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ABSTRACT: Synthetic design allowing predictive control of charge transfer and
other optoelectronic properties of Lewis acid adducts remains elusive. This
challenge must be addressed through complementary methods combining
experimental with computational insights from first principles. Ab initio
calculations for optoelectronic properties can be computationally expensive and
less straightforward than those sufficient for simple ground-state properties,
especially for adducts of large conjugated molecules and Lewis acids. In this
contribution, we show that machine learning (ML) can accurately predict density
functional theory (DFT)-calculated charge transfer and even properties associated
with excited states of adducts from readily obtained molecular descriptors. Seven ML models, built from a dataset of over 1000
adducts, show exceptional performance in predicting charge transfer and other optoelectronic properties with a Pearson correlation
coefficient of up to 0.99. More importantly, the influence of each molecular descriptor on predicted properties can be quantitatively
evaluated from ML models. This contributes to the optimization of a priori design of Lewis adducts for future applications, especially
in organic electronics.

■ INTRODUCTION
Optimizing functional materials under real working conditions
is essential but can be a tedious and expensive process.
Accordingly, this has been assisted by computational tools for
several decades. A variety of chemical properties can be
predicted using current computational methods, but these
often require computing the quantum mechanical wave-
function, a costly endeavor, especially for large molecules
and any properties involving excited states and atypical
bonding. In the last decade, machine learning (ML) is
becoming a versatile computing tool to assist molecular design
and optimization, together with calculations from physical
laws.

ML algorithms have been successfully employed for
classification, regression, clustering, or dimensionality reduc-
tion tasks of large sets of input data. Machine learning is
promising to solve data bottlenecks in many problems in
chemistry and materials science.1−6 Solutions employing
machine learning offer advances to screen high volumes of
compounds for advanced material applications ranging from
efficient organic photovoltaics7−12 to organic light-emitting
diodes13,14 to high-temperature alloys15 and many more.

Having eligible descriptors is critical for developing many
ML models for practical applications as well as advancing
fundamental understanding. Some descriptors can be com-
puted readily from molecular structures, which can be called
molecular descriptors. These descriptors, for example, the
number of hydrogen atoms or molecular weight or the number

of conjugated bonds, can be generated readily and econom-
ically for use in ML models.16−18 In several reports, a variety of
descriptors were obtained from the traditional quantum
approach, so-called quantum descriptors.9,19,20 Examples
include frontier molecular orbital energies, electron population,
and triplet states. Despite the advantage of being calculated
from first principles, compared to molecular descriptors,
quantum descriptors present the challenges of time- and
resource-consuming calculations and the uncertainty originat-
ing from their dependency on the level of theory employed.

In addition to predicting the final performance of functional
devices, a variety of fundamental properties of molecules and
materials have been predicted by machine learning.21−25 For
example, machine learning can be employed to predict the
energies of highest occupied molecular orbital−lowest
unoccupied molecular orbital (HOMO−LUMO) orbitals,26

lattice energies,27 and charge transfer integrals of organic
crystals.24,27 Many such important properties are either very
challenging to obtain experimentally or complicated and time-
consuming to be calculated using traditional computational
tools. Machine learning can be applied to rapidly screen and
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predict those properties. For example, intramolecular reorgan-
ization energy, which is an important property of organic
semiconductors, is typically an expensive calculation using ab
initio methods. Recently, the employment of deep neural
networks or kernel ridge regression ML models significantly
reduced the time and power required for computing
intramolecular reorganization.28 Machine learning has been
shown, in combination with legacy quantum methods, to
increase the accuracy of computed properties with a minimal
increase in computational expense.29

In this work, we aim to employ machine learning using
readily obtained molecular descriptors to predict properties
that can be calculated using density functional theory (DFT)
but are costly and highly sensitive to calculation details. We
chose a model dataset to be the adducts of Lewis bases (LBs)
and Lewis acids (LAs). In addition to showcasing classic
coordinate covalent bonds, our model dataset is inspired from
recent work using Lewis acids to form adducts with organic
semiconductors to tune their optoelectronic properties and
doping levels.30−36 These adducts are formed by the partial
electron density transfer from a semiconducting conjugated
molecule or polymer, usually containing Lewis basic moieties,
to external Lewis acids. Most of the molecules in these adducts
have an alternating donor−acceptor motif, in which the
acceptor unit contains atoms with a nonbonding pair of
electrons capable of coordinating with Lewis acids. Boron-
based LAs, such as BF3, BCl3, and B(C6F5)3, have been widely
utilized.

