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Abstract

Meta-analysis is an increasingly popular tool for combining multiple genome-wide association studies in a single analysis to
identify associations with small effect sizes. The effect sizes between studies in a meta-analysis may differ and these
differences, or heterogeneity, can be caused by many factors. If heterogeneity is observed in the results of a meta-analysis,
interpreting the cause of heterogeneity is important because the correct interpretation can lead to a better understanding
of the disease and a more effective design of a replication study. However, interpreting heterogeneous results is difficult.
The standard approach of examining the association p-values of the studies does not effectively predict if the effect exists in
each study. In this paper, we propose a framework facilitating the interpretation of the results of a meta-analysis. Our
framework is based on a new statistic representing the posterior probability that the effect exists in each study, which is
estimated utilizing cross-study information. Simulations and application to the real data show that our framework can
effectively segregate the studies predicted to have an effect, the studies predicted to not have an effect, and the ambiguous
studies that are underpowered. In addition to helping interpretation, the new framework also allows us to develop a new
association testing procedure taking into account the existence of effect.
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Introduction

Meta-analysis is a tool for aggregating information from

multiple independent studies [1–3]. In genome-wide association

studies (GWASs) [4], the use of meta-analysis is becoming more

and more popular because one can virtually collect tens of

thousands of individuals that will provide power to identify

associated variants with small effect sizes [5–7]. Several large scale

meta-analyses have been performed for diseases including type 1

diabetes [8], type 2 diabetes [9–11], bipolar disorder [12], Crohns

disease [13], and rheumatoid arthritis [14], and have identified

associations not revealed in the individual studies.

In meta-analyses, the effect size between studies may differ and

this difference, or heterogeneity, can be caused by many factors

[15–18]. If the populations are different between studies, the

genetic factors can cause heterogeneity [19,20]. If the subjects are

from different regions, the environmental factors can cause

heterogeneity [21]. Even if the true effect size is invariant, the

design factors can also cause a phenomenon that looks like

heterogeneity, what is often called the statistical heterogeneity

[22]. If the linkage disequilibrium structures are different between

studies, the collected marker can show heterogeneity [23]. If the

studies use different genotyping platforms, different imputation

accuracies and different genotyping errors can cause heterogeneity

[24].

In current meta-analyses of genome-wide association studies,

heterogeneity is often observed in the results [9–11,13,17].

Interpreting the cause of such heterogeneity is important. If the

heterogeneity is caused by either genetic or environmental factors,

understanding the cause of heterogeneity can help our under-

standing of the disease mechanism. If the heterogeneity is

statistical heterogeneity caused by the design factors, understand-

ing the cause of heterogeneity is crucial in designing a replication

study so that we can eliminate the design factors that can hinder

the revelation of the true effect in the replication study.

However, interpreting heterogeneous results is difficult. One

standard approach is to examine the association p-values of the

studies. The inherent limitation of this approach is that a non-

significant p-value is not evidence of the absence of an effect.

Thus, a p-value does not provide the full information necessary for

the interpretation whether or not there is an effect in the study.

Another standard approach is to plot observed effect sizes and

their confidence intervals of all studies [17,25,26]. This plot can be

overly complicated when the number of studies is large and does

not provide a single estimate that represents the existence of an

effect in each study. The limitation of both approaches is that they

use classical estimates that are calculated using only the data of

each single study. That is, they utilize only within-study

information.

In this paper, we propose a framework facilitating the

interpretation of the results of a meta-analysis. Our framework is

based on a new statistic termed the m-value which is the posterior

probability that the effect exists in each study. Plotting the new

statistic together with p-values in a two-dimensional space helps us
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distinguish between the studies predicted to have an effect, the

studies predicted to not have an effect, and the ambiguous studies

that are underpowered. We name this plot a P-M plot. In this

framework, the outlier studies showing distinct characteristics from

the other studies are easily identified, as we demonstrate using data

from type 2 diabetes and Crohns disease meta-analyses [10,13].

Our new statistic is fundamentally different from traditional

estimates based on the data of single studies. We use all studies

simultaneously to calculate the new statistic based on the

assumption that the effect sizes are similar if the effect exists.

Thus, we utilize cross-study information as well as within-study

information.

In addition to helping interpretation, the new framework allows

us to develop a new association testing procedure which takes into

account the presence or absence of the effect. The new method

called the binary effects model is a weighted sum of z-scores

method [5] assigning a greater weight to the studies predicted to

have an effect and a smaller weight to the studies predicted to not

have an effect. Application to the Crohns disease data [13] shows

that the new method gives more significant p-values than previous

methods at certain loci already identified as associated.

The new method is available at http://genetics.cs.ucla.edu/

meta.

