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Fast noninvasive probing of spatially varying decorrelating events, such as cerebral blood

flow beneath the human skull, is an essential task in various scientific and clinical settings.

One of the primary optical techniques used is diffuse correlation spectroscopy (DCS),

whose classical implementation uses a single or few single-photon detectors, resulting

in poor spatial localization accuracy and relatively low temporal resolution. Here, we

propose a technique termedClassifyingRapid decorrelationEvents viaParallelized single

photon dEtection (CREPE), a new form of DCS that can probe and classify different

decorrelating movements hidden underneath turbid volume with high sensitivity using

parallelized speckle detection from a 32 × 32 pixel SPAD array. We evaluate our setup

by classifying different spatiotemporal-decorrelating patterns hidden beneath a 5 mm

tissue-like phantom made with rapidly decorrelating dynamic scattering media. Twelve

multi-mode fibers are used to collect scattered light from different positions on the

surface of the tissue phantom. To validate our setup, we generate perturbed decorrelation

patterns by both a digital micromirror device (DMD)modulated at multi-kilo-hertz rates, as

well as a vessel phantom containing flowing fluid. Along with a deep contrastive learning

algorithm that outperforms classic unsupervised learning methods, we demonstrate

our approach can accurately detect and classify different transient decorrelation events

(happening in 0.1–0.4 s) underneath turbid scattering media, without any data labeling.

This has the potential to be applied to non-invasively monitor deep tissue motion

patterns, for example identifying normal or abnormal cerebral blood flow events, at

multi-Hertz rates within a compact and static detection probe.

Keywords: SPAD array, self-supervised learning, zero-shot learning, contrastive learning, multimode fiber, diffuse

correlation, neurobehavior
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1. INTRODUCTION

Non-invasive probing and identification of hemodynamic events
deep inside tissue, such as cerebral blood flow (CBF), is essential
for both clinical and scientific studies. In the past, numerous
optical methods have been developed to detect and monitor CBF,
such as diffuse optical spectroscopy (DOS; Gibson and Dehghani,
2009), diffuse optical tomography (DOT; Durduran et al.,
2010), functional near-infrared spectroscopy (fNIRS; Ferrari and
Quaresima, 2012), and photoacoustic tomography (PAT; Wang
and Yao, 2016). These methods typically measure the absorption
change caused by blood oxygenation, which is correlated with
blood flow change. Recent extension of these methods can probe
even deeper into tissue by time-gating multi-scattered light from
non-superficial layers (Torricelli et al., 2014), which can also
be implemented in the frequency domain using polychromatic
measurements (Kholiqov et al., 2020).

Instead of looking at the absorption change, another class
of techniques attempt to measure the dynamics directly by
recording the temporal fluctuations of scattered light, among
which established techniques are optical coherence tomography
angiography (OCTA; Spaide et al., 2018) and laser speckle
contrast imaging (LASCI; Briers et al., 2013). While there
are impressive demonstrations using these methods to create
microscopic vascular images close to surface, OCTA and LASCI
are not ideal for detecting hemodynamics hidden underneath
densely scattering tissue. A primary all-optical technique to non-
invasively detect dynamic events deep inside tissue is diffuse
correlation spectroscopy (DCS; Durduran and Yodh, 2014). DCS
detects hemodynamic events by recording the decorrelation of
the light: when coherent light enters thick turbid media, such as
tissue, it randomly scatters and produces a speckle pattern. Living
tissue is full of microscopic movements, which causes the light to
fluctuate, or decorrelate (Brake et al., 2016). Different phenomena
(e.g., tissue movement or blood flow) occur at different speeds,
which causes the rate of light decorrelation to differ. In the past,
DCS has been widely applied to study brain activity and cerebral
health by monitoring cerebral blood flow (Buckley et al., 2014).
To probe deep inside tissue, DCS needs to sample the fluctuations
of a few speckle modes at a very high speed (microsecond
sampling periods). Thus, traditional implementations usually use
only one or very few fibers to collect light from the surface,
with the light from each fiber detected by one or few single-
pixel single photon sensitive detectors, such as single photon

