncogene Promotes cell inva-
sion and migra-
tion; Unfavorable 
response to chemo-
therapy

– Vitro and Vivo [59]

METTL14 Writers TRIM7 – Oncogene Promotes cell inva-
sion and migra-
tion; Unfavorable 
response to chemo-
therapy

– Vitro and Vivo [59]

WTAP Writers HMBOX1 – Oncogene Promotes cell prolif-
eration, invasion and 
migration

Activation of the 
PI3K/AKT signaling 
pathway

Vitro and Vivo [55]

KIAA1429 Writers – miR-143-3p Oncogene Promotes cell 
proliferation, invasion 
and migration, tumor 
growth; Unfavorable 
response to chemo-
therapy

Activation of the 
Notch signaling 
pathway

Vitro and Vivo [56]

ALKBH5 Erasers PVT1 – Oncogene Promotes cell prolif-
eration and tumor 
growth

– Vitro and Vivo [54]

ALKBH5 Erasers YAP – Tumor suppressor Suppresses cell prolif-
eration, invasion and 
migration; Trigger 
cell apoptosis

Activation of pre-
miR-181b-1/YAP 
signaling

Vitro and Vivo [72]

YTHDF2 Readers – miR-766
circ_0001105

Tumor suppressor Suppresses cell prolif-
eration, invasion and 
migration; Favorable 
response to chemo-
therapy

– Vitro and Vivo [57]

YTHDF2 Readers TRIM7 – Oncogene Promotes cell inva-
sion and migra-
tion; Unfavorable 
response to chemo-
therapy

– Vitro andVivo [59]

ELAVL1 Readers DRG1 – Oncogene Promotes cell migra-
tion and colony 
formation; Inhibits 
apoptosis

– Vitro [53]
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distribution and apoptosis in OS cells. METTL3 knock-
down inhibited the viability of OS cells, arrested the 
cell cycle in the G2/M stage and induced apoptosis by 
decreasing the m6A and mRNA levels of DRG1 [53]. In 
addition to METTL3, other m6A modulators can also 
regulate proliferation and apoptosis of OS cells in  vitro 
and in  vivo. Knockdown of ELAVL1 also inhibited pro-
liferation and induced apoptosis by impairing the stabil-
ity of DRG1 mRNA [53]. Plasma variant translocation 1 
(PVT1) is a well-known oncogenic long noncoding RNA 
(lncRNA). The m6A demethylase ALKBH5 can bind to 
PVT1, inhibit its degradation and reduce m6A modi-
fication of PVT1. The upregulation of PVT1 mediated 
by ALKBH5 promotes proliferation in  vitro and tumor 
growth in vivo [54]. WTAP, as an m6A writer, was found 
to be involved in the proliferation of OS in  vitro and 
in vivo [55]. CCK-8 and colony formation assays showed 
that silencing WTAP significantly repressed the prolif-
erative capacity of OS cells in vitro. In subcutaneous OS 
mice, WTAP deficiency significantly reduces tumor size 
and tumor weight. A previous study demonstrated that 
silencing KIAA1429 could reduce OS cell proliferation 
in vitro, as well as tumor growth in vivo [56]. In OS cells, 
YTHDF2 significantly suppresses proliferation by regu-
lating miR-766 [57]. In summary, these findings reveal 
that m6A is essential for the proliferation and apoptosis 
of OS cells in vitro and in vivo.

The role of m6A methylation in the migration, invasion 
and metastasis of OS cells
Tumor cell migration and invasion are critical factors 
for tumor progression and metastasis. Tumor metastasis 
remains the number one cause of cancer-related death 
[58]. Multiple studies have shown that METTL3 is asso-
ciated with the migration, invasion and metastasis of OS 
cells. A previous study showed that silencing METTL3 in 
SAOS-2 and MG63 cells dramatically inhibited migra-
tion and invasion. However, overexpression of METTL3 
had no significant effect on the migration and invasion of 
U2OS cells [51]. Another study suggested that METTL3 
silencing significantly repressed the migration and inva-
sion of HOS and SAOS-2 cells. Compared with the 
control group, the METTL3 silencing group exhibited 
decreased progression of bone tumors in  vivo [52]. In 
HOS and U2OS cells, wound healing assays showed that 
silencing WTAP significantly reduces the migration abil-
ity of OS cells. Transwell invasion assays suggested that 
silencing WTAP represses migration [55]. In vitro migra-
tion and invasion assays were performed, and the results 
indicated that the invasion and migration of OS cells are 
significantly reduced by KIAA1429 knockdown [56]. 
m6A methylation may affect the migration and invasion 
of OS cells through indirect regulation of the stability, 

