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Abstract 

Background: Artificial intelligence (AI) is seen as one of the major disrupting forces in the future healthcare system. 
However, the assessment of the value of these new technologies is still unclear, and no agreed international health 
technology assessment‑based guideline exists. This study provides an overview of the available literature in the value 
assessment of AI in the field of medical imaging.

Methods: We performed a systematic scoping review of published studies between January 2016 and September 
2020 using 10 databases (Medline, Scopus, ProQuest, Google Scholar, and six related databases of grey literature). 
Information about the context (country, clinical area, and type of study) and mentioned domains with specific out‑
comes and items were extracted. An existing domain classification, from a European assessment framework, was used 
as a point of departure, and extracted data were grouped into domains and content analysis of data was performed 
covering predetermined themes.

Results: Seventy‑nine studies were included out of 5890 identified articles. An additional seven studies were identi‑
fied by searching reference lists, and the analysis was performed on 86 included studies. Eleven domains were identi‑
fied: (1) health problem and current use of technology, (2) technology aspects, (3) safety assessment, (4) clinical effec‑
tiveness, (5) economics, (6) ethical analysis, (7) organisational aspects, (8) patients and social aspects, (9) legal aspects, 
(10) development of AI algorithm, performance metrics and validation, and (11) other aspects. The frequency of 
mentioning a domain varied from 20 to 78% within the included papers. Only 15/86 studies were actual assessments 
of AI technologies. The majority of data were statements from reviews or papers voicing future needs or challenges of 
AI research, i.e. not actual outcomes of evaluations.

Conclusions: This review regarding value assessment of AI in medical imaging yielded 86 studies including 11 identi‑
fied domains. The domain classification based on European assessment framework proved useful and current analysis 
added one new domain. Included studies had a broad range of essential domains about addressing AI technologies 
highlighting the importance of domains related to legal and ethical aspects.
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Background
Artificial Intelligence (AI) includes various technologies 
based on advanced algorithms and learning systems. 
Different terms are used in connection with AI, such as 
machine learning, deep learning, and conventional neu-
ral networks [1]. Furthermore, there is no universally 
agreed-upon definition of AI, while it is suggested to 
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define it as a system capable of interpreting and learning 
from data to produce a specific goal [2].

AI is seen as a digital transformation and could be one 
of the major disrupting tools in the future healthcare 
system [3]. Radiology and other imaging areas encom-
pass a vast amount of manual image reviews and a steep 
increase in medical images has been observed in the last 
decade, which requires more interpretation times by the 
imaging specialist. This limiting factor could be reduced 
by incorporating computer-aided algorithms of machine 
learning into the clinical workflow [4]. Pattern recogni-
tion in medical images and AI technologies seems to 
be a good match [5], and this area is likely to be one of 
the first to benefit from AI, which provides high expec-
tations. In the first quarter of 2019, funding in imaging 
AI companies exceeded 1.2 billion USD [6]. A consul-
tancy company values the annual market for the top 10 
AI-based healthcare solutions at 150 billion USD in 2026 
[7]. Health care payers’ and providers’ expectations are 
to achieve cost savings, improve patient satisfaction, and 
optimise workforce resources [8].

Most of the published AI studies within medical imag-
ing are retrospective with a technical focus, including 
reporting of clinical performance metrics, validation, or 
robustness of the model [9]. Evaluation of this phase is 
thoroughly described, e.g. in the guideline Checklist for 
Artificial Intelligence in Medical Imaging—CLAIM [10]. 
However, the lack of proven clinical utility, feasibility and 
effect on patient outcomes has been mentioned by sev-
eral studies [11–14] as well as ethical, legal, economic, 
sharing of data, and implementation issues [15–17]. AI is 
a complex technology and implementing it in a complex 
healthcare system, critical to society, requires a broad 
framework.

Health technology assessment (HTA) provides a broad 
framework for valuing healthcare technologies and with 
several examples of being tailored for specific areas like 
telemedicine [18] and digital healthcare services [19]. 
Value is to be understood in a broad sense as referring 
to impact or effect in several different domains. HTA is 
a multidisciplinary process that summarizes informa-
tion that has been collected in a systematic, transparent, 
unbiased, and robust manner. One example is the HTA-
framework from EUnetHTA [20], where evaluation is 
performed from nine perspectives called “domains”: (1) 
the health problem and current use of technology; (2) 
description and technical characteristics of the new tech-
nology; (3) safety assessment; (4) clinical effectiveness; 
(5) economic evaluation; (6) ethical analysis; (7) organisa-
tional aspects; (8) patient and social aspects; and (9) legal 
aspects.