Methods

Binary Effects Assumption
In our framework, we use a simplified model to describe

heterogeneity among the studies which makes two assumptions. The

first assumption is that effect is either present or absent in the studies. This

assumption is different from the traditional assumption assuming

normally distributed effect sizes [27–29]. Our assumption is inspired

by the phenomenon that the effect sizes are sometimes observed to

be much smaller in some studies than in the others. It is reported

that different populations can cause such phenomenon

[19,20,30,31]. For example, the homozygosity for APOE e4 variant

is known to confer fivefold smaller risk of Alzheimer disease in

African Americans than in Asians [19,30]. The HapK haplotype

spanning the LTA4H gene is shown to confer threefold smaller risk

of myocardial infraction in the populations of Europeans decent

than in African Americans [31]. The HNF4A P2 promoter variants

are shown to be associated with type 2 diabetes in Ashkenazi and the

results have been replicated [20]. However, in the same study, the

same variants did not show associations in four different cohorts of

UK population suggesting a heterogeneous effect. Gene-environ-

mental interactions can also cause such phenomenon. If a study

lacks an environmental factor necessary for the interaction, the

observed effect size can be much smaller in that study. It is generally

agreed that the gene-environmental interactions exist in many

diseases such as cardio vascular diseases [32], respiratory diseases

[33], and mental disorders [34].

The second assumption is that if the effect exists, the effect sizes

are similar between studies. We call these two assumptions

together the binary effects assumption. While other types of

heterogeneity structures are possible such as arbitrary effect sizes,

for identifying which studies have an effect and which studies do

not have an effect, we expect that this model will be appropriate.

M-Value
We propose a statistic called the m-value which is the posterior

probability that the effect exists in each study of a meta-analysis.

Suppose that we analyze N studies together in a meta-analysis. Let

Xi (i~1,:::,N) be the observed effect size of study i and let Vi be

the estimated variance of Xi. It is a common practice to consider

Vi the true variance. In the current GWASs, the distribution of Xi

is well approximated by a normal distribution due to the large

sample sizes. Let X~fXig denote the observed data.

If there is no effect in study i,

P(Xijno effect)~N(Xi; 0,Vi)

where N(x; a,b) is the probability density function of a normal

distribution whose mean is a and the variance is b. If there is effect

in study i,

P(Xijeffect)~N(Xi; m,Vi)

where m is the unknown true effect size.

Since we want a posterior probability, the Bayesian framework

is a good fit. We assume that the prior for the effect size is

m*N(0,s2):

A possible choice for s in GWASs is 0.2 for small effect and 0.4 for

large effect [35,36].

Let Ti be a random variable which has a value 1 if study i has

an effect and a value 0 if study i does not have an effect. Let p be

the prior probability that each study will have an effect such that

P(Ti~1)~p, i~1,:::,N:

Then we assume a beta prior on p

p*Beta(a,b):

Through this paper, we use the uniform distribution prior (a~1
and b~1), but other priors can also be chosen.

Let T~(T1,:::,TN ) be the vector indicating the existence of

effect in all studies. T can have 2N different values. Let

U~ft1,:::,t2Ng be the set of those values.

Our goal is to estimate the m-value mi, the posterior probability

that the effect exists in study i. By the Bayes’ theorem,

Author Summary

Genome-wide association studies are an effective means
of identifying genetic variants that are associated with
diseases. Although many associated loci have been
identified, those loci account for only a small fraction of
the genetic contribution to the disease. The remaining
contribution may be accounted by loci with very small
effect sizes, so small that tens of thousands of samples are
needed to identify them. Since it is costly to conduct a
study collecting such a large sample, a practical alternative
is to combine multiple independent studies in a single
analysis called meta-analysis. However, many factors, such
as genetic or environmental factors, can differ between the
studies combined in a meta-analysis. These factors can
cause the effect size of the causal variant to differ between
the studies, a phenomenon called heterogeneity. If
heterogeneity exists in the data of a meta-analysis,
interpreting the meta-analysis results is an important but
difficult task. In this paper, we propose a method that
helps such interpretation, in addition to a new association
testing procedure that is powerful when heterogeneity
exists.

Interpreting Meta-Analyses
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mi~P(Ti~1jX )~
P(X jTi~1)P(Ti~1)

P(XjTi~0)P(Ti~0)zP(XjTi~1)P(Ti~1)

~

P
t[Ui

P(X jT~t)P(T~t)P
t[U P(X jT~t)P(T~t)

ð1Þ

where Ui is a subset of U whose elements’ ith value is 1. Thus, we

only need to know for each t the posterior probability of T ,

g(t)~P(X jT~t)P(T~t)!P(T~tjX ),

consisting of the probability of X given T and the prior probability

of T .

The prior probability of T is

P(T~t)~

ð?
{?

P(T~t)p(p)dp

~

ð?
{?

pjtj(1{p)N{jtjp(p)dp

~

ð?
{?

pjtj(1{p)N{jtj 1

B(a,b)
pa{1(1{p)b{1dp

~
B(jtjza,N{jtjzb)

B(a,b)

where jtj is the number of 1’s in t and B is the beta function.

And the probability of X given T is

P(X jT~t)~

ð?
{?

P
i[t0

N(Xi; 0,Vi) P
i[t1

N(Xi; m,Vi)p(m)dm

~ P
i[t0

N(Xi; 0,Vi)

ð?
{?