degradation and maturation of mRNAs or noncoding 
RNAs. In U2OS and MG63 cells, ectopic overexpression 
of YTHDF2 significantly suppressed OS cell invasion by 
regulating miR-766 [57]. In HOS and MG63 cells, down-
regulation of TRIM7 significantly repressed cell invasion 
and migration. Silencing the m6A reader YTHDF2 sig-
nificantly increased the mRNA level of TRIM7. METTL3 
and METTL14 can promote the m6A modification of 
TRIM7 in OS cells [59]. DRG1 knockdown was directly 
associated with the suppression of migration but did 
not modify the effect on cell invasion. Knockdown of 
METTL3 and ELAVL1 impaired the m6A modification 
and expression level of DRG1 [53]. Collectively, these 
findings reveal that RNA methyltransferases play an 
important role in the migration, invasion and metastasis 
of OS cells.

Potential clinical application of m6A methylation 
in OS
An increasing number of studies have shown that m6A 
modulators are closely related to the clinical features of 
patients with OS. The abnormal expression of m6A-
related regulatory factors in OS is closely related to poor 
prognosis and chemotherapy  resistance of OS. m6A 
modification may serve as a novel prognostic diagnos-
tic biomarker or potential therapeutic target for OS 
(Table 2).

m6A methylation is associated with poor prognosis of OS
The expression of m6A-related regulatory factors was 
comprehensively analyzed in OS and normal tissues. In 
a tissue microarray (TMA) cohort, high expression of 
METTL3, KIAA1429 and HNRNPA2B1 and low expres-
sion of FTO, METTL14 and YTHDF2 were prognostic 
markers for poor clinical outcomes in OS [60]. A study 
explored the relationship between m6A-related regu-
latory factor expression in biopsy specimens and the 
metastasis-free survival rate in 88 OS patients. High 
expression of METTL3 and ALKBH5 showed a tendency 
to be associated with poor prognosis in OS [61]. Chen 
et al. proposed that ALKBH5 mRNA levels were signifi-
cantly upregulated in OS tissues compared to adjacent 
normal tissues. High ALKBH5 expression was associated 
with poor overall survival in patients with OS [54]. Chen 
et al. verified that significantly higher mRNA and protein 
levels of WTAP were present in OS tissues than in adja-
cent normal tissues. High WTAP expression in patients 
with OS has been associated with tumor size, metastasis 
and TNM stage, and overexpression of WTAP has been 
correlated with poor prognosis [55]. KIAA1429 mRNA 
expression was markedly higher in OS tissues than in 
adjacent normal tissues. KIAA1429 overexpression was 
related to unfavorable prognosis in OS [56].
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The role of m6A methylation in chemotherapy 
and radiotherapy resistance in OS
Surgery combined with chemotherapy and radiother-
apy is the most commonly used treatment for advanced 
tumors [62]. However, resistance to radiotherapy and 
chemotherapy leads to disease recurrence and therapeu-
tic failure [63]. Researchers have thoroughly analyzed 
m6A methylation in the transcriptome of OS cells after 
chemotherapy, revealing that m6A is an important part of 
posttranscriptional regulation. m6A methylation changes 
occur in OS cells after chemotherapy [61]. To explore 
the role of the TRIM7 response to chemotherapy in OS, 
MG63 and SAOS-2 OS cells with high TRIM7 expression 
or low TRIM7 expression were transplanted into mice. 
After adriamycin or methotrexate chemotherapy, tumors 
with high TRIM7 expression were larger than those with 
low TRIM7 expression. TRIM7 upregulation was induced 
by m6A modification in a METTL3/14-YTHDF2-mRNA 
decay-dependent manner and promoted OS chemore-
sistance [59]. An analysis of the relationship between the 
YTHDF2 expression level and clinicopathological char-
acteristics was conducted by using a TMA cohort. The 
results showed that low expression of YTHDF2 in OS 
tissues was significantly associated with poor response 
to chemotherapy [57]. Clinical analysis of TMA data 
from 120 OS patients in public databases showed that 
high KIAA1429 expression was closely associated with 
chemotherapy resistance in OS [56]. A recent study 
indicated that m6A methylation plays an important 
role in the ultraviolet-induced DNA damage response. 
In OS cells, low METTL3 expression leads to delayed 
repair of ultraviolet-induced cyclobutane pyrimidine 
dimers and increases sensitivity to irradiation [64]. These 

observations suggest that RNA methyltransferases are 
involved in chemoradiotherapy resistance in OS, indicat-
ing that RNA methyltransferases may be potential targets 
for reversing chemoradiotherapy resistance.