avalanche detectors (SPADs), or photomultipler tubes (PMTs).
However, detecting light from only one surface location limits
localization accuracy. Moreover, few photons per speckle mode

reach the surface after traveling through highly turbid media. To

achieve a sufficient signal-to-noise ratio (SNR), long integration
times are thus required to achieve a useful estimation of the
light decorrelation, which limits the ability to detect transient

biological events. While the previous methods can mechanically

translate the DCS probe to measure speckles from different
surface locations to improve spatial localization (Han et al., 2015;
He et al., 2015), this further increases the data acquisition time,
the risk of motion-induced artifacts, and setup complexity.

Recently developed highly parallelized DCS (PaDS)
demonstrates that detecting multiple speckles across many

optical sensor pixels results in significantly faster correlation
sampling rate (Johansson et al., 2019; Sie et al., 2020; LiuW. et al.,
2021; Xu S. et al., 2021; Zhou et al., 2021). Further, advances in
contrastive representation learning (Liu X. et al., 2021) facilitates
the use of deep artificial neural networks to create an embedding
space where similar inputs of unique sub-types are clustered
together without any data labeling required. As training ground
truth labels are usually expensive to acquire in experiments, it is
strongly desired to adopt a deep contrastive learning method that
works well with unsupervised data (Yang et al., 2017). Building
upon these insights, we propose a new technique here, termed
Classifying Rapid decorrelation Events via Parallelized single
photon dEtection (CREPE), which uses a novel multi-fiber PaDS
system based on massive parallel detection using a 32× 32 SPAD
array. Figure 1 provides a conceptual illustration of the proposed
method. The key features are

• The highly parallelized light detection improves the SNR
and sensitivity of the DCS, and detecting speckles from
multiple surface positions allows localizing and classifying
spatiotemporally varying decorrelating patterns.

• CREPE is a zero-shot method, meaning it does not require
training with labels or external datasets (Xian et al., 2017;
Hospedales et al., 2020).

We validate this novel methodology by accurately classifying
spatiotemporally varying patterns hidden beneath a 5 mm tissue-
like phantom made with rapidly decorrelating scattering media.

2. METHODS

2.1. Tissue Phantom Design
Figures 2A–C illustrates our speckle sensing probe design. The
light source is a 670 nm long coherence length diode-pumped
solid-state laser (MSL-FN-671, Opto Engine LLC, USA). We
attenuate illumination radiance to below 200 mW/cm2 to
satisfy the safety limit (ANSI, 2014). Light is guided to the
phantom surface using a 50µm, 0.22 numerical aperture (NA)
multi-mode fiber (MMF). Twelve MMFs are placed circularly
around the source at source-detector separations of 9 mm to
collect reflected light, then bundled, and imaged to the SPAD
array using a single lens system. Each MMF has a 250µm
core diameter. An iris diaphragm placed immediately after the
lens is used to reduce the numerical aperture of the imaging
system to map one speckle to one SPAD pixel on average. A
schematic of the speckle imaging system, as well as the source-
detector positions, can be found in Supplementary Figure 1.
Figure 3A plots a typical frame of the speckle patterns captured
on the camera, with 12 roughly perceptible circular spots.
Figures 2B,C summarize our phantom setup. To create dynamic
scattering phantoms that mimic movements within living tissue,
we used polysterene microsphere solutions at two different
concentrations(4.55 × 106 #/mm3 and 7.58 × 106 #/mm3)
enclosed in a thin-walled 5-mm thick cuvette. We termed these
two scattering volumes as Tissue I and Tissue II, which results
in an estimated reduced scattering coefficient of µ′

s = 0.7mm−1

and experimentally measured absorption coefficient of µa =

0.01mm−1 for Tissue I, and µ′
s = 1.2mm−1,µ′

s = 0.02mm−1

for Tissue II (Liu W. et al., 2021). These optical properties

Frontiers in Neuroscience | www.frontiersin.org 2 July 2022 | Volume 16 | Article 908770

