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Proportion of Idiopathic Pulmonary Fibrosis Risk
Explained by Known Common Genetic Loci in
European Populations

To the Editor:

Understanding how genetic factors contribute to disease
risk improves our understanding of pathogenesis, supports
drug development, and aids risk prediction (1). Appropriate
quantification and interpretation of this contribution is essential
for measuring the impact of genetic variation and in motivating
and informing future studies.

Idiopathic pulmonary fibrosis (IPF) is a chronic disease
characterized by scarring of the lungs. Current therapies only slow
disease progression and half of individuals die within 3–5 years
of diagnosis. A genetic variant, rs35705950, in the MUC5B
(mucin 5B) gene promoter region is strongly associated with IPF
susceptibility with the risk allele (T) associated with a fivefold
increase in disease risk (2). Genome-wide association studies
(GWAS) have identified 13 additional independent IPF
susceptibility variants (3).

The rs35705950_T allele frequency in IPF cases is 30–35% (4)
(compared with 11% in controls), but risk allele frequency does not
reflect the disease risk accounted for by this variant. Explained
risk can be measured in different ways, such as the proportion
of risk explained in the general population or, alternatively, the
proportion of cases due to a specific variant.

Here we provide estimates of the proportion of IPF risk in the
general population explained by known IPF susceptibility variants,
and estimates of the proportion of cases attributable to each

susceptibility variant. Our analyses focused on nonfamilial IPF;
therefore, variants considered are just those evidenced by GWAS.

Some of the results of these studies have been previously
reported in the form of a preprint (https://doi.org/10.1101/
2020.08.14.20172528).

Methods
We investigated the proportion of risk explained by the 14 IPF risk
variants from a meta-analysis of previous IPF GWAS (3). To do this,
we used unrelated European IPF cases (diagnosed according to
international guidelines [5]) and controls, with appropriate ethics
approval, that were used to replicate three signals in a previous
study (namely, those near DEPTOR, MAD1L1, and KIF15, with the
remaining 11 signals being replicated elsewhere [6–8]). These cases
and controls were not used for the original discovery of any of the
14 variants as associated with IPF risk.

To estimate the proportion of disease risk explained by each
variant in the general population, we performed regression analyses
including the susceptibility variant as the only covariate. R2 is a
measure of phenotypic variance explained by a model and, as
our model only contains a single variant, the proportion of disease
explained by that variant. R2 cannot be directly calculated as
the IPF phenotype is binary and the proportion of cases in our
analysis is higher than that observed in the general population.
We therefore calculated a liability R2 accounting for enrichment
of cases (9). The liability model assumes individuals have an
unmeasured continuous trait, called the liability, and an individual
develops IPF when the liability exceeds a critical value. We
transformed the R2 to the liability scale and made an adjustment
for ascertainment bias using the following equation:

Liability R2 ¼ R2
oC

11R2
oCu

; (1)

where R2
o is the coefficient of determination on the observed

scale from a simple linear regression, and

C ¼ Kð12KÞ
z2

Kð12KÞ
Pð12PÞ (2)

u ¼ m
P2K
12K

�
m
P2K
12K

2t

�
; (3)

where K is the population prevalence, P is the proportion of
cases in the study, m is the mean liability for cases, t is the liability
threshold, and z is the normal density height at threshold t. We
calculated the liability R2 for IPF prevalence estimates (i.e., K in the
above equations) of 1.25 and 63 cases per 100,000 people (the
lowest and highest reported estimates of disease prevalence in the
general population [10]), and also using a disease prevalence of 495
cases per 100,000 people (the estimated disease prevalence in
people .65 years of age [11]). To estimate the variance in the
liability explained by all variants, we fitted the model with the most
significant variants from all 14 known IPF susceptibility loci and
calculated the liability R2. Finally, we fitted the model with all
susceptibility variants, minus rs35705950. We investigated
whether results were biased by population stratification by
repeating analyses including 10 genetic principal components to
adjust for ancestry.
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To estimate the proportion of cases attributable to each variant,
we calculated the population attributable risk fraction (12) (PARF).
PARF is the proportion of cases that would be prevented if a
risk factor were removed from the population. PARF can be
calculated by

PARF ¼ 12
1

ð12pÞ2 1 2pð12pÞeβ 1 p2e2β
; (4)

where p is the risk allele frequency in controls and β is the
log(odds ratio) for the variant calculated using a simple logistic
regression equation that includes the variant as the only covariate.
We calculated 95% confidence intervals for PARF using parametric
bootstrapping. If any risk factors were removed, the PARFs of other
risk factors would change. Therefore, PARFs cannot be summed to
calculate the proportion of cases prevented if multiple risk factors
were removed.

Results
A total of 792 IPF cases and 10,000 controls were included
in the analysis. Variant rs35705950 alone explains 5.9–9.4% of
disease liability in the general population and 13.5% in people
.65 years of age. No other IPF susceptibility variant explained
more than 1% and collectively the 13 non-MUC5B susceptibility
variants explained 1.8–2.9% of variation in disease liability in
the general population and 4.2% in people .65 years of age
(Figure 1). The highest PARF was observed for rs35705950 (51%);

however, many of the susceptibility variants had PARF .10%
(Figure 2). Effect sizes were similar after adjusting for principal
components, suggesting that results are not biased by population
stratification.

