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An estimate is worth about a thousand 
experiments: using order‑of‑magnitude 
estimates to identify cellular engineering 
targets
Kevin James Metcalf1,3*  , Marilyn F. Slininger Lee1,4, Christopher Matthew Jakobson1,5 
and Danielle Tullman‑Ercek2

Abstract 

Biotechnological processes use microbes to convert abundant molecules, such as glucose, into high-value products, 
such as pharmaceuticals, commodity and fine chemicals, and energy. However, from the outset of the development 
of a new bioprocess, it is difficult to determine the feasibility, expected yields, and targets for engineering. In this 
review, we describe a methodology that uses rough estimates to assess the feasibility of a process, approximate the 
expected product titer of a biological system, and identify variables to manipulate in order to achieve the desired 
performance. This methodology uses estimates from literature and biological intuition, and can be applied in the early 
stages of a project to help plan future engineering. We highlight recent literature examples, as well as two case stud‑
ies from our own work, to demonstrate the use and power of rough estimates. Describing and predicting biological 
function using estimates guides the research and development phase of new bioprocesses and is a useful first step to 
understand and build a new microbial factory.
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Background
Every microbial production process begins with an excit-
ing but daunting set of problems—we want to know if 
the process is feasible, and how to increase production 
of a complex biological system or pathway when the best 
approach may be non-obvious. These problems are par-
ticularly difficult if the system or pathway in question has 
never been used in an engineering context before. In the 
following review, we outline the methodology our group 
developed to inform these decisions. We combine simple 
biological and biochemical observations [1] with intui-
tive estimates to identify the aspects of the biological sys-
tem that will have the greatest impact on product yield 

to guide engineering efforts (Fig.  1). Many approximate 
values come from the BioNumbers database [2], and we 
cite the BioNumber identification number (BNID), where 
applicable. We also use significant figures in the estimates 
to signify the degree of precision in an estimate, follow-
ing rules outlined in the text Cell Biology by the Numbers 
[3]. Simultaneously, we identify other aspects of a system 
that are unlikely to significantly impact our targets, in 
order to exclude these from our engineering efforts. This 
exercise is a useful addition to the planning stages of any 
biological engineering endeavor. Below, we discuss exam-
ples from the literature, and we use case studies from our 
work to outline the molecular-level estimates of achiev-
able cellular behaviors. At the end, we describe a decision 
scheme for applying rough estimates to a new bioprocess. 
We encourage others in the field to include their rough 
estimates for process feasibility and engineering targets 
in their published work.

Open Access

Microbial Cell Factories

*Correspondence:  kevin.metcalf@northwestern.edu;  
kevin.metcalf2@gmail.com 
1 Department of Chemical and Biomolecular Engineering, University 
of California, Berkeley, CA 94720, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-2721-3378
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12934-018-0979-7&domain=pdf


Page 2 of 10Metcalf et al. Microb Cell Fact  (2018) 17:135 

Estimates for production of artemisinin
Rough estimates help to characterize complex biological 
systems and improve product yield. In a landmark study, 
Keasling and coworkers used Saccharomyces cerevisiae 
to produce artemisinic acid, a precursor to the antima-
larial drug artemisinin [4]. After an economic analysis 
of the process, they targeted a titer of 25 g/L in produc-
tion, a feat they recently achieved [5]. We show a rough 
estimate to justify, in retrospect, this effort. The enzyme 
amorphadiene synthase (ADS) from Artemisia annua 
catalyzes the cyclization of farnesyl diphosphate to amor-
pha-4,11-diene a turnover number of 0.2  s−1 [6], which 
is relatively slow compared to the other enzymes in the 
pathway [7] (Table 1).

We therefore assume that this enzyme is substrate-sat-
urated and catalyzes the rate-determining reaction step. 
Using BioNumbers estimates for S. cerevisiae, as well as 

experimental values from their recent publication [5], 
we estimate that this process can yield up to 16 g/L arte-
misinic acid (calculation 1).