It is quite important to develop a holistic and tailored 
HTA tool for evaluating the value of AI to implement the 

correct AI technologies in the field of medical imaging. 
Therefore, we aimed to give a comprehensive overview of 
relevant identified domains in the literature when assess-
ing the value of AI in medical imaging. This is the first 
step in creating an evidence-based assessment tool for 
valuing AI technology.

Methods
A scoping review aims to ‘map the key concepts under-
pinning a research area and the main sources and types 
of evidence available’ [21]. As such, scoping reviews 
typically address broad questions, potentially include 
a range of methodologies and do not undertake quality 
assessment. This contrasts with the focused question of 
a systematic review, which is answered from a relatively 
narrow range of quality-assessed studies. This scoping 
review was conducted based on the PRSIMA guideline 
[22]. The study conducted at the Centre for Innovative 
Medical Technology at Odense University Hospital (Den-
mark), covering studies between January 2016 and Sep-
tember 2020, including five following stages.

Stage 1: Identifying the research issues
All published papers containing information about 
assessment of value of AI-technology in the field of 
medical imaging within public healthcare organisations, 
e.g. hospitals, dentists and universities, are considered 
eligible. Three types of studies are included to cover all 
aspects of AI in medical imaging: (1) Actual evaluation 
of the value of a specific AI technology, (2) Guidelines, 
statements, recommendations, white papers, evaluation 
models or HTA frameworks, and (3) Review articles and 
surveys voicing future needs/research/challenges. Hence, 
we reviewed available literature related to the assessment 
of the value of AI in medical imaging for a comprehen-
sive understanding of which HTA domains or topics are 
used—or perceived relevant.

Stages 2 and 3: Identifying relevant studies and study 
selection
The search terms are summarised in Table  1. Clusters 
one and two are inspired by a previous review by Elhakim 
et al. [23] and cluster three by a search strategy used in 
a model for telemedicine [24]. The search strategy was 
verified by an experienced librarian from the University 
of Southern Denmark. Duplications were removed and 
most of the article selection process was conducted in 
Covidence tool [25].

Literature searches was conducted during 17–18th 
September 2020 on following 10 databases: (1) Medline 
(Ovid), (2) Scopus, (3) ProQuest (includes EconLit), (4) 
Google Scholar, and six related grey literature and work-
ing paper resources, i.e. (5) International HTA Database 
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[26], (6) OpenGrey [27], (7) National Institutes of Health 
[28], (8) National Health Services [29], (9) Folkehelsein-
stituttet [30], 10) Folkhälsomyndigheten [31]. A single 
backward snowballing was done on the 1–2 most cen-
tral studies selected by each of the extractors to identify 
further studies. Developing the selection criteria was an 
iterative process, conducted by the entire research group 
through multiple consensus meetings. Two research-
ers (IF and TK) performed the abstract and the full-text 

screenings, independently, solving the disagreements 
mainly by supervision of the senior researcher (KK). The 
inclusion and exclusion criteria are shown in Table 2.

Stages 4 and 5: Charting the data and collating, 
summarising, and reporting the results
Initially, the required information on the included studies 
was extracted and summarised using an extraction tem-
plate in Microsoft Office Excel software. Included studies 

Table 1 Search terms for performing a literature review

The search string was executed as [(Cluster 1) AND (cluster 2) AND (cluster 3)]

MeSH Medical Subject Headings

MeSH terms Free text terms

Cluster 1: Technology Artificial intelligence Artificial intelligence

Machine learning

Deep learning

Cluster 2: Clinical area Diagnostic imaging Diagnostic imaging

Biomedical imaging

Medical imaging

Cluster 3: Framework (and 
specific domains)

Delivery of health care BROAD APPROACH: FOCUS ON HEA & 
ORGANISATIONAL 
ISSUES:

Guidelines as topic Checklist*

Outcome and process assessment, Health care Guide* Health economic

Program evaluation Framework* Cost effectiveness

Technology assessment, Biomedical HTA” Cost utility analys*

Economics Health Technology Assessment* Organizational

Models, Organizational* Assessment*

Ethics Evaluation Model*

Table 2 Inclusion and exclusion criteria for selection of studies

Inclusion 
criteria

1. Included studies must cover domains/topics used—or mentioned as useful—for assessment of the value of AI in the area of 
medical imaging:

   a. Actual evaluation or assessment of the value of a specific AI technology, i.e. AI interpretation, classification or pattern recogni‑
tion of an image

   b. Guidelines, statements, recommendations, white papers, evaluation models or (HTA) frameworks described in the literature 
and used for assessing the value of AI

   c. Reviews, surveys voicing future needs/research/challenges and future work when evaluating the value of AI

2. Studies must be published in English between January 1st 2016 and September 18th 2020

3. Setting: Articles written within a hospital setting or public healthcare organisations are included, e.g., hospitals, dentists, universi‑
ties, etc

Exclusion 
criteria

4. Type of study or publication: All studies including grey literature, reports, and books but we exclude citations, patents, conference 
book, book of collected congress contributions, and conference abstracts

   a. Because of many hits at the full‑text stage, we later excluded: opinion, commentary, or viewpoint articles

5. Studies only reporting on clinical efficacy or performance metrics, validation studies, technical development of the prediction 
model or AI‑model, i.e., studies focusing on reporting on, sensitivity, specificity, diagnostic accuracy, precision, AUC, software used, 
the robustness of the model, etc

   a. Technical interpretation of images, including image optimisation and enhancing methods for highlighting images

6. AI on non‑clinical images like images of surgical equipment, plants and animals or not on images, e.g. AI on electronic health 
records or workflows, AI in drug development, surgical robotics, electrocardiogram, thermographic scans, brachytherapy treatment, 
or augmented reality visualization and VR
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were reviewed by two researchers independently. The 
extracted items were: Context (country, clinical area(s), 
type of study); mentioned domains in the study, including 
specific outcomes and items in each domain. The domain 
classification from EUnetHTA was used as a point of 
departure to group the extracted data into nine domains. 
If a topic did not fit these pre-existing domains, the 
extracted text was noted in the section of “other aspects” 
for later evaluation. Regarding the domains “clinical 
effectiveness” and “the health problem and current use 
of technology”, specific clinical outcomes are not part of 
the data extraction in this scoping review. We identified a 
new domain (development of AI algorithm, performance 
metrics and validation) but did not extract specific data 
as this domain has been thoroughly described already. 
For quality assurance purposes, the principal investiga-
tor (IF) had several bilateral consultations and group ses-
sions with all extractors to solve any inconsistencies and 
challenges. Accordingly, a common understanding and 
agreement about which topics should go under which 
domains, how detailed or deep to extract data, arguments 
for excluded studies, was reached and helped align the 
raw data.

In the second phase, extracted data was analysed (by 
two researchers) and condensed for each domain. Quali-
tative content analysis was performed [32], covering four 
predetermined themes/questions: (1) Effects, outcomes, 

value or impacts mentioned—as well as future needs/
challenges/topics relevant when evaluating the value 
of AI, (2) Specific outcome measures, (3) Frequency of 
using a given topic or outcome group, (4) Potential over-
lap with other domains. A summary for each domain was 
made as the last step of analysis.

Results
A study flow chart summarizes the process of literature 
retrieval (Fig.  1). In total, the literature search yielded 
5890 papers, while 4292 papers remained after the 
removal of duplicates.

Based on titles and abstracts 166 papers were eligible 
for the full-text assessment, and a total of 79 papers [11, 
12, 19, 33–108] fulfilled the inclusion criteria (see Addi-
tional file 1). Further, seven papers were included based 
on screening of reference lists in the most central articles 
[109–115]. Hence, 86 papers were included in the scop-
ing review.

Characteristics and analysis of included AI‑studies
The characteristics of the 86 included studies are pre-
sented in Table 3. The most frequent clinical areas cov-
ered are radiology (17%), medical imaging (14%) and 
radiomics (13%). Most studies (n = 61) are voicing future 
needs or challenges when evaluating AI, while there were 
also studies containing an actual evaluation (n = 15) as 

5890 

Search performed September 2020. Found 5890 records:
Medline (Ovid): 1220. Scopus: 2203. ProQuest (includes EconLit): 2030. Google 
Scholar: 419. Grey literature and working paper resources: 18. 