P
i[t1

N(Xi; m,Vi)p(m)dm

ð2Þ

where t0 is the indices of 0 in t and t1 is the indices of 1 in t. We

can analytically work on the integration to obtain

ð?
{?

P
i[t1

N(Xi; m,Vi)p(m)dm~�CC:N( �XX ; 0, �VVzs2)

where

�XX~

P
i WiXiP

i W i

and �VV~
1P
i Wi

where Wi~V{1
i is the inverse variance or precision. The

summations are all with respect to i [ t1.
�CC is a scaling factor such that

�CC~
1

(
ffiffiffiffiffiffi
2p
p

)N{1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi WiP

i Wi

s
exp {

1

2

X
i

WiX
2
i {

(
P

i WiXi)
2P

i Wi

 !( )
:

The details of the derivation is in Text S1 in Supporting

Information S1. As a result, we can calculate g(t) for every t
and therefore obtain mi for each study i.

MCMC. The drawback of the exact calculation of m-value is

that we need to iterate over all t which is exponential to N. This is

not problematic in most of the current meta-analyses of GWASs,

but will be problematic in future studies if N increases over several

tens. Therefore, here we propose a simple Markov Chain Monte

Carlo (MCMC) method to estimate m-value.

We propose the following Metropolis-Hastings algorithm [37].

1. Start from a random t.

2. Choose a next t’.
3. If g(t)vg(t’), move to t’. Otherwise, move to t’ with probability

g(t’)=g(t).

4. Repeat from step 2.

The set of moves we use for choosing t’ is

fM1,M2,:::,MNg|fMshuffleg. Mi is a simple flipping move of

Ti between 0 and 1. Mshuffle is a move that shuffles the values of

T . This move is introduced to avoid being stuck on one mode in a

special case that there are two modes which can happen when the

observed direction of the effect is opposite in some studies. At each

step, we randomly choose a move from this set assuming a uniform

distribution. We allow nB burn-in and sample nS times. After

sampling, nS samples gives us an approximation of the distribution

over g(t), which subsequently gives the approximations of m-

values by the formula (1).

Interpretations and predictions. The m-value has a valid

probabilistic interpretation that it is the posterior probability that

the effect exists in each study under our binary effects model. If we

are to choose studies predicted to have an effect and studies

predicted to not have an effect, a threshold is needed. In this

paper, we use the threshold of m-value w0:9 for the former and

m-valuev0:1 for the latter. Although this thresholding is arbitrary,

the actual level of threshold is often not of importance because

outlier studies showing different characteristics from the other

studies usually stand out in the plotting framework described

below.

Relationship to PPA. The m-value is closely related to the

posterior probability of association (PPA) based on the Bayes factor

(BF) [35] in the sense that the presence and absence of effects are

essentially describing the same things as the alternative and null

models in the association testing. There are two fundamental

differences. First, in the usual PPA, the prior probability of

association (p) is given by a point prior which is usually a very

small value in GWAS reflecting the fact that the true associations

are few. In our framework, we focus on interpreting meta-analysis

results after we find associations using meta-analysis. Thus, p
reflects our belief on the effect conditioned on that the associations

are already significant. For this reason, we need not use a very

small value but instead choose to use a distribution prior. Second,

the PPA is calculated for each study separately. However, the m-

value is calculated using all studies simultaneously utilizing cross-

study information. Thus, if the binary effects assumption

approximates the truth, the m-value is more effective in

predicting effects than the PPA or equivalently the BF, as we

show by simulations in Results.

P-M Plot
We propose plotting the studies’ p-values and m-values together

in two dimensions. This plot, which we call the P-M plot, can help

interpreting the results of a meta-analysis. Figure 1 shows that how

to interpret such a plot. The right-most (pink) region is where the

studies are predicted to have an effect. Often, a study can be in this

region even if the p-value is not very significant. The left-most (light-

blue) region is where the studies are predicted to not have an effect.

This suggests that the sample size is large but the observed effect size

is close to zero, suggesting a possibility that there exists no effect in

that study. The middle (green) region is where the prediction is

ambiguous. A study can be in this region because the study is

Interpreting Meta-Analyses
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underpowered due to a small sample size. If the sample size

increases, the study will be drawn to either the left or the right side.

If the binary effects assumption does not hold, a study can sit in

an unexpected region and a careful interpretation is necessary. For

example, if the effects are significant but the effect sizes are in

opposite direction in some studies, the studies can sit in the

unusual top left region. However, such case will be rare and may

be a result of the strand errors.

Binary Effects Model
We propose a new type of random effects model meta-analysis

approach called the binary effects model. If the binary effects

assumption holds, that is, if the effect is either present or absent in

the studies, taking into account this pattern of heterogeneity in the

association testing procedure can increase power compared to the

general RE approach [23]. The binary effects model we propose is

the weighted sum of z-scores method [5] where the m-values are

incorporated into the weights. Intuitively, this is equivalent to

assigning a greater weight to the studies predicted to have an effect

and a smaller weight to the studies predicted to not have an effect.