Estimated maximum titer of artemisinic acid in S. cerevisiae 
(BNIDs 104150 and 100986)

This estimate assumes that ADS has an abundance of 
1.3 × 106 enzymes per cell, which is the upper limit of 
native protein copies in a yeast cell (BNID 104150). 
This expression level is ~ 3% of the total protein (BNID 
110550), and overexpression to 2 × 106 ADS/cell would 
result in the target titer of 25 g/L. This analysis gives us 
an intuition for the bioprocess and serves as a bench-
mark for the physical limitations of this cellular process. 
Further increases to the product titer could be achieved 
by increasing the cell density, culture time, and reaction 
rate of ADS. A limitation of the analysis presented here is 
that the rate-determining enzyme must be known, and its 
kinetic parameters measured or estimated. When faced 
with a poorly defined set of enzymes, there is no substi-
tute for intuition and accurate guesses of enzyme activity. 
To aid in assessing processes with limited kinetic infor-
mation a lower bound for kcat of 0.1 s−1 captures the large 
majority of known activities [15].

Estimates for production of electrical energy
This type of analysis is not limited to the production of 
molecules—microbial production of high-energy elec-
trons is also amenable to analysis using rough estimates. 
For example, in a microbial fuel cell, bacteria are used as 
a catalyst to convert carbon-based chemical energy to 
electrical energy. Chaudhuri and Lovley [16] showed that 
the rate of metabolism, efficiency of electron transfer, 
and microbial density on the electrode are determining 
factors for predicting the current density of a microbial 
fuel cell. In order to improve fuel cell performance, which 
parameter should an engineer first modify? The authors 
used a straightforward calculation to determine that elec-
tron transfer efficiency is already quite efficient—the bac-
terium Rhodoferax ferrireducens achieved a yield of 740 
coulombs (C) of the theoretical limit of 900 C that can be 
extracted by the complete oxidation of the 0.39 mmol of 
glucose fed. On the other hand, they found that current 
density is improved by selecting appropriate electrode 
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Fig. 1  Order-of-magnitude estimates are made across different 
scales of a bioprocess

Table 1  Turnover number (kcat) for  enzymes 
with  published kinetic data used in  the  artemisinic acid 
pathway in S. cerevisiae [8]

NR not reported
a  Estimated from specific activity

Enzyme kcat (s
−1) Reference

ERG10 NR

ERG13 NR

tHMG1 0.4a [9]

ERG12 16 [10]

ERG8 40a [11]

MVD1 5 [12]

IDI1 7a [13]

ERG20 NR

ADS 0.2 [6]

CYP71AV1/CPR1/CYB5 NR

ADH1 41 [5]

ALDH1 1.5 [14]
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materials. Interestingly, the authors observed a twofold 
increase in current density with a new anode material, 
which correlated with a twofold increase in microbial 
density on the electrode. Using the authors’ measure-
ment of 0.086  mg protein/cm2, we estimate this new 
material resulted in 6 × 108 cells/cm2 cell density on the 
anode (calculation 2).

Experimental cell density on anode (BNIDs 109352 
and 103904)

Assuming that ~ 1/6 of the 6  μm2 bacterial surface area 
(BNID 101792) is in contact with the electrode, we esti-
mate up to 1 × 108 cells/cm2 could be attached to the 
anode (calculation 3).

Maximum cell density on anode

This theoretical estimate is within one order of magni-
tude of the experimental estimate and suggests that the 
current density cannot be improved by increasing micro-
bial density on the anode, as the anode surface is likely 
already saturated with bacteria. Further improvements 
to this system may also focus on the rate of metabolism 
of the bacterial cell. We support this claim using values 
estimated for Escherichia coli, which is similar in size and 
shape to R. ferrireducens [17]. E. coli can take up 12 mmol 
glucose/g dry cell weight (DCW)/h (BNID 109686) [18]. 
Such uptake could yield a current density of 1 mA/cm2, 
over two orders of magnitude greater than the observed 
7.4 × 10−3 mA/cm2, assuming a similar cellular attach-
ment density (calculation 4).

Current density at maximum glucose uptake (BNIDs 
109686 and 109352)
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Clearly, future improvements to this system should focus 
on increasing metabolic flux. In a related study, Nocera 
and colleagues showed how rough estimates can be used 
to improve the design of bioelectrochemical cells for 
fuel production from sunlight. Here, increased bacterial 
viability and a redesigned apparatus were offered by the 
authors as future system improvements [19]. Indeed, in 
a recent paper, the authors show how a redesigned elec-
trode catalyst increases bacterial viability and improves 
efficiency of biofuel production by over 20-fold [20]. 
Together, these examples reveal how rough estimates 
of cell metabolism and physiology provide important 
insight into improving a bioprocess.