Discussion
m6A methylation is an emerging research field. A num-
ber of studies have proven that the m6A modification of 
RNA plays an important role in the occurrence, develop-
ment, metastasis and prognosis of multiple cancer types 
[65–71]. In this review, we summarized recent advances 
in the understanding of the role of m6A methylation in 
OS biological processes and its potential clinical value 
(Fig.  1). It is important to note that the mechanism of 
m6A methylation in OS is complex and even inconsist-
ent. Chen et  al. showed that ALKBH5 mRNA levels 
were significantly upregulated in OS tissues compared to 
adjacent normal tissues. High ALKBH5 expression was 
associated with poor overall survival in patients with OS 
[54]. In contrast, Yuan et al. reported that ALKBH5 sup-
presses OS progression via m6A-dependent epigenetic 
silencing of the pre-miR-181b-1/YAP signaling axis [72]. 
m6A methylation, as a double-edged sword, is also com-
monly seen in other types of tumors [65, 73]. In colorec-
tal cancer, Li et al. [74] showed that METTL3 promotes 
cancer progression, while Deng et  al. [75] reported that 
METTL3 suppresses cancer progression. There are many 
potential reasons for this phenomenon, including but 
not limited to: (1) The samples and methods used in the 
study are different; (2) The origin of tumor tissue is dif-
ferent; (3) Tumor heterogeneity. More convincing studies 
are needed to further explore the regulatory mechanism 
of m6A in different tumors.

Table 2  Potential clinical application of m6A methylation in osteosarcoma

Source Non-tumor 
samples

Tumor samples m6A regulators Role in Potential application References

Publicly datasets 17 306 METTL3, KIAA1429, 
HNRNPA2B1, FTO, 
METTL14, YTHDF2

Poor prognosis Biomarker [60]

Tissue microarray 65 120 METTL3, KIAA1429, 
HNRNPA2B1, FTO, 
METTL14, YTHDF2

Poor prognosis Biomarker [60]

Publicly datasets 80 80 METTL3 and ALKBH5 Poor prognosis Biomarker [61]

Clinical samples 70 70 ALKBH5 Poor prognosis
Oncogene

Biomarker
Therapeutic target

[54]

Publicly datasets 3 44 WTAP Poor prognosis
Oncogene

Biomarker
Therapeutic target

[55]

Clinical samples 104 104 WTAP Poor prognosis
Oncogene

Biomarker
Therapeutic target

[55]

Tissue microarray 65 120 KIAA1429 Poor prognosis
Chemotherapy resistance

Biomarker
Therapeutic target

[56]

Tissue microarray 65 120 YTHDF2 Chemotherapy resistance Therapeutic target [57]
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RNA methylation has high tissue specificity in human 
body [76]. m6A sequencing results of nine tissues in 
adults showed that more than 36.7% of m6A sites were 
found in only one specifc tissue, and only 5.5% of the 
sites were shared in all tissues [77]. The tissue specificity 
of RNA methylation may be related to cancer metastasis. 
Compared with primary breast cancer, the expression 
of YTHDF3 was significantly increased in breast brain 
metastase, but there was no change in lung, bone, liver, 
spleen, lymph nodes and adrenal metastases. Further 
experiments have shown that over expression of YTHDF3 
is a key step in the brain metastasis of breast cancer [42]. 
Some m6A regulators have been shown to promote the 
metastasis of OS.  However, whether the tissue specific-
ity of RNA methylation can affect the direction of OS 
metastasis that has not been studied. It provides a new 
perspective for us to study the metastasis of OS.

Although the understanding of the roles of m6A in OS 
has markedly advanced in recent years, many challenges 
remain. First, the mechanisms of m6A methylation in 
OS are largely unknown. Second, many studies have sug-
gested that the m6A level and m6A regulators  had the 
potential to be diagnostic and prognostic biomarkers for 
OS, but the specificity and sensitivity of these biomarkers 
need to be explored in large patient cohorts. Third, prior 
studies have noted the potential of regulators and related 
pathways as therapeutic targets in OS. Most studies have 
focused on the molecular mechanisms of m6A regula-
tors but lack drug development and preclinical/clinical 

studies. In addition, possible side effects should also be 
investigated with further detailed studies.

Conclusions
m6A methylation has been a hot research topic in recent 
years, but related research in OS is still in its infancy. 
More m6A methylation associated with OS will be iden-
tified in future using high-throughput sequencing tech-
nology, which will screen out more candidate diagnosis 
and prognosis biomarkers of OS. In clinical application, 
some certain methylation alterations detection for mono-
genic or polygenic will be used detected biomarkers 
levels in OS patients. It is of great significance to find 
potential therapeutic targets and tumor markers for OS 
and improve the status quo of OS treatment.
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