Let Zi~Xi=
ffiffiffiffiffi
Vi

p
be the z-score of study i. The common form of

the weighted sum of z-scores statistic for the fixed effects model is

SFE~

P ffiffiffiffiffiffi
Wi

p
ZiffiffiffiffiffiffiffiffiffiffiffiffiP

Wi

p :

In many cases, the weight
ffiffiffiffiffiffi
Wi

p
approximates to the formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Np(1{p)
p

where N is the sample size and p is the minor allele

frequency [23]. When the minor allele frequency is similar

between studies, the weight
ffiffiffiffiffiffi
Wi

p
approximates to the popular

form of
ffiffiffiffiffi
N
p

[5].

The binary effects model statistic we propose is

SBE~

P
mi

ffiffiffiffiffiffi
Wi

p
ZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m2
i Wi

q :

Our method is an empirical approach that uses mi estimated from

the data as the prior weight for each study. Since the m-value is

estimated using all studies, our approach can be thought of as

gathering information from all studies and distributing back to

each study in the form of weight. We choose this approach

because of its simple formulation.

Since mi is not independent of Zi, the statistic does not follow a

normal distribution. Thus, the p-value is obtained using sampling

which can be inefficient. We use two ideas to expedite the

sampling. First, we propose an importance sampling procedure

which is more efficient than the standard sampling. Second, we use

an efficient approximation of m-value. See Text S2 and S3 in

Supporting Information S1 for details.

Simulation Framework
In order to evaluate our methods, we use the following

simulation approach. Assuming a minor allele frequency, a

relative risk, and the number of individuals of Nz=2 cases and

N{=2 controls, a straightforward simulation approach is to

sample Nz alleles for cases and N{ alleles for controls

according to the expected minor allele frequencies in the cases

and controls respectively [38]. However, since we perform

extensive simulations assuming thousands of individuals, we use

an approximation approach that samples the minor allele count

from a normal distribution and rounds it to the nearest non-

negative integer.

Web Resources
The URL for methods presented herein is as follows:

http://genetics.cs.ucla.edu/meta

Results

Simulation of M-Values
We demonstrate a simple simulation example showing how m-

value behaves depending on the presence and absence of the effect

and the sample size. First, we make the following assumptions

throughout all of the experiments in this paper. We assume that

the minor allele frequency of the collected marker is 0.3. We

assume that the equal number of cases and controls are collected

and refers to the total number of individuals as sample size N. We

also assume a very small disease prevalence when we calculate the

expected minor allele frequencies for cases and controls given a

relative risk c. For the details how the expected values are

calculated, see Han and Eskin [23]. Note that these assumptions

are not critical factors affecting our simulation results. In all

experiments, the random effects model (RE) denotes the RE

method of Han and Eskin [23]. We omit the results of the

conventional RE method [15] because they are highly conserva-

tive [23]. Throughout this paper, we use the following priors for

calculating m-values. We use N(0,0:22) for the prior of the effect

size (m). We use the uniform distribution prior, Beta(1:0,1:0), for

the prior of the existence of effect (p).

In this simulation example, we assume four different types of

studies. The first type is a large study having an effect (N~2000
and c~1:3). The second type is a small study having an effect

(N~100 and c~1:3). The third type is a large study not having an

effect (N~2000 and c~1:0). The fourth type is a small study not

having an effect (N~100 and c~1:0). We generate two studies

per each type, constructing a simulated meta-analysis set of total

eight studies. We accept this simulation set only if none of eight

studies’ p-values exceeds the genome-wide threshold (10{8) but

the meta-analysis p-value calculated by the RE approach exceeds

Figure 1. A figure depicting the interpretations based on a P-M
plot.
doi:10.1371/journal.pgen.1002555.g001
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the genome-wide threshold. Otherwise, we repeat. We construct

1,000 meta-analysis sets.

Given this simulated data, we plot the histogram of m-values for

each type of studies separately in Figure 2. Figure 2A shows that

almost all (99.9%) of large studies with an effect are concentrated

on large m-values (w0:9), showing that the m-values effectively

predict that the effect exists in the studies. Figure 2C shows that a

large amount (78.6%) of large studies without an effect are

concentrated on small m-values (v0:1). Figure 2B and 2D show

that when the sample size is small, m-value tends to the mid-range

regardless of the effect, suggesting that the studies are underpow-

ered to determine the presence of an effect.

Comparison of P-Value, M-Value, and BF
In this experiment, we compare the p-value, m-value, and BF

by measuring how well they predict which studies have an effect

and which studies do not have an effect. We assume a meta-

analysis of 10 studies where the effect is either present (c~1:3) or

not. We randomly pick the number of studies having an effect (NE )

from a uniform distribution ranging from 1 to 9, and randomly

decide which studies have an effect. We randomly pick the sample

size of each study from a uniform distribution between 500 and

2,000. Given the sample sizes and the effect sizes, we generate a

meta-analysis study set. We accept the meta-analysis set only if

none of the studies’ p-values exceeds the genome-wide threshold

Figure 2. Histograms of m-values of different types of studies. We assume four types of studies which is the all four combinations of large
sample (N~2,000) and small sample (N~100), and effect (c~1:3) and no effect (c~1:0). We repeatedly simulate a meta-analysis of eight studies,
two studies per each type, and calculate the m-values of the studies.
doi:10.1371/journal.pgen.1002555.g002

Interpreting Meta-Analyses
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(10{8) and the meta-analysis p-value exceeds the genome-wide

threshold. We repeat until we construct 1,000 meta-analysis sets.