Case study 1: evaluation of the capacity 
of a protein secretion system
Many bioprocesses take advantage of existing, natural 
biological functions that are engineered with a top-down 
approach to improve function in the bioreactor environ-
ment. For such systems, estimates evaluate native function 
and guide experiments to modify the system for improved 
performance. In the following example, we describe 
how a protein secretion apparatus might be modified for 
increased protein production. Our targets are difficult-
to-produce heterologous proteins. Engineering bacteria 
to secrete the protein product to the extracellular space is 
expected to improve production of these toxic or hard-to-
purify proteins [21]. To achieve this activity, we adapted 
the type III secretion system of Salmonella enterica. When 
we started working on this problem, we used estimates to 
answer three key questions:

1.	 Can secretion improve the production of proteins 
with toxic effects?

2.	 What is the native capacity of the secretion system?
3.	 If the native capacity is below the desired production 

level, how should the secretion system be manipu-
lated to achieve increased protein yield?

First, we predict the steady-state intracellular con-
centration of the toxic protein of interest. Cellular 
fitness may be increased if the rate of protein secre-
tion is matched with the rate of protein production, 
such that a low intracellular concentration of the toxic 
protein is maintained at steady-state, while the toxic 
protein accumulates in the extracellular space. As an 
example, we consider that a 50  kDa protein of inter-
est is produced by the ribosomes at a rate of up to 103 
proteins/s/cell (calculation 5).
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Maximal translation rate per cell (BNIDs 100059 
and 101441)

Note that in this example, we assume that all ribosomes 
are actively translating the protein of interest. We also 
estimate the secretion rate per cell from the type III 
secretion system using known parameters [1, 22]. Pro-
teins are secreted at a rate of 103–104 amino acids per 
second per apparatus [23, 24], and each cell has 101–102 
secretion apparatus per cell [25]. Therefore we estimate a 
secretion rate of 101–103 proteins per second per cell for 
a 50 kDa protein (calculation 6) (Fig. 2a).

Maximal secretion rate per cell

Our estimate of the maximal secretion rate is on the same 
order of magnitude as the maximal translation rate. This 
suggests that a low intracellular concentration of protein 
can be maintained by controlling the rate of translation 
to match the rate of secretion [26]. Thus, we expect that 
increased production of a toxic protein can be achieved 
by mitigating cytotoxic effects through maintaining a low 
steady-state intracellular concentration.

Now we address the second question: What is the 
capacity of the native protein secretion system? We 
desire a product titer of 10 g/L in a 72 h batch in order 
to compete with current industry performance [27, 28]. 
We estimate the secreted titer by integrating the esti-
mated secretion rate per cell across all cells in the culture. 
Cultures reach an optical density of ~ 1 OD, equivalent to 
about 109 cells/mL (BNID 104831) [29]. Only 30% of cells 
secrete product in this environment [30, 31], such that 
the predicted secreted protein titer of a 50  kDa protein 
is 101–103 mg/L in an 8 h batch (calculation 7) (Fig. 2b).
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This range of values agrees well with published titers 
of ~ 10 mg/L from an 8 h batch [32], supporting the valid-
ity of our analysis and suggesting that some of the param-
eters used in our analysis may be overestimated. This 
estimate also corresponds to a titer of 10−1 – 101 g/L in a 
72 h batch. This analysis reveals that our engineering goal 
of 10 g/L secreted protein might be achieved by optimiz-
ing the native secretion capacity of the type III secretion 
system, and identifies five parameters that contribute to 
secreted protein titer:

1.	 Fraction of cells that are secretion-active.
2.	 Culture density.
3.	 Number of apparatus per cell.
4.	 Secretion rate.
5.	 Culture time with which proteins are secreted.

This list helps us address our third question—we can 
now identify parameters to manipulate to achieve the tar-
get titer of 10 g/L. An increase in any of the five param-
eters will result in a proportional change in the product 
titer. Some parameters, such as culture density [33] or 
the fraction of cells that are secretion-active [30], can be 
easily manipulated. Improving the culturing conditions 
for high cell density culture, while maintaining secretion 
activity, will cause a concomitant increase in secreted 
protein titer. Further, the secretion activity on a per cell 
basis can be manipulated using transcriptional control 
to increase expression of type III secretion system genes 
[23]. Other parameters are harder to manipulate experi-
mentally due to physiological limits. For example, if we 
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approximate a cross-sectional area of 1000 nm2/appara-
tus [25], the average S. enterica cell (6 µm2, BNID 103711) 
experiences 0.1–1% of the inner membrane surface area 

occupied by type III secretion system apparatus (calcula-
tion 8).