1598 duplicates removed 
    screnned

4292 titles and abstracts 
screened

4126 studies irrelevant

166 ordered as full-text and 
assessed for eligibility

87 excluded*
1) Medical imaging or AI/ML/DL not mentioned or focus (n = 

14)
1c) No mention of future needs/challenges/limitations in 

relation to evaluation of AI (n = 13)
2) Study not published in English (n=3)

4a) Exclude opinion, commentary, or viewpoint (N=11)
5) Clinical performance/efficacy/validation/technical model 

development study alone (n = 43)
6) AI on non-clinical images or not on images (N=3)

79 included

Screening references 
(+7 studies included)  

86 in final selection

Fig. 1 PRISMA flow chart for selection of the studies. *The number in front of the list with exclusion reasons refers to the exclusion criteria in Table 2
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well as guideline, statement or framework (n = 10). Most 
studies are published in 2019 and 2020. The most fre-
quently mentioned or perceived relevant domains are the 
development of AI algorithm, performance metrics and 
validation (78%), followed by technology aspects (73%). 
Excluding “other aspects”, the variation between how 
often domains is mentioned is in the range of 20% to 78%.

In total, we identified eleven relevant domains about 
assessing the value of AI (two more than the EUnetHTA 

domain classification). In addition, we extracted more 
specific data for eight domains including technol-
ogy, safety, economics, ethics, organisational, patients 
and social, legal, and the other aspects. Regarding the 
remaining three domains (clinical effectiveness, the 
health problem and current use of technology, and 
development of AI algorithm, performance metrics and 
validation), we only noted whether information was 

Table 3 Characteristics of included studies (N = 86)

Element in study Categories Frequency (%)

Country of 1.author Australia 3 (3%)

Asia and the Middle East (China, Hong Kong, India, Israel, Japan, Saudi Arabia, Singapore, South Korea) 16 (19%)

Canada 6 (7%)

Europe (Cyprus, Denmark, Finland, France, Germany, Italy, Netherland, Portugal, Spain, Sweden) 23 (27%)

UK 8 (9%)

US 26 (30%)

Unclear 1 (1%)

Other (Norway, Switzerland) 3 (3%)

Clinical area covered Breast cancer (mammography and digital breast tomosynthesis) 9 (10%)

Dementia/Alzheimer´s disease/neuroimaging 7 (8%)

Dermatology (melanoma diagnosis, histopathologic images) 2 (2%)

Cardiovascular disease (cardiovascular imaging, coronary artery disease) 8 (9%)

Diabetes and ophthalmology (ocular imaging, diabetic retinopathy screening, diabetic eye disease screening) 6 (7%)

Oncology and radiotherapy 8 (9%)

Radiology 15 (17%)

Radiomics 11 (13%)

Medical imaging 12 (14%)

Pathology (histopathology images) 2 (2%)

Other 6 (7%)

Study type Actual evaluation 15 (17%)

Guidelines, statements or frameworks 10 (12%)

Reviews, surveys or papers voicing future needs or challenges 61 (71%)

Year of publication 2016 0 (0%)

2017 11 (13%)

2018 9 (10%)

2019 37 (43%)

2020 (mid‑September) 29 (34%)

Domain mentioned 
or perceived relevant

1. The health problem and current use of technology 55 (64%)

2. Technology aspects 63 (73%)

3. Safety assessment 17 (20%)

4. Clinical effectiveness, e.g. clinical outcomes 39 (45%)

5. Economics 52 (60%)

6. Ethical analysis 25 (29%)

7. Organisational aspects 53 (62%)

8. Patients and social aspects 33 (38%)

9. Legal aspects 43 (50%)

10. Development of AI algorithm, performance metrics and validation 67 (78%)

11. Other aspects 2 (2%)
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present or not. Table 4 contains summary and specific 
outcome measures (if applicable) through extracted 
information of the included domains. Further details 
can be found in Additional file 2.

Clinical effects (domain 4)
Although clinical outcomes are not part of the extraction 
of the included studies in the scoping review the clinical 
domain is evidently of great importance. Several outcome 

Table 4 Summary of extracted data for each specific domain

The full data analysis shows frequent overlap to other domains [see Additional file 2]

Domain Topics or themes and outcome measures

(1) The health problem and current use of technology No details extracted

(2) Technology aspects The main topic is interpretability in the sense that we need to avoid the “Black box problem” and 
the analysis done by the algorithm needs to be transparent to physicians/staff i.e., explainable 
AI

Furthermore, risk of bias, possibly causes discrimination issues and validation. The algorithm 
development method is highlighted, including data quality, the importance of annotation, 
external evaluation, and reference standards