We examine each of 10,000 studies included in the simulated

1,000 meta-analysis sets. For each study, we calculate the p-value,

m-value, and BF. We use the asymptotic BF of Wakefield [39]

assuming the same prior distribution N(0,0:22) about the effect

size as the m-value. Then we evaluate the performance of each

statistic as follows. To evaluate the performance of m-value, we fix

an arbitrary threshold tm so that we predict the studies having m-

valuewtm to have an effect. Since we know the underlying truth if

the effect exists or not in each study, we can measure what

proportion of the studies actually having an effect is correctly

predicted to have an effect (true prediction rate) and what

proportion of the studies actually not having an effect is incorrectly

predicted to have an effect (false prediction rate). Then we change

the threshold tm to draw a curve between the true prediction rate

and the false prediction rate, which is often called the receiver-

operating-characteristic (ROC) curve. We do the same analysis for

p-value and BF.

Figure 3A shows that m-value is superior to p-value and BF in

predicting the studies having an effect. This is because m-value can

utilize the cross-study information when the binary effects

assumption holds. The performances of p-value and BF are

almost identical.

Next, we evaluate the performance of the statistics in predicting

studies not having an effect. The experiment is exactly the same as

the previous experiment except that, given a threshold tm, we

predict the studies having m-valuevtm to not have an effect. We

similarly draw the ROC curves for the three statistics. True and

false prediction rates are defined similarly for the objective of

predicting the studies not having an effect.

Figure 3B shows that the m-value is even more superior to the

other statistics in this experiment than in the previous experiment.

The p-value shows the most inferior performance. This is expected

because p-value is designed for detecting the presence of an effect

but not for detecting the absence of an effect. That is, a non-

significant p-value is not evidence of the absence of an effect but

can be the result of a small sample size. On the other hand, the BF

testing for the absence of an effect is just the reciprocal of the BF

testing for the presence of an effect. Thus, the same BF can be

used for both purposes. Although the BF performs better than the

p-value, the m-value is even more superior. The relative

performance gain of the m-value compared to the BF is due to

the cross-study information utilized.

P-M Plot: Type 2 Diabetes Data
We apply our P-M plot framework to the real data of the meta-

analysis of type 2 Diabetes (T2D) of Scott et al. [10]. The meta-

analysis consists of three different GWAS investigations, the

Finland-United States Investigation on NIDDM Genetics (FU-

SION) [10], the Diabetes Genetics Initiative (DGI) [11], and the

WTCCC [9,40].

In their analysis, two SNPs are shown to have a heterogeneous

effect, rs8050136 and rs9300039. Ioannidis et al. [17] provide an

insightful explanation about the heterogeneity at rs8050136. The

WTCCC/UKT2D groups identified evidence for T2D and body

mass index (BMI) associations with a set of SNPs including

rs8050136 in the FTO region [40]. On the other hand, in the DGI

study, the SNP rs8050136 was not significant. The explanation

that Ioannidis et al. suggest is that the observed association at

rs8050136 (FTO) may be mediated by its association with obesity.

In fact, DGI is the only study where the BMI is matched between

Figure 3. Comparison of prediction accuracies of p-value, m-value, and BF. We simulate 1,000 meta-analysis of 10 studies with varying
sample sizes where only a subset of the studies have an effect. Given 10,000 studies, we threshold each statistic to predict the studies having an
effect and the studies not having an effect, and vary the threshold to draw the ROC curves. In A, true prediction rate is the proportion of the studies
actually having an effect that are correctly predicted to have an effect and false prediction rate is the proportion of the studies actually not having an
effect that are incorrectly predicted to have an effect. In B, true and false prediction rates are similarly defined but in the direction of predicting
studies not having an effect. For BF, we use the asymptotic BF of Wakefield [39] with prior N(0,s2) where s~0:2.
doi:10.1371/journal.pgen.1002555.g003
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cases and controls, and the T2D association appears to be

mediated through a primary effect on adiposity [11]. Thus,

although the truth is unknown, the explanation of Ioannidis et al. is

reasonable. Compared to rs8050136, the cause of heterogeneity at

rs9300039 is less understood. It is suggested that the heterogeneity

might reflect the different tag polymorphisms used in the studies

[17].

To gain insights on these studies, we apply our P-M plot.

Figure 4A shows the forest plot, the plot showing only the p-values,

and the P-M plot for rs8050136. In the P-M plot, DGI appears to

be well separated from the other two studies, even though its m-

value (m~0:22) is not below the threshold (v0:1). Thus, the P-M

plot visualizes that DGI can have a different characteristic from

the others. Such a separation is not clear in the plot showing only

the p-values. In the plot showing only the p-values, DGI is close to

FUSION since FUSION is also not very significant (p~0:01).