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Xu et al. CREPE

FIGURE 1 | Overview of the proposed CREPE technique for classification of events occurring many millimeters within tissue. (A) Different decorrelation phenomena

(e.g., different blood vessels flowing at different speeds) deep inside tissue cause surface light speckles in (B) to change at different rates. Speckle fluctuations are

collected by fibers and recorded by a SPAD array camera. Temporal intensity autocorrelations of each fiber position for every decorrelation event are computed (C)

and classified (D) into different categories using a deep clustering network.

FIGURE 2 | (A) Illustrates the tissue phantom used. Light from 12 different surface positions were collected with multimode fibers placed circularly around the center

source. (B,C) Two different mechanisms we used to generate perturbed decorrelation phenomena. (B) A DMD pane hidden underneath the liquid phantom, flipping at

multi-kilo hertz rate. (C) Scattering liquid contained in 3 mm transparent plastic tubes, flowing at constant speeds. (D) Photo of PaDS probe. (E) Monte Carlo

simulation of the light propagation trajectory.

closely resemble the optical properties of tissue from human and
model organisms, respectively (Durduran et al., 2010; Jacques,
2013). Underneath the tissue phantom, we placed dynamically
fluctuating objects that perturb the decorrelation measured at the
surface. We considered two different decorrelation perturbation
mechanisms. First, we used a fast changing DMD display

flipping at multi-kilo-hertz. We used such display as it’s easily
reconfigurable and can generate various spatial-temporal varying
dynamic scattering patterns that induce additional decorrelation
similar to biological phenomena, such as blood flow (Liu W.
et al., 2021). Second, we placed two plastic tubes containing
the same solution flowing at constant rates. The speed of the
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FIGURE 3 | Method for computing the autocorrelation curves detailed in Section 2.2. (A) Shows a few representative frames captured with the SPAD array. (B–E)

Shows the data processing method, where the autocorrelation from each SPAD pixel were computed, and averaged across each fiber position to generate a set of

curves for each decorrelating event.

FIGURE 4 | Proposed deep clustering method for zero-shot decorrelation event classification. The network contains a stacked auto-encoder that transfers the input

data into a latent low-dimension space, then reconstructs the input data from the latent features. A clustering module is used to impact the network weights update to

form a classification friendly low-dimension space. Overall, the network is trained with the loss function at the bottom of the figure, with all the variables explained at

the end of the Section 2.2.

flowing liquid inside the tube was controlled with two syringe
drivers (New Era, US1010). While this is not as versatile as
the DMD, in this way we were able to create more biologically
realistic events by mimicking blood vessels. To measure the
light fluctuation from different surface locations, we used a

12-fiber-detector PaDS system carefully described in Xu J. et al.
(2021). Figure 2D shows a picture of the PaDS probe we used.
Figure 2E plots the photon sensitive region simulated using a
Monte Carlo method (Jönsson and Berrocal, 2020). Source and
detector geometry is labeled.
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FIGURE 5 | (A) Depicts some representative spatially different letter-shaped decorrelation events we attempt to classify. The perturbed decorrelations are generated

by flipping the DMD at 5 kHz. (B) Plots two of the eight dimensions of the embedding using our proposed method. The autocorrelations were computed using 0.4 s

integration time. (C) Barplots of the classification accuracy of TSNE and proposed method using 0.2 and 0.4 s integration time. The red dashed line plots the baseline

by random guess, which is 0.25 for a quaternary classification task.