Our recent work37 employed electronic structure calcu-
lations to confirm the hypothesis that the changes in optical
properties of parent conjugated molecules are tied to electron
transfer from these molecules to Lewis acids.30 Generally, in
chemistry, this electron transfer (hereinafter called charge
transfer to be consistent with previous studies) is a crucial
quantum mechanical quantity. It relates not only the binding
strength of a Lewis acid and a Lewis base but also the nature of
the bond, for example, whether it is formed mainly by
electrostatic or covalent interactions.38 Although charge
transfer in LA−LB bonds is intuitively understood via concepts
from organic chemistry, it is too microscopically intricate to
confirm experimentally.38,39 We showed that the calculated
amount of charge transfer correlated with the degree of red

shift in optical absorption of the adducts for a given set of
molecules.37 In this paper, we broaden the screening and
predicting power by using machine learning to predict the
charge transfer and other optoelectronic properties of those
adducts from molecular descriptors that can be obtained
readily and inexpensively. In addition, we also obtain the
relative weight of each molecular descriptor, reflecting its
impact on the properties of adducts and permitting insight into
the chemistry and physics associated with the molecular
design.

■ METHODOLOGY
We designed 1016 adducts from 90 Lewis bases (LBs) and 12
Lewis acids (LAs). A majority of these LBs are acceptor
moieties commonly used in high-performing donor−acceptor-
based organic semiconductors,36,40−44 while others are typical
LBs in chemistry, such as NH3, (CH3)2NH, and aniline. Most
LAs are common Lewis acids and have been experimentally
validated to bind with conjugated Lewis bases and cause
changes in optoelectrical properties.30,35,36,38 Some representa-
tive LBs and LAs are presented in Figure 1, and all chemical
structures are given in Supporting Information (SI) Figures S1
and S2. The adducts were formed by binding one LB to one
LA. Charge transfer for an individual adduct was calculated
using a two-step approach successfully implemented in our
previous study.37 First, the nuclear coordinates of most adducts
were optimized in DFT using the APFD45 exchange−
correlation functional with 6-311G(d,p) basis set. The adducts
with LB of BI3 were calculated with the LANL2DZ basis set
due to heavy iodine atoms. The aforementioned functional was
validated by comparing it to HF and two other DFT-based
functionals (i.e., B3LYP and CAM-B3LYP with GD3BJ
dispersion). Figure S3 demonstrates the comparison con-
ducted with adducts of NH3 (i.e., the representative for N-sp3),
pyridine (i.e., the representative for N-sp2), and acetonitrile
(i.e., the representative for N-sp) both in vacuum and in
dichlorobenzene (DCB) using the polarizable continuum
model (PCM). The degree of charge transfer is indicated to
be fairly insensitive to the choice of DFT functional and
impacted fairly uniformly in the presence of an implicit solvent
across a representative subset of our Lewis acid−base pairs.
Besides, it is noticeable that the charge transfer calculated by

Figure 1. Chemical structures of representative Lewis acids and Lewis bases.
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Hartree−Fock, which includes the full exchange with no self-
interaction and no correlation potential, is in close agreement
with three different levels of functional choice. Due to the
inclusion of an empirical dispersion model in APFD as well as
its use and agreement with experimental trends seen in our
prior study,37 this relatively recent functional was employed
here for geometry optimization. After optimization, the
nonbonding adducts were eliminated from the dataset. Then,
charge transfer was calculated using atomic partial charges
from NBO population analysis.46,47

Molecular descriptors were calculated using the Dragon
package.48 Four groups of descriptors from Dragon were
selected based on the higher level of insights by which they can
inform the molecular design. They are constitutional
descriptors (molecular composition information such as
molecular weight�MW or mean atomic Sanderson electro-
negativity scaled to C�Me), atom-centered fragments
(Ghose−Crippen descriptors defined for hydrogen atoms,
carbon atoms, and heteroatoms such as the number of =CH2
fragment�C-015), functional group count descriptors (count
descriptors of various functional groups such as the number of
nonaromatic conjugated C(sp2)�nCconj or number of
imides�nN(CO)2), and molecular properties (such as
Moriguchi octanol−water partition coeff. (logP)�MLOGP).
Molecular descriptors were independently calculated for the
LB set and the LA set and then combined to create 141
descriptors (Table S1) to build ML models and predict the

aforementioned charge transfer and other properties of the
adducts.