However, the m-value of FUSION is much greater (m~0:79) than

that of DGI. This suggests that the effect is much more likely to

exist in the FUSION study than in the DGI study.

Figure 4B shows the plots for rs9300039. The P-M plot shows a

different pattern from the P-M plot of rs8050136. In this P-M plot,

every study has an m-value greater than 0.5. Thus, no study shows

evidence of no effect. Comparing the plots of rs8050136 and

rs9300039 gives an interesting observation. In the plot showing

only the p-values, both SNPs show a specific pattern of p-values

that a single study is considerably more significant than the other

two. However, despite of this similarity in the pattern of p-values,

the two SNPs’ P-M plots look different enough that can lead us to

different interpretations. This shows that our P-M plot can provide

information that is not apparent in the analysis of only the p-

values.

P-M Plot: Crohns Disease Data
We apply our plotting framework to the data of the recent meta-

analysis of Crohns disease of Franke et al. [13]. This meta-analysis

consists of six different GWAS comprising 6,333 cases and 15,056

controls, and even more samples in the replication stage. In this

study, 39 associated loci are newly identified increasing the

Figure 4. P-M plots of the type 2 diabetes meta-analysis results of Scott et al. [10]. Two associated loci showing high heterogeneity are
plotted. The dashed horizontal line shows the genome-wide significance threshold. The dotted vertical lines show the prediction regions based on m-
value.
doi:10.1371/journal.pgen.1002555.g004
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number of associated loci to 71. We apply our framework to six

loci where a high level of heterogeneity is observed. Han and Eskin

[23] showed that at these six loci, RE gave more significant p-

values than the fixed effects model (FE).

Figure 5 shows the P-M plots of two loci. See Figure S1 for the

plots of all six loci. The names of the studies follow the names used

in Franke et al. [13]. At these two loci, rs3024505 and rs17293632,

the m-value of WTCCC is close to the threshold for predicting no

effect. A possible explanation is that the different marker sets could

have caused the statistical heterogeneity at these loci. WTCCC

[40] used the Affymetrix platform while others used the Illumina

platform. Although we do not further investigate this hypothesis, it

is true that the P-M plots visualize an interesting outlier behavior

of WTCCC at these loci. Such an observation is not clear in both

the forest plot and the plot showing only p-values. In the plot

showing only p-values, studies having non-significant p-values are

all clustered and WTCCC is only one of them. In the forest plot,

WTCCC is not the only study showing a small effect size at both

loci. For example, at rs3024505, NIDDKNJ shows a smaller effect

size than WTCCC. However, the m-value of WTCCC is much

smaller than NIDDKNJ’s because of the large sample size. Such

an interaction between the sample size and the prediction can also

be inferred from the forest plot since the forest plot includes the

confidence interval. However, it is difficult to numerically quantify

the effect of sample size on the prediction by visually examining

the forest plot.

Binary Effects Model: False Positive Rate
We estimate the false positive rate of the new binary effects

model (BE). Assuming the null hypothesis of no association, we

construct 5 studies of sample size 1,000 to build a meta-analysis

set. We calculate the meta-analysis p-value of BE using our

importance sampling procedure with 10,000 samples. We also

calculate the meta-analysis p-values of FE and RE. We build 100

million sets of meta-analysis and estimate the false positive rate as

the proportion of the simulated sets whose p-value exceeds a

threshold. We vary the threshold levels from 0.05 to 10{6.

Table 1 shows that all methods including BE control the false

Figure 5. P-M plots of the Crohns disease meta-analysis results of Franke et al. [13]. Two of six associated loci showing high heterogeneity
are plotted. See Figure S1 for the plots of all six loci. The names of the studies follow Franke et al. [13]. The dashed horizontal line shows the genome-
wide significance threshold. The dotted vertical lines show the prediction regions based on m-value.
doi:10.1371/journal.pgen.1002555.g005
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positive rates accurately, at all threshold levels examined. When

we increase the number of studies from 5 to 10, the results are

essentially the same and the false positive rates are controlled

(Data not shown).

Binary Effects Model: Power
We compare the power of BE to the powers of FE and RE.

Assuming a meta-analysis of five studies of an equal sample size

1,000, we construct 10,000 meta-analysis sets. The power of each

method is estimated as the proportion of the meta-analysis sets

whose meta-analysis p-value calculated by each method exceeds

the genome-wide threshold (10{8).

We measure power in two different situations. First, we assume

a situation that the effect is either present or absent. We decrease

the number of studies having an effect (NE ) from 5 to 2. We

increase the relative risk as NE decreases, using c~1:3,1:37,
1:45,1:6 for NE~5,4,3,2 respectively, in order to show the relative

performance between methods.

Figure 6 shows that except for the case that there is no

heterogeneity (NE~5), BE is the most powerful among all

methods. BE is more powerful than RE, even though both are a

random effects model, possibly because it learns the fact that some

studies do not have an effect from the data. When there is no

heterogeneity (NE~5), FE achieves the highest power and BE

achieves the lowest power.