2.2. Data Processing
To generate a data point per decorrelation event, the temporal

autocorrelation for each fiber location was estimated. Although

there are other ways to compute temporal statistics across a

SPAD array (Valdes et al., 2014; Jazani et al., 2019), this per-

pixel method is robust and widely used (Johansson et al., 2019;
Sie et al., 2020; Liu W. et al., 2021). Figure 3A illustrates several
representative frames captured by the SPAD camera, sampling
at 667 kHz (1.5 µs sampling period), in which the speckles in
each pixel fluctuated rapidly. We first computed the normalized

temporal intensity autocorrelation (Durduran and Yodh, 2014)
of each pixel as

g
p,q
2 (τ ) =

〈Ip,q(t)Ip,q(t + τ )〉Tint
〈Ip,q(t)〉2Tint

, (1)

where Ip,q(t) is the number of photons detected by the q-th
SPAD for p-th fiber at time t; τ is the time delay, and 〈 · 〉Tint
computes time-average estimated by integrating over Tint . After
calculating g

p,q
2 (τ ) for every single SPAD, we can obtain an
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FIGURE 6 | (A) Depicts some representative spatio-temporally differing circular-shaped decorrelation events we attempted to classify. The perturbed decorrelations

were generated by flipping the DMD at 5–10 kHz. (B) Plots two of the eight dimensions of the embedding using proposed method. The autocorrelations were

computed using 0.4 s integration time. (C) Barplots of the classification accuracy of TSNE and proposed method using 0.2 and 0.4 s integration times. The red

dashed line plots the baseline of chance, which is 0.25 for a quaternary classification task.

ensemble-averaged, noise-reduced autocorrelation g
p
2 (τ ) for each

fiber position by averaging g
p,q
2 (τ ) that are collected by the Qp

unique SPADs detecting light emitted by the same multi-mode
detection fiber,

g
p
2(τ ) =

1

Qp

Qp
∑

q=1

g
p,q
2 (2)

for the pth multi-mode fiber (MMF). We use a look-up table
to identify the Qp SPADs within the array that receives light

from the pth MMF. Next, we compile the g
p
2 (τ ) from each fiber

into a set of 12 average intensity autocorrelation curves per

decorrelation event, {xi}i=1,2,..,N , forN events of interest, and aim
to classify these event measurements into K categories. While
one could use a simple clustering method such as k-means,
the high dimensionality inherent to PaDS data benefits from
dimensionality reduction. Recent advances in deep unsupervised
learning demonstrate that a non-linear transform, such as
an artificial neural network, can generate clustering-friendly
embedding for state-of-the-art classification results when jointly
trainedwith the clustermodule (Aljalbout et al., 2018). Therefore,
we proposed to use a deep clustering network (DCN; Yang et al.,
2017) to learn a low-dimension representation of the PaDS data
for classification, as detailed in Figure 4. The DCN contains a
stacked autoencoder, consisting of an encoder fθ (·) that embeds
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FIGURE 7 | (A) Depicts the nine decorrelation events we attempted to separate. Those events were generated by placing two 3mm diameter tubes filled with

scattering volume placed underneath the liquid phantom. The scattering liquid in the tube either did not flow, or flowed at 1.4 and 0.7 mm/s, driven by two syringe

pumps. (B) Plots two of the eight dimensions of the embedding using TSNE and proposed method. (C) Barplots of the classification accuracy of TSNE and proposed

method using 0.1 and 0.2 s integration time. The red dashed line plots the baseline of chance, which is 0.11 for a nine-category classification task.

the PaDS data into a low-dimension manifold before a decoder
gθ (·) maps the embedding back to the original space of the data
point. A k-means++ clustering module (Arthur and Vassilvitskii,
2006) is connected to the dimension-reduced latent features of
the network, aiming to help weights update to separate the data
points in the low-dimension space. Mathematically, the problem
can be formulated by the cost function

min
θ ,M

∑N
i=1

(

‖gθ (fθ (xi))− xi‖
2
2 +

λ
2 ‖fθ (xi)−Msi‖

2
2

)

s.t. si,j ∈ {0, 1}, 1Tsi = 1∀i, j,

(3)

where si is the one-hot assignment vector for xi, picking up
one-column from M. The k-th column of M represents the
centroid of the k-th cluster. si,j stands for the j-th element
of si. The first ℓ2 loss here is the data fidelity term, which
ensures the “bottleneck” contains information to reconstruct
the high-dimension autocorrelation curves. The contrastive k-
means clustering-specific loss help separate the data points in
the embedding space. To jointly optimize the two parts of loss,
we alternate between updating the autoencoder weights using
stochastic gradient, and finding new centroids for clusters.