The ML models in this study/research were chosen based
on their versatility and applicability in chemistry and materials
science. They belong to linear-based models (linear regression
(LR) and ridge linear regression (RIDGE)), support vector
machine regression (SVR), k-nearest neighbor regression
(KNN), artificial neural network (ANN), and decision-tree-
ensemble-based models (random forest (RF) and gradient
boosting (GB)). 20% of the dataset was selected as the test set
using the stratified shuffle split function of the Scikit-learn
Python module, which randomly selects the test set while
keeping the histogram of both the training set and test set
similar to the overall dataset (Figure S5).49,50 This splitting
approach, often called stratified sampling in statistics, is
commonly used in machine learning to avoid significant
sampling bias toward certain groups of the predicted values.50

Prior to training models, grid searches were also performed to
optimize the model hyperparameters. The models are validated
by two methods. First, they are used to predict the test set, and
then, the Pearson correlation coefficients (r) and root mean
squared error (RMSE) between ML-predicted results and
DFT-calculated ones can be calculated.50 The ML models
were also validated by cross-validation algorithm with
stratified-shuffle-split as the splitter resulting in 30 data points
of r and RMSE for testing sets.

Figure 2. (a) Histogram of charge transfer of 1016 adducts; (b) the average charge transfer and (c) the average formation energy of adducts
corresponding to each LA; (d) the correlation between those two properties; and (e) the histogram of one representative descriptor�the mean
atomic Sanderson electronegativities scaled over carbon�of adducts.
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■ RESULTS AND DISCUSSION
The data analysis before employing ML models is presented in
Figures 2 and S4. The DFT-calculated charge transfer
distribution of over 1000 adducts is shown in a histogram in
Figure 2a, with two apparent peaks at around −0.15 and −0.30
electrons. This number indicates the amount of electron
transfer (i.e., loss, hence the negative sign) from Lewis bases to
Lewis acids upon the formation of adducts. Figure 2b reveals
that the average absolute value of charge transfer in adducts
with boron-based LAs (∼0.3) is noticeably higher than
aluminum-based LAs (∼0.15), corresponding to the two
aforementioned peaks in the histogram. The small peak near 0
in the histogram in Figure 2a is the result of charge transfer for
SO2 adducts. The average charge transfer is −0.20 e with a
standard deviation of 0.09 e. This range of charge transfer in
LALB adducts is consistent with previous computational and
experimental studies.38,51 In addition to charge transfer, we

extracted other physiochemical properties of the adducts from
the same DFT calculations in order to get more insights into
the coordination bonds and showcased the applicability of
machine learning in predicting a wide range of properties. One
such important property is the formation energy, which
indicates the binding strength of Lewis acids and bases
energetically. Figure 2c shows the average formation energy for
each LA, which is the difference in total energy of the product
(adducts) and reactant (LA plus LB). The variation of
formation energy among different LAs is discernably different
from that of charge transfer. For example, the adducts of AlCF
and AlCl3 have the higher formation energy but lower charge
transfer compared to those of BCF and BCl3, respectively. On
the other hand, BH3 has comparable formation energy but
much higher charge transfer compared to those of AlH3. The
uncorrelated behavior of the properties of over 1000 adducts is
indicated in Figure 2d, which is consistent with the

Figure 3. (a) RF-predicted charge transfers versus DFT-calculated charge transfers for 204 adducts in the test set. The diagonal line is simply a plot
of y = x as a helpful visual guide; (b) relative weights of 20 descriptors with the highest relative weights from the random forest model; (c) Pearson
correlation coefficients (r) and (d) root mean squared error (RMSE) from the cross-validation algorithm, where the dataset was split into training
and testing sets with a ratio of 8:2 30 times, resulting in 30 data points of r and RMSE for each model. In boxplots (c, d), the line in the box
represents the median, the green triangle represents the arithmetic mean, the box covers from the first quartile to the third quartile of the data, and
the whisker extends from the lowest data point within the distance of 1.5 times the interquartile range below the first quartile to the highest data
point within the same distance above the third quartile, and the circle represents the outliers.
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experimental values in previous studies.38,52−54 Most descrip-
tors are discretely distributed, with an example of Me of LAs
shown in Figure 2e. Compared to the continuous distributions
of charge transfer, one can deduce that the charge transfer is
not well-correlated with any of the descriptors, as demon-
strated in Figure S4.