Second, we assume a classical setting where the effect sizes

follow a normal distribution. Assuming that the mean effect size of

c~1:3, we sample the log of effect size of each study from a

normal distribution having the mean log(c) and the standard

deviation k log(c) where k is the parameter we vary. As k
increases, the heterogeneity increases. We measure the power of

each method varying k from zero to one. Figure 7 shows that in

this situation, BE is generally less powerful than RE. The power

difference between BE and RE is the greatest when the

heterogeneity is small. As the heterogeneity increases, BE shows

a similar power to RE.

Binary Effects Model: Real Data
We apply BE to the real data of Crohns disease of Franke et al.

[13]. Han and Eskin [23] showed that out of 69 associated loci

analyzed, RE gave more significant p-values than FE at six loci

where high level of heterogeneity is observed. We calculate the p-

values at these loci using BE and compare to the p-values of FE

and RE.

Table 2 shows that at all six loci where RE gave more significant

p-values than FE, BE gives even more significant p-values. The

reason why BE gives more significant p-values can be explained by

examining the P-M plots of these loci in Figure 5 and Figure S1.

The P-M plots show that at these loci, some studies show high m-

values and some studies show low m-values, suggesting a bimodal

distribution of effect size. Thus, the situation is very similar to the

Table 1. False positive rate of FE, RE, and BE at increasing
significance thresholds.

Threshold FE RE BE

5.0E-02 4.98E-02 (1.00) 4.98E-02 (1.00) 4.98E-02 (1.00)

1.0E-02 9.95E-03 (0.99) 9.92E-03 (0.99) 9.93E-03 (0.99)

1.0E-03 9.93E-04 (0.99) 9.93E-04 (0.99) 9.92E-04 (0.99)

1.0E-04 9.85E-05 (0.99) 9.87E-05 (0.99) 1.00E-04 (1.00)

1.0E-05 9.68E-06 (0.97) 9.51E-06 (0.95) 9.17E-06 (0.92)

1.0E-06 9.70E-07 (0.97) 1.04E-06 (1.04) 1.01E-06 (1.01)

The values in the parentheses are the ratio between the false positive rate and
the threshold. The estimates are obtained from 100 million null panels
assuming 5 studies of an equal sample size 1,000.
doi:10.1371/journal.pgen.1002555.t001

Figure 6. Power of FE, RE, and BE method when the number of
studies having an effect varies. We assume 5 studies and gradually
decrease the number of studies having an effect from 5 to 2. We
assume an equal sample size of 1,000. We increase the odds ratio as the
number of studies decreases to show the relative performance between
methods. The power is estimated as the proportion of the simulated
10,000 meta-analysis sets whose meta-analysis p-value calculated by
each method exceeds the genome-wide threshold (10{8).
doi:10.1371/journal.pgen.1002555.g006

Figure 7. Power of FE, RE, and BE method when the effect size
varies between studies in the pattern following a normal
distribution. The x-axis denotes heterogeneity k where we simulate
the standard deviation of the effect size (log of relative risk) to be k
times the effect size. We assume the mean relative risk of 1.3 and
assume 5 studies of an equal sample size 1,000. The power is estimated
as the proportion of the simulated 10,000 meta-analysis sets whose
meta-analysis p-value calculated by each method exceeds the genome-
wide threshold (10{8).
doi:10.1371/journal.pgen.1002555.g007
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case that the effect is either present or not, in which case BE

achieves higher power than RE as shown in Figure 6.

Binary Effects Model: Accuracy of Importance Sampling
We measure how accurately the importance sampling

procedure of BE estimates the p-value depending on the number

of samples used. We calculate the BE p-value for the same dataset

in 100 different runs to estimate the variance of the p-value

estimate. Our criterion of interest is the ratio between the

standard deviation of our estimate and the target p-value. For

this, we use the 69 associated loci in the Crohns disease data of

Franke et al. [13] that were previously analyzed in Han and Eskin

[23]. We measure the ratio for each locus and average over all

loci. We do this varying the number of samples from 1,000 to

1,000,000.

Table 3 shows that as the number of samples used for importance

sampling increases, the accuracy increases. The pattern of accuracy

increase is what we would usually expect in a sampling procedure;

standard deviation is decreased approximately by the square root of

the sample size increase. When the number of samples is 1,000, the

ratio is roughly 0.5. A ratio of 0.5 is large, but can be enough for

initial screening if we would apply an adaptive sampling that

samples larger number of samples only for loci that are at least

moderately significant (e.g. pv10{4).

Binary Effects Model: Computational Efficiency
We measure the computational efficiency of the importance

sampling procedure of BE. In our software, we implemented an

adaptive sampling procedure that samples smaller number first

(nsmall~1,000) and then larger number (nlarge~100,000) for the

loci that are at least moderately significant. In the machine

equipped with Intel Xeon 1.68 GHz CPU, when we use 1,000

samples in the importance sampling, calculating BE p-values of

1,000 loci for the meta-analysis of 10 studies takes 100 seconds.