Equipment and IT was a topic mentioning the clinical IT integration and infrastructure

OUTCOME MEASURES: interpretability, quality of scans, technical functioning/feasibility

(3) Safety assessment Safety of patients, potential challenges after implementation of AI to the healthcare system

Reducing side effects and especially radiation dose, data security and protection

OUTCOME MEASURES: natural radiation exposure, using clinical knowledge support

(4) Clinical effectiveness, e.g. clinical outcomes* No details extracted

(5) Economics The description of the savings and benefits are most often very general, e.g. improved cost‑
effectiveness

OUTCOME MEASURES: reduction in workload and time for staff, reduction in the number of 
biopsies and patients use of medication

(6) Ethical analysis Privacy, consent, obligations, security, awareness of the use of patients’ data, and ownership of 
the data

Ethical approval and consider ethical issues of data, algorithms, trained models, and practice

Understanding risks vs. benefits, shared/clear decision‑making and transparency of results

Big questions: “who owns data”, “can data and the algorithm be trusted” and “what is good clini‑
cal practice?

OUTCOME MEASURES: validity of data, risks versus benefits, patient safety

(7) Organisational aspects Benefits in the form of reductions in workflow and tasks related to imaging for the staff as a 
result of AI

The use of additional time related to implementation and training and the challenges related to 
ensuring acceptability

OUTCOME MEASURES: changes in time use for the health care professionals and patient, clinician 
acceptability measures

(8) Patients and social aspects Patients’ comfortability including easier imaging process and providing access to own data/
report in a safe and secured platform

Better treatment outcome based on the improved clinical decision is the most discussed issue

Patients’ satisfaction, as well as clinical benefits, could result in better acceptability of AI technol‑
ogy in the healthcare system

OUTCOME MEASURES: the time required for diagnosis, rating for overall satisfaction, help patients 
make more informed activity choices

(9) Legal aspects Data security and privacy

Responsibility for misdiagnosis

OUTCOME MEASURES: regulatory approvals, consent from patients

(10) Development of AI algorithm, performance 
metrics and validation

No details extracted

(11) Other aspects Overpromising language in studies

Offering the possibility of performing expensive and time‑consuming screening programs in 
countries that otherwise cannot afford them

OUTCOME MEASURES: none identified
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measures for clinical effectiveness studies have been 
suggested in a systematic scoping review of AI methods 
applied to adult patients who underwent any health/
medical intervention and reported therapeutic, preven-
tive, or prognostic outcomes [116]. Based on 370 stud-
ies, this review found that AI was used primarily for the 
prediction/prognosis of more frequently reported out-
comes, efficacy/effectiveness, and morbidity outcomes. 
Some examples of reasonably broad clinical or patient 
outcomes mentioned in the reviewed literature are fewer 
false positives in screening mammography, progression 
of disease and misdiagnosis, avoiding unnecessary stere-
otactic biopsies, improvement of treatment appropriate-
ness (by physicians) and adherence (by patients) and the 
prevention of iatrogenic adverse events.

Discussion
Main findings
This scoping review regarding the value assessment 
of artificial intelligence in medical imaging yielded 86 
included papers. Eleven domains were identified. The fre-
quency of mentioning a domain varied from 20 to 78% 
within included studies. The studies were divided into 
three study types: studies voicing future needs or chal-
lenges when evaluating the value of AI, actual evalua-
tions, and lastly, guidelines, statements, or frameworks. 
Out of 86 studies, only 15 were actual evaluations, and 
thus most data were based on statements and not actual 
outcomes of evaluations.

Comparing findings to the literature
The domain classification from the EUnetHTA frame-
work proved very useful as extracted data used all the nine 
pre-existing domains and identified only one new domain 
(this is apart from a few issues filed in an “other domain”). 
However, the studies of value assessment of AI in the area 
of medical imaging includes a broad range of important 
domains in contrast to other studies. For example, an 
interview study in nine European countries investigated 
the information needs of hospital managers when deciding 
about investments in new treatments [117]). In that study, 
legal, social and ethical aspects were not deemed very 
important, which is in contrast with our findings. Further, 
in telemedicine, a scoping review of empirical studies that 
have applied the Model for Assessment of Telemedicine 
(MAST) shows that clinical, patient and economic effects 
are the most important areas [24]. Perhaps AI is unique 
in that all domains seem rather important—or perhaps in 
a more empirical setting and when more late evaluations 
become available this picture will change.