3. RESULTS

We created three datasets as a first validation of our new method,
to evaluate the performance in separating spatial, temporal, and
spatio-temporal varying decorrelating events. We first displayed
800 spatially different patterns, in this case, handwritten letters
from the EMNIST dataset (four classes: “D,” “U,” “K,” “E”;
200 examples of each) onto the 10.6 × 13.9mm2 fixed DMD
area. Some representative patterns are shown in Figure 5A. We
attempted to separate these decorrelation patterns into their
categories using both proposed DCN method and t-distributed
stochastic neighbor embedding (TSNE) (Van der Maaten and
Hinton, 2008), a widely used classic dimension reduction
method. The decorrelation patterns were placed underneath 5
mm turbid volume described in Section 2.1. Figure 5B plots
two of the eight reduced-dimensions from the 800 events
using proposed method. These data points were generated by
decorrelation events hidden under 5 mm turbid volume and
the autocorrelations were computed using a 0.4 s integration
time. Figure 5C summarizes the classification accuracy of both
methods at two different integration times. We see that both
methods (TSNE and proposed) can classify the decorrelation
events with accuracy higher than chance (25% accuracy for
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FIGURE 8 | (A) Depicts decorrelation events we attempted to separate. Those events were generated by placing two 3 mm diameter tubes filled with scattering

volume placed underneath 5–8 liquid phantom. The scattering liquid in the tube either did not flow, or flowed at 1.0 and 2.0 mm/s, driven by two syringe pumps. (B,C)

Plots two of the eight dimensions of the embedding using proposed method, when the perturbation is underneath 5 mm. (D) Plots two of the eight dimensions of the

embedding using proposed method, when the perturbation is underneath 8 mm. (E) Barplots of the classification accuracy of the proposed method using 0.2 s

integration time. The red dashed line plots the baseline of chance, which is 0.33 for a three-category classification task.

quaternary classifications), but the proposed method performs
better. We note that the classification accuracy for events hidden
beneath Tissue I (µ′

s = 1.2mm−1,µa = 0.02mm−1, close
to human tissue optical property) are lower than for Tissue II
(µ′

s = 0.7mm−1,µa = 0.01mm−1, close to model organisms
tissue properties). This is because the sensitivity of our PaDS
method in detecting fast, small decorrelation events decreases as
the scattering scene becomes more turbid (Liu W. et al., 2021).
Additionally, while reduced integration allows identification of
more transient events, the accuracy when using 0.2 s integration
time is less than when using 0.4 s.

Next, we presented 800 spatio-temporally varying patterns
containing two differently sized circles onto the DMD display
(as shown in Figure 6A). Similarly, we plotted two of the eight
reduced dimensions using both TSNE and proposed method
(Figures 6B,C). Again, these data points were generated by
computing the autocorrelations using 0.4 s integration time.

We see the method performs better at classifying two circles of
different sizes and speeds than classifying the letters, due to the
fact that the perturbed decorrelation areas covered by the two
circles are larger than the those of the letters.

We then we applied our method to classify temporally
varying patterns generated using two 3 mm tubes (Figure 7A).
The dynamic scattering fluid in the tubes either did not
flow, or flowed at 1.4 and 0.7 mm/s (as reference, human
arterial blood flow at 4.9–19 cm/s, while venous blood flow
at 1.5–7.1 cm/s; Klarhöfer et al., 2001), driven by two syringe
pumps. This resulted in nine different possible combinations
(Figure 7A). We generated 100 decorrelation events for each
category, resulting in 900 data points. As the perturbations
generated using fluid dynamics were more noticeable than
the DMD, we only show results using Tissue II. Figure 7B

plots two of the eight reduced dimensions of the 900 data
points using both methods at 0.2 s integration time. Figure 7C
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summarizes the accuracy of both methods using 0.1 and 0.2
s integration time.