Focus on
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this property!

From (a)

a Secretion rate per cell

b Secreted protein titer per culture volume
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Fig. 2  Diagram of estimates used to predict performance of a bacterial protein secretion system. a Estimate of per cell protein secretion rate. b 
Estimate of secreted protein titer
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Surface area occupied by secretion system apparatus 
(BNID 103711)

If the number of apparatus were increased to 103 per cell, 
this would increase the fraction of the inner membrane 
occupied by the type III secretion apparatus to 10%, likely 
decreasing cell viability, as this is a very high fraction of 
the membrane to devote to a large structure that spans 
both the inner and outer membrane. Thus, attempting 
to manipulate this variable would not likely be fruitful in 
achieving the desired process goal.

In our work, we controlled expression of the secretion 
system to increase the fraction of cells that are secretion-
active by ~ threefold and enable a ~ threefold increase in 
culture density. By introducing transcriptional control, 
we manipulate these two key variables simultaneously 
and achieve a ~ tenfold increase in secreted protein titer 
[34]. Engineering improvements that were identified by 
rough estimates resulted in a bacterial strain that was 
able to produce and secrete heterologous proteins at high 
titer and enabled the production of difficult-to-express 
repetitive proteins [35]. We expect increased product 
titer by further manipulation of the five aforementioned 
variables. With a goal of 10  g/L in 72  h, we expect that 
a fivefold further increase in culture density will achieve 
the target titer of secreted proteins.

Case study 2: feasibility of enzyme pathway 
compartmentalization
Estimates can also be used to understand the physical 
limits of cellular properties and thus establish the upper 
limit on production of a desired product. Here, we con-
sider the design of subcellular nanoreactors based on nat-
urally occurring organelles. Subcellular structures, such 
as the carboxysome and the mitochondrion, are spatially 
and chemically segregated from the rest of the cell to cre-
ate a specialized metabolic environment [36]. Inspired 
by these examples from Nature, a subcellular compart-
ment optimized for production of a desired molecule 
could increase titer, as bioproduction and metabolic 
homeostasis are decoupled through spatial separation. 
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Towards this goal, our group has sought to repurpose 
the native bacterial microcompartment (MCP) complex 
of S. enterica for metabolic engineering of diverse bio-
products. When we began this project, we first asked, 
“Can MCPs be used in the production of an industrially 
relevant compound at sufficient titer?” Again, we obtain 
an order-of-magnitude estimate of physical requirements 
for a desired product yield using rough estimates of the 
relevant parameters.

We calculate the feasibility of a desired titer from the 
amount of enzyme that can physically fit within the MCP 
compartment volume. We note that the MCP is approxi-
mately spherical, with a diameter of ~ 100  nm, and that 
the maximum number of MCPs per cell is likely to be 
around 100 [37, 38], such that up to 1–10% of the cell vol-
ume is occupied by MCPs. At a culture density of 1 OD, 
MCPs represent 0.005% of the culture volume (calcula-
tion 9) (Fig. 3a).

Culture volume fraction of microcompartments (BNID 
104831)

From this calculation, it is clear that the fractional vol-
ume of MCPs in a culture is most significantly deter-
mined by the culture density. Does the estimated MCP 
volume afford enough space for enzymes inside the MCP 
to produce industrially relevant amounts of a compound 
of interest? Commodity chemicals are typically produced 
at concentrations of 50–150 g/L after 48 h of fermenta-
tion, and desired titers are dictated by process econom-
ics [39, 40]. For this estimate, we set a target of 50 g/L in 
48 h of the commodity product 1,2-propanediol (1,2-PD). 
We calculate the quantity needed of the enzyme with the 
lowest kcat from the 1,2-propanediol production pathway, 
GldA (Table 2), under substrate saturating conditions to 
see if this target is physically possible. The specific activ-
ity of GldA has been experimentally determined to be 
5 μmol 1,2-PD/min/mg GldA at saturation [41]. Assum-
ing saturation of GldA, we calculate the minimum con-
centration of GldA required to achieve this product titer 
is 50 mg/L (calculation 10) (Fig. 3b).
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Fig. 3  Diagram of estimates used to predict physical requirements to encapsulate a metabolic pathway in bacterial microcompartments. a 
Estimate of fraction of culture volume occupied by microcompartments. b Estimate of enzyme concentration required for a desired product yield
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Concentration of rate‑determining enzyme to achieve 
desired product titer

Does this concentration of enzyme physically fit inside 
the MCPs? The approximate density of the GldA enzyme 
was calculated from the amino acid sequence using the 
Northwestern peptide properties calculator [44]. The vol-
ume of the GldA protein molecule is 5 × 104 Å3 and the 
molecular weight is 40 × 103 g/mol, giving a density of 
1.4 g/cm3. We then calculate the volume fraction of GldA 
in MCPs required for our desired product titer (calcula-
tion 11).