Thus, to calculate BE p-values of one million loci assuming that

1,000 loci among them are moderately significant, it will take

approximately 30 hours which is a feasible amount of time. If the

number of samples is increased to achieve better accuracy, such as

nsmall~10,000 and nlarge~1,000,000, the procedure will still be

efficient if one uses multiple computers or a cluster since the

procedure is parallelizable.

Discussion

We introduce a framework facilitating the interpretation of

meta-analysis results based on a new statistic representing the

posterior probability that the effect exists in each study. Our

framework utilizes cross-study information and is shown to help

interpretations in the simulations and the real data. The new

statistic also allows us to develop a new association testing

procedure called the binary effects model.

In the current meta-analyses of genome-wide association

studies, heterogeneity is often observed and our framework will

be a useful tool for interpreting such results. We expect that our

framework will be even more useful in the future meta-analyses. As

the number of studies in a meta-analysis grows, the chance of

heterogeneity will increase [6]. Also, a meta-analytic approach can

often be applied to a broader area such as to multiple diseases with

similar etiology, in which case the heterogeneity is more likely to

occur. Moreover, the majority of the current meta-analyses only

use the fixed effects model (FE). The use of a random effects model

(RE) approach [23] such as the binary effects model presented

herein will increase the number of identified associations showing

heterogeneity, since an RE approach is more powerful than FE for

detecting associations with heterogeneity.

One limitation of our approach is that although the new statistic

can predict the studies having an effect and the studies not having

an effect, it does not distinguish the true heterogeneity and the

statistical heterogeneity [22]. Discriminating between the two can

be very difficult based on the observed data and might often be

possible only by external data such as the replication studies. In

that sense, our method can help discriminating them because one

can come up with a hypothesis based on m-values that the

heterogeneity is caused by specific design factors and then control

the factors in the replication stage. The heterogeneity will

disappear in the replication stage if it was due to the design factors.

Similarly to other Bayesian approaches [35,36], the prior choice

in our method can have a non-negligible effect on the predictions.

Table 3. Accuracy of importance sampling depending on the
number of samples.

# Samples Stdev./P-value

1,000 0.485

10,000 0.172

100,000 0.057

1,000,000 0.018

For each given number of samples used for the importance sampling, we
measure the variance of the p-value estimate of BE by running the importance
sampling 100 different times for the same dataset. We use the 69 associated loci
from the Crohns disease data of Franke et al. [13]. The ratio between the
standard deviation of the estimate and the target p-value is reported, which is
averaged over 69 loci.
doi:10.1371/journal.pgen.1002555.t003

Table 2. Application of FE, RE, and BE to the Crohns disease meta-analysis results of Franke et al. [13].

SNP Chr. Position FE p-value RE p-value BE p-value I2

rs4656940 1 159,096,892 1.05E-06 6.91E-07 3.99E-07 57.01

rs3024505 1 205,006,527 7.03E-09 5.49E-09 2.73E-09 46.49

rs780093 2 27,596,107 1.12E-04 2.78E-05 6.06E-06 61.85

rs17309827 6 3,378,317 5.62E-06 4.98E-06 3.12E-06 22.98

rs17293632 15 65,229,650 6.17E-13 3.41E-13 2.48E-13 52.11

rs151181 16 28,398,018 3.32E-10 3.08E-10 1.95E-10 35.22

The boldface denotes the top p-value among the three methods. Only six associated loci are presented that were shown to have more significant RE p-values than FE
p-values [23].
doi:10.1371/journal.pgen.1002555.t002
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For the prior of the effect size m*N(0,s2), it is important to set a

reasonable value s based on the prior information about the effect

size. See Stephens and Balding [35] for the general guideline for

this choice. For the prior of the probability that the effect exists

p*Beta(a,b), we used the uniform distribution (a~1,b~1) in this

paper. However, different priors can also be used for different

situations. If one expects that most of the studies have an effect, an

asymmetric prior such as a~1:5,b~1 can be used. If one is

certain that the studies having an effect and the studies not having

an effect are mixed, a bell-shape prior such as a~1:5,b~1:5 can

be used. See Figure S2 for the plots of the possible choices of

priors.

Supporting Information

Figure S1 P-M plots of the Crohns disease meta-analysis results

of Franke et al. [13]. Six loci showing high heterogeneity are

plotted. The names of the studies follow Franke et al. [13]. The

dashed horizontal line shows the genome-wide significance

threshold. The dotted vertical lines show the prediction regions

based on m-value.

(PDF)

Figure S2 Possible choices for the prior of the probability that

the effect exists. We show the uniform distribution prior

(a~1,b~1), an asymmetric prior preferring the situation that all

studies have an effect (a~1:2,b~1), an asymmetric prior

preferring the same situation even stronger (a~1:5,b~1), and a

bell-shape prior preferring the situation that the studies having an

effect and the studies not having an effect are mixed

(a~1:5,b~1:5).

(PDF)

Supporting Information S1 This text file includes supporting

information for three subjects: (Text S1) Details of the analytical

calculation of m-value, (Text S2) P-value estimation using

importance sampling for binary effects model, and (Text S3)

Efficient m-value approximation for binary effects model.

(PDF)
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