Finally, we conduct a study attempt to evaluate the
performance of the proposed method for separating flowing
scatter at different speed contrast embedded in different depths
underneath tissue phantom. Figure 8A shows the decorrelation
events we attempted to separate. Those events were generated by
placing two 3 mm diameter tubes filled with scattering volume
placed underneath 5–8 liquid phantom. The scattering liquid in
the tube either did not flow, or flowed at 1.0 and 2.0 mm/s, driven
by two syringe pumps. Figures 8B–D plots two of the eight
dimensions of the embedding using proposed method, when the
perturbation is underneath 5–8 mm. Figure 8E Barplots of the
classification accuracy of proposedmethod using 0.2 s integration
time. This suggests the method can separate decorrelating events
generated with high flow rate better, and the performance
degrades when the perturbation is placed 8 mm underneath. This
is due to the fact that the source-detector separation we use is less
sensitive to deeper tissue regions.

4. DISCUSSION

In summary, we developed CREPE, a parallelized, fast,
sensitive photon sensing method that records the speckle
fluctuations from 12 unique tissue surface positions, along with
a deep embedding processing software that can separate the
decorrelation events occurring underneath turbid volumes. As a
first demonstration, we showed that our approach can detect and
categorize various transient movement perturbations through
rapidly decorrelating dynamic scattering tissue phantoms. Our
method does not require expensive data labels to train the
network, and therefore has a great potential to be applied in
clinical in vivo studies. To ensure effective clinical translation,
there are several improvements that can be made to both
the system design and processing algorithm. First, as shown
in camera images in Figure 3, the detection fiber bundle we
use did not map surface speckles to all 32 × 32 SPAD pixels
to maximize the speckle detection efficiency. Future work
should strive to custom-design a fiber bundle that provides
better array coverage. In addition, while small source-detector
separations used in this work give a better spatial resolution
for close to surface regions, it prevents the proposed method
from being applied to deeper tissue monitoring applications.
Integrating recently developed time-of-flight methods (Sutin
et al., 2016; Kholiqov et al., 2020) should be considered to
improve CREPE for detecting deeper tissue signals without
compromising spatial resolution. In addition, we hope the
proposed fast parallelized speckle sensing method can be easily
adapted to existing established, such as diffuse correlation
tomography and speckle contrast optical tomography, to form
three-dimension quantitative blood flow images in high speed
(Zhou et al., 2006; Varma et al., 2014; Mazdeyasna et al.,
2018; Ren et al., 2020). Moreover, as the proposed method
relies on the entire set of autocorrelation curves rather than
fitted values assuming relatively simple geometry of the heads,

we expect the method can be used to separate different deep
tissue dynamic events from both semi-infinite and non-semi-
infinite geometries. However, these autocorrelation curves might
change across different subjects. Therefore, developing a multi-
distance multi-wavelength DCS system (Tamborini et al., 2017)
that can simultaneously measure baseline optical properties can
potentially improve the robustness of the current method for
cross-subject studies. Further, while it is difficult to further
increase the SPAD array sampling rate, which is required to
record light traveling longer distances, we expect pixel-count
for monolithic CMOS SPAD arrays to continue to rise (e.g.,
one megapixel SPAD arrays are now available; Canon, 2021).
This provides promising opportunities to utilize spatial speckle
statistics to help understand decorrelation events occurring deep
in tissue (Valdes et al., 2014; Xu et al., 2022). Integrating CREPE
with these speckle contrast methods on a SPAD array with higher
pixel counts should be investigated to ensure reliable translation
into clinical use.
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