Figure 3 demonstrates the exceptional performance of the
ML models in predicting charge transfer. Figure 3a plots the
charge transfer in LALB adducts predicted by the RF model
versus that calculated by DFT. These are the charge transfers of
the 204 adducts in the test set, which is not included in the
training set to build the model. Similar plots of ML-predicted
versus DFT-calculated charge transfers for all other models are
presented in Figures S6−S8. Cross-validation across all
machine learning models can accurately predict charge transfer
with exceptionally high correlation coefficient r (∼0.73−0.99,
Figure 3c) and small RMSE (∼0.06−0.01, Figure 3d), which
demonstrates the reliability of ML models over different
choices of training and test sets. Among these, ANN, RF, and
GB perform the best with r around 0.97 and RMSE around
0.02 e, which is about 10% of the second peak in the charge
transfer histogram. The fact that ANN, RF, and GB models are
more accurate than LR, RIDGE, and KNN models might be
attributed to aforementioned low correlations between charge
transfer and the descriptors related to the difference in their
distributions (continuous versus discrete).

In order to inform the molecular design toward adducts with
desirable charge transfer, we evaluate the influence of each
descriptor in determining the predicted outcome from ML
models, which is the charge transfer in this case. To that end,
we extract the feature importance from RF and GB models
(with 30-time cross-validation) using available algorithms in
Scikit-learn and calculate the relative weight of each descriptor
by dividing its feature importance by the highest feature
importance. All molecular descriptors with their relative
weights are given in Table S1 for both RF and GB models.
The relative weights are calculated by dividing the feature
importance of each descriptor with the highest value (i.e., the
feature importance of la_nB). The 20 descriptors (out of 141)
with the highest relative weights from the RF model are
plotted in Figure 3b. Interestingly, among those 20 descriptors,
the number of high-weight descriptors for LAs and LBs is 15
and 4, respectively (total_MW is the total molecular weight of

LAs and LBs). On average, the relative weights of all LA and
LB descriptors from the RF model are 0.171 ± 0.212 and
0.018 ± 0.025, respectively, and those from the GB model are
0.042 ± 0.180 and 0.005 ± 0.014, respectively. It implies that,
at least for this dataset, the molecular descriptors of LAs are
more significant than those of LBs in determining the charge
transfer. With 11 LAs out of 12 containing either B or Al to
bind with LBs, both GB and RF models properly capture the
two highest weight descriptors as the number of boron atoms
(la_nB) and the number of heavy atoms�aluminum in this
case (la_nHM). Apart from la_nB and la_nHM, other notable
LA descriptors are the mean atomic polarizability (la_Mp),
mean atomic van der Waals volume (la_Mv), and molecular
weight of LA (la_MW). Notable LB descriptors are the
number of double bonds of carbon and heteroatom (C-041)
and the number of imides (nN(CO)2).

Furthermore, a challenge in studying chemically combina-
torial datasets is that machine learning extrapolability cannot
be assessed accurately using the (even stratified shuffle)
random splitting for obtaining training and testing sets. It is
suggested that the so-called leave-one-cluster-out (LOCO)
method should be used to provide more insights into the
extrapolability of machine learning models.55 In order to
address this issue, the charge transfer dataset was clustered to
perform LOCO predictions. First, the dataset is grouped into
five different clusters based on LB structures (Table S2).
Figure 4a shows the RF-predicted charge transfer values of
LOCO predictions with the highest and the lowest Pearson
correlations and those of “normal” predictions based on
stratified shuffle split (Figure 3a). Similar graphs of the
remaining ML models are demonstrated in Figure S9, and the
Pearson correlation boxplots of LB-structure-based LOCO
predictions of seven ML models are presented in Figure S11a.
The results indicate that the LOCO predictions present an
average of 16.21% lower Pearson correlation values compared
to the stratified shuffle selection. This reduction, which is
smaller than those reported in prior studies,55,56 confirms the
robustness of our models in predicting charge transfer for
Lewis bases that have structure motifs not presented in the
training set. It is also noticeable that all ML models
demonstrate poor performance in predicting charge transfer
very close to zero.