Discussion
The MUC5B promoter polymorphism explains three times more
disease liability (both in the general population and in people
.65 yr of age) than the other 13 IPF susceptibility variants
combined. In total, the 14 IPF susceptibility variants explain up to
12.4% of disease liability in the general population and 17.7% in
people .65 years of age, which is smaller than previous reports
that cited 30–35% of risk (4, 13). Importantly, however, therapies
that target variant effects that explain a small proportion of disease
risk can still have a large clinical impact (1).

Our results suggest IPF cases could be halved if theMUC5B risk
allele was removed from the population. Although the clinical
relevance of PARF estimates may be limited as removing risk
alleles from the general population is almost impossible, they do
indicate the impact preventive interventions could have on disease
incidence.

Some IPF risk variants explain a small proportion of disease
liability while having a high attributable risk. For example, the
IPF risk allele rs2077551_T explains less than 0.4% variance in
liability but has an attributable risk fraction of 47.9%. This is a
consequence of the high frequency of the risk allele in the population
(80.6%) with a relatively low odds ratio (OR) for disease (OR= 1.48).
The variant rs62023891, near AKAP13, was not significantly
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Figure 1. Proportion of liability explained in the general population. Estimated proportion of variation explained is taken from the liability R2 from the
regression analyses with the lower bound given when assuming a disease prevalence of 1.25 cases per 100,000 and the upper bound given when
assuming a disease prevalence of 63 cases per 100,000. The gray bars show the estimated proportion of liability explained when assuming the disease
prevalence in people .65 years of age of 495 cases per 100,000. The x-axis label “All 14 variants” refers to the model including all 14 sentinel idiopathic
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polymorphism rs35705950. Variants are ordered by the proportion of explained variation.
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associated with IPF in the particular data set used for these analyses
and the effect estimate was close to zero and in the opposite
direction (hence the point estimate of PARF ,0% for this variant).
This signal, which has been reported in independent studies (3, 8),
is further supported by recent research demonstrating involvement
of AKAP13 in fibrogenesis and IPF risk (14).

Different populations experience diverse environmental
exposures and have varying allele frequencies, affecting the proportion
of risk explained by these variants andmeaning these resultsmay not be
generalizable to non-European populations. This is especially true for
the MUC5B variant, which shows large variation in allele frequencies
across populations (minor allele frequency� 1% in European
populations compared with minor allele frequency ,1% in
populations with ancestries from East Asia or Africa [15]).
We also only investigated known common IPF susceptibility variants,
although previous studies suggest there could be many undiscovered
genetic variants contributing to IPF risk (3), and we have not
investigated epistasis or gene–environment interactions. This means
overall IPF risk explained by genetics will likely be much higher than
the 12.4–17.7% explained by the known variants.

This study used an ascertained case–control study design and made
assumptions about disease prevalence. Ideally, a general population
cohort, such as UK Biobank (16), would be used for these analyses.
However, in UK Biobank there are few self-reported cases (n=104) and
cases defined using hospital episode statistics J84.1 codes do not
genetically resemble clinically recruited cases (rs35705950_T allele
frequency in these cases is 20%). Therefore, we restricted analyses to a
study with clinically recruited cases. The study used was not used in the
discovery of the IPF susceptibility variants (3), meaning the estimates of
risk explained should not be subject to winner’s curse bias.

There are multiple ways of quantifying the risk explained by
a genetic variant. For this study, we have focused on two measures:
one to estimate the liability explained in the general population and
another to estimate the proportion of cases attributable to each variant.

A previous study that compared different methods to estimate the
risk explained found these gave generally consistent results with
differences due to different assumptions being made and by
working on different scales (12). We could also consider absolute
risk. Assuming disease prevalence is 63 cases per 100,000 and
using the previously reported (2) effect size for the MUC5B risk
allele (OR = 4.99), for every 100,000 individuals with the
rs35705950_GG genotype, we would expect 30 to have IPF,
whereas for every 100,000 individuals with the rs35705950_GT
genotype, we would expect 152 to have IPF. Therefore, although
rs35705950 is strongly associated with disease risk, most
individuals carrying the risk allele will not develop
IPF.

Although risk allele frequencies in cases can be of interest, they
are not a measure of explained risk. Many of the known IPF
susceptibility variants have a high PARF but individually explain
a small overall proportion of the variation in risk. These results
provide an important reference point to inform future genetic
discoveries and for evaluation of the likely contribution of genetic
factors in risk prediction models. n

Author disclosures are available with the text of this letter at
www.atsjournals.org.
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Figure 2. Population attributable risk fraction (PARF). Estimates of PARF are shown for each variant with 95% confidence intervals. Variants are ordered
by the proportion of explained variation in the general population (Figure 1).
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