Limitations and strengths
Although the authors tried to provide a general over-
view regarding different aspects of value assessment 
for AI technology, there were some limitations. The 
terminology in the area of AI is still relatively imma-
ture. So although the focus was on medical imag-
ing, we included articles in pathology and radiomics. 
Pathology and radiomics were not fully covered with 
our search terms, but this being a scoping review, we 
decided to keep these related studies and let the avail-
able data reflect in our analysis. Also, some of the 
included studies were narrative reviews that make it 
challenging to extract firm conclusions since there was 
no strong evidence to support mentioned results or 
claims. Another limitation was the considerable over-
lap between some domains where the included stud-
ies (and extractors) categorised data differently. This 
made it difficult to align the data analysis. We discussed 
overlaps in our joint meetings and selected the domain 
that best covered most of the included topics to han-
dle these inconsistencies. For example, the topic of 
“explainable AI”/”black box” was initially extracted in 
both safety, technology, organisational and sometimes 
the other domain. Further, specific clinical outcomes 
are evidently of great importance when evaluating 
an AI technology. However, they were not part of the 
data extraction because most studies are very disease-
specific and the number of included studies would have 
been unmanageable high in this review. This being a 
scooping review critical appraisal of the included stud-
ies were not done.

Regarding the strengths of this review, the broad 
coverage of areas of relevance for assessing the value 
of AI projects is in demand [17, 116, 118]. To the best 
of our knowledge, this is the first systematic scop-
ing review about the value assessment of AI in field of 
medical imaging. Our search included grey literature 
which can be an important information source [119]. 
Furthermore, we have included the studies with differ-
ent research methodologies to ensure the high cover-
age and a broad perspective in our data collection. The 
joint discussion sessions on topics with high overlap 
between the domains have likely improved the data 
analysis. High overlap was particularly observed in the 
topics of patient’s privacy (overlap between ethical, 
legal, and patient’s domains) and the earlier mentioned 
black box topic. Furthermore, most studies are pub-
lished recently (after 2019) which shows a great interest 
in this field and reflects the newest information on the 
topic. Drawing a framework based on data from recent 
publications can strengthen the current value assess-
ment to be considered in future evaluations in this field.



Page 8 of 11Fasterholdt et al. BMC Medical Imaging          (2022) 22:187 

Future directions
A pipeline for an overview of AI technologies evalua-
tion is shown in Fig. 2. A majority of the published AI 
studies within medical imaging is in the retrospective 
phase of Fig. 2, i.e. having a technical focus. However, 
as our review shows, it is important to evaluate AI pro-
jects both clinically and concerning many other areas, 
i.e. the prospective phase in Fig.  2, to ensure that AI 
technologies with no effect or unintended effects are 
not uncritically implemented.

Results from this review was used as part of a project 
with the overall aim to develop a Model for ASsessing 
the value of AI in medical imaging (MAS-AI) cf. pub-
lication [120]. MAS-AI was developed in three phases. 
First, this literature review. Next, we interviewed lead-
ing researchers in AI in Denmark. The third phase 
consisted of two workshops where decision-makers, 
patient organizations, and researchers discussed cru-
cial topics when evaluating AI. The multidisciplinary 
team revised the model between workshops according 
to comments. The HTA framework MAS-AI is to sup-
port the introduction of AI technologies into health-
care in medical imaging.

It is important to ensure uniform and valid decisions 
regarding the adoption of AI technology with a struc-
tured process and tool. The MAS-AI model can help 
support these decisions and provide greater transpar-
ency for all parties involved.

Conclusion
This scoping review regarding value assessment of artificial 
intelligence in medical imaging yielded 86 papers fulfilling 
the inclusion criteria, and eleven domains were identified: (1) 
the health problem and current use of technology, (2) tech-
nology aspects, (3) safety assessment, (4) clinical effective-
ness, (5) economics, (6) ethical analysis, (7) organisational 
aspects, (8) patients and social aspects, (9) legal aspects, 
(10) development of AI algorithm, performance metrics 
and validation, and (11) other aspects. The domain classifi-
cation from the EUnetHTA framework proved very useful 
and analysis identified only one new real domain: domain 
10 (a few issues were included in an “other domain”). Studies 
include a broad range of essential domains when addressing 
AI technologies; in contrast to other areas, legal and ethical 
aspects are highlighted as important in this review.
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