Fraction of MCP required for GldA

To produce the desired titer, 70% of the MCP volume 
must be occupied by GldA. While this fractional loading 
is high, is shows that the process is feasible and that mod-
est improvements to the process would improve titer. 
For example, if the cell density was increased to 10 OD, 
only 7% of the MCP volume would need to be occupied 
by GldA. This fractional loading of the rate-determining 
enzyme suggests that MCPs are large enough to fit mul-
tiple enzymes in a pathway. The rest of the MCP volume 
is available for other enzymes in the pathway, as well as 
metabolites.

The variables we found to affect this calculation are the:

1.	 Size of MCPs per cell.
2.	 Number of MCPs per cell.
3.	 Saturation of the encapsulated enzymes by cognate 

substrates.
4.	 Loading of enzymes within the MCP.
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5.	 Maximum reaction rates of the loaded enzymes.
6.	 Culture density.

Of these variables, the saturation of encapsulated 
enzymes, loading of enzymes within the shell, and 
improved culture density all make attractive targets. 
For the 1,2-PD example, we assumed saturation of the 
enzyme and an enzyme loading of 70%. Saturation is a 
feature that depends on culture conditions and shell per-
meability, as well as on the kinetic constants of the path-
way enzymes, and the impact of engineering enzyme 
turnover and saturation will vary depending on the sys-
tem [45]. Further, if we consider enzyme engineering to 
increase the specific activity, we would expect a concomi-
tant increase in product titer, though this is often not 
trivial. Thus, to increase product titer tenfold, we predict 
that increasing culture density to 10 OD would suffice. 
Changing the size or number of MCPs is a much more 
challenging target, as the mechanisms controlling these 
phenotypes are unknown, and would not improve titers 
by orders of magnitude.

Therefore, in our work we first set out to improve con-
trol over MCP expression, the permeability of the MCP 
shell, and enzyme loading. Controlling expression of 
MCP genes enables increased culture density [46]. Fur-
ther, controlling permeability of the protein shell to 
metabolites changes the concentration of substrates in 
the MCP [45, 47], enabling operation at substrate-sat-
urating regimes. Finally, the loading of enzymes in the 
MCP can be modulated via the targeting sequence and 
expression levels [48], and the low fractional volume of 
enzymes in MCPs enables modulation of enzyme load-
ing. If further improvements are needed, increasing the 
specific activity of the enzyme—by engineering or identi-
fying more active homologs—might be the next best tar-
get because it could improve yield by an additional one or 
more orders of magnitude.

Using rough estimates in new bioprocesses
The above examples highlight the value of the rough 
estimates in successful bioprocess engineering pro-
jects. At the project outset, estimates help to determine 
if the process is feasible. Further along in the project, 
estimates identify properties to improve. In all cases, 
successful use of estimates will require a keen biologi-
cal intuition. To help build an intuition, we encourage 
others working in this area to use a decision scheme 
(Fig.  4) to guide their process analysis and engineer-
ing efforts, and emphasize that moving through this 
scheme requires balancing the potential payoff with 
the amount of effort it will require. Moreover, we 
expect that the majority of successful projects used 
such a decision scheme, yet few have discussed their 

Table 2  Turnover number (kcat) for  enzymes 
in the 1,2-propanediol pathway [41]

NR not reported
a  Estimated from specific activity

Enzyme kcat (s
−1) Reference(s)

MgsA 220 [42]

AKR 30 [43]

GldA 0.4a [41]
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rough estimates in the literature alongside the project 
results. Given its importance, we strongly promote the 
inclusion of rough estimates in all future published 
work in the synthetic biology field. It will benefit new 
researchers learning to analyze new processes, as well 

as everyone interested in understanding the context of 
the work, including why certain parameters were not 
chosen for optimization.
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