Figure 4. (a) RF-predicted charge transfers versus DFT-calculated charge transfers for test sets of stratified shuffle selection (norm) and leave-one-
cluster-out (LOCO) predictions of LB cluster 2 (LB_C2) and cluster 3 (LB_C3). (b) Pearson correlation boxplots analogous to Figure 3c,d of
seven ML models from all LOCO predictions when clustering based on LA and LB structures.
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For LA clustering, the dataset is divided into 12 clusters
corresponding to 12 LAs (each cluster is named by the
representative LA) to conduct LOCO predictions. The similar
graphs and boxplots of LA-structure-based LOCO predictions
are illustrated in Figures S10 and S11b, which can be taken as
supporting evidence for the lower accuracy in LOCO
predictions compared to normal prediction, especially for
BCF and SO2 clusters. For BCF, high DFT-calculated charge
transfer adducts cannot be predicted well, which might result
from the significantly high number of fluorine atoms in BCF
compared to all other LAs in the training set, where all BCF
adducts are excluded. In the case of SO2, the fact that the sulfur
atom is not presented in the LOCO training set descriptors
(none of the other LAs has sulfur) is hypothesized to result in
the inferior LOCO predictions. Compared to all other clusters,
the BCF and SO2 results are statistically determined to be
outliers. With the exclusion of the outliers, the average
reduction of Pearson coefficients with LA-structure-based
LOCO predictions is 13.33%. Finally, the Pearson correlations
of both LA-structure-based and LB-structure-based LOCO
prediction were combined for each ML model and are
demonstrated in Figure 4b. The boxplots show the reliability

of all ML models with average Pearson correlation values all
above 0.7 except for the LR model. Similar to the normal
prediction, RF is among the most stable ML model with the
highest performance (i.e., 0.84 ± 0.14 in Pearson correlation)
in the LOCO predictions.

Given the high accuracy of ML models in predicting charge
transfer, we used them to predict other DFT-calculated
properties of the adducts employing the same set of
descriptors. One such property is the first excited state
(hereinafter called ES1) of the adducts and the other is the
shift in the first excited states of the adducts from the first
excited states of Lewis bases (hereinafter called delES1). ES1
and delES1 are desirable fundamental properties in designing
LALB adducts as light emitters or light absorbers in LEDs,
solar cells, and other applications. All excited states were
computed by time-dependent DFT (TD-DFT) with the same
level of theory as the one used for geometry optimization. The
average and standard deviation values of ES1 are 2.927 and
1.509 eV, respectively, and those of delES1 are −0.197 and
0.816 eV, respectively. Histograms of ES1 and delES1 are given
in Figure S12. The negative delES1 indicates the red shift in
the adducts compared to LBs, which is consistent with the

Figure 5. Performance of artificial neural network ML models in predicting the TD-DFT-calculated first excited states of LALB adducts (ES1) (a)
and the shift of the first excited states from Lewis bases to adducts (equals to adducts minus LBs�delES1) (b). Pearson correlation coefficients of
all models for ES1 (c) and delES1 (d) calculated from the cross-validation algorithm aforementioned.
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donor−acceptor molecular orbital hypothesis.30,37 It should be
noted here that the calculated oscillator strength of all ES1 is
very low, which can be attributable to the low vertical
excitation overlap of the HOMOs and LUMOs. Similar to
charge transfer, we can train ML models, notably, ANN, RF,
and GB, to predict ES1 and delES1 with exceptional levels of
accuracy. This is demonstrated in Figure 5. Especially, for ES1,
r varies narrowly around 0.96 for all models. The same
descriptors are also shown to predict two other fundamental
properties of the adducts�the HOMOs and the formation
energy with a high level of accuracy (Figures S13 and S14). As
has been noted by others, it is expected that accurate DFT
prediction of the HOMO−LUMO gap may be quite sensitive
to calculation details, including particulars of exchange−
correlation functionals coupled with how solvent models are
employed, especially when extrapolating to larger complexes
and the solid state.57 Although we see encouraging trends in
our preliminary studies of ES1 and delES1 results here, a
comprehensive study of these issues remains for future studies.

■ CONCLUSIONS
In summary, we demonstrate a powerful yet facile alternative
methodology to DFT calculations in approaching quantum
chemistry by employing machine learning analysis. With the
utilization of readily obtained molecular descriptors, machine
learning presents the capability of predicting DFT-calculated
charge transfer and other (advanced) physical and chemical
properties of the Lewis acid−Lewis base adducts. The
prediction of charge transfers, first excited states, red shifts in
the first excited states, HOMOs, and formation energy of the
adducts show a high level of accuracy for a wide range of
machine learning models from linear regression to decision-
tree regression, especially noteworthy is the exceptional
accuracy for ANN and ensemble models like RF and GB.
Even with leave-one-cluster-out testing, our ML models are
shown to have a relatively high level of accuracy in predicting
the DFT charge transfer of most Lewis adduct clusters, whose
structural motifs are absent in the training chemical space. We
also analyze the feature importance that influences the
prediction of charge transfer for RF and GB models, which
might provide insights for molecular design toward specific
applications. In a broader context, our approach is promising
to accurately and economically screen and predict a variety of
fundamental properties of molecules that influence the
performance of functional devices, such as solar cells and
LEDs.
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