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Abstract

Preoperative flexion contracture is a risk factor for patient dissatisfaction following primary total 

knee arthroplasty (TKA). Previous studies utilizing surgical navigation technology and cadaveric 

models attempted to identify operative techniques to correct knees with flexion contracture and 

minimize undesirable outcomes such as knee instability. However, no consensus has emerged on a 

surgical strategy to treat this clinical condition. Therefore, the purpose of this study was to develop 

and evaluate a computational model of TKA with flexion contracture that can be used to devise 

surgical strategies that restore knee extension and to understand factors that cause negative 

outcomes. We developed six computational models of knees implanted with a posteriorly 

stabilized TKA using a measured resection technique. We incorporated tensions in the collateral 

ligaments representative of those achieved in TKA using reference data from a cadaveric 

experiment and determined tensions in the posterior capsule elements in knees with flexion 

contracture by simulating a passive extension exam. Subject-specific extension moments were 

calculated and used to evaluate the amount of knee extension that would be restored after 

incrementally resecting the distal femur. Model predictions of the extension angle after resecting 

the distal femur by 2 and 4 mm were within 1.2° (p ≥ 0.32) and 1.6° (p ≥ 0.25), respectively, of 

previous studies. Accordingly, the presented computational method could be a credible surrogate 

to study the mechanical impact of flexion contracture in TKA and to evaluate its surgical 

treatment.
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1. Introduction

Primary total knee arthroplasty (TKA) is largely successful in alleviating pain and 

improving patient function, but up to 15% of patients are dissatisfied with their surgical 

outcome (Gunaratne et al., 2017; Springer and Sotile, 2020; Yapp et al., 2020). Multiple risk 

factors for patient dissatisfaction have been described (Ghomrawi et al., 2020; Halawi et al., 

2019; Springer and Sotile, 2020) including the improper correction of preoperative flexion 

contracture at surgery resulting in a postoperative flexion contracture (Koh et al., 2013; 

Tanzer and Miller, 1989). This complication leads to restricted range of motion, diminished 

knee function, and fatigue during standing, walking, and stair climbing (Anania et al., 2013; 

Bellemans et al., 2006; Koh et al., 2013).

Several surgical approaches have been utilized to correct preoperative flexion contracture 

during TKA, including intraoperative manipulation (Matsui et al., 2016), removal of 

posterior condylar osteophytes (Massin et al., 2009; Mihalko and Whiteside, 2003; 

Whiteside and Mihalko, 2002), release of the posterior capsule (Athwal et al., 2019; 

Okamoto et al., 2016), and additional distal femoral resection (Kim et al., 2017a; Liu et al., 

2016). However, no consensus has emerged on a surgical strategy to restore the ability to 

achieve full extension. Previous studies utilizing navigation technology (Kim et al., 2017a; 

Liu et al., 2016) or cadaveric models (Cross et al., 2012) evaluated surgical techniques to 

achieve full extension and minimize undesirable outcomes such as knee instability. These 

clinical and cadaveric studies, however, lack the ability to precisely define important 

variables including the degree of flexion contracture, the amount of additional bone 

resection, or the level of ligament release while controlling for potential confounding factors 

such as variability in bony cuts, implant placement, and ligament properties. In contrast, 

computational models enable systematic comparison among surgical techniques while 

controlling for the effects of these confounding factors (Elmasry et al., 2020; Erdemir et al., 

2019; Kia et al., 2018). A computational model incorporating ligament properties associated 

with preoperative flexion contracture would enable the study of different correction 

procedures to restore knee extension.

Therefore, the purpose of this study was to develop and evaluate a computational model of 

TKA with preoperative flexion contracture. The aims were, first, to incorporate tensions in 

the collateral ligaments representative of those achieved in mechanically aligned TKA with 

measured resection and posterior stabilized implants using reference data from a cadaveric 

experiment. Second, to determine tensions of the posterior capsule elements in a knee with 

flexion contracture by simulating a clinical exam of passive extension. Third, to quantify the 

amount of knee extension that would be restored by incrementally increasing the bone 

resection of the distal femur using the model. Finally, to compare model predictions to 
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previously published clinical and cadaveric studies (Cross et al., 2012; Kim et al., 2017b; 

Liu et al., 2016).

2. Methods

Computational models derived from six cadaveric knees were virtually implanted with a PS 

TKA (Optetrak Logic®, Exactech, Gainesville, FL, USA) following our previously 

published framework (Elmasry et al., 2019, 2020; Kia et al., 2017, 2018). The model 

development pipeline included: segmenting and reconstructing the entire femoral and tibial 

bony geometries in 3D from computed tomography (CT) scans; creating bone-fixed and 

knee coordinate systems following the description of Grood and Suntay (1983); simulating 

bony cuts and implant positioning using measured resection and posterior referencing 

(Elmasry et al., 2019); incorporating ligament models that included the insertion locations 

and mean stiffnesses of the collateral and capsular structures (Kia et al., 2018); and adding a 

compliant contact formulation (Kia et al., 2017) (Supplementary material 1 and Fig. 1).

Our method of simulating flexion contracture in the TKA models consisted of five steps 

(Fig. 2): (1) measuring in situ collateral ligament forces in a cadaver knee after TKA 

implantation; (2) calibrating slack lengths of the medial and lateral collateral ligaments 

based on the ligament forces measured in the cadaver knee; (3) measuring tension in the 

posterior capsule by simulating a clinical exam of passive knee extension; (4) calibrating the 

slack length of the posterior capsule ligaments in the computational models to represent a 

knee with 10° of flexion contracture; and (5) simulating additional bone resection of the 

distal femur. A 10° flexion contracture was chosen because it is commonly observed in the 

clinic and to match the flexion angle used in a previous in vitro study (Cross et al., 2012). 

The increase in knee extension resulting from additional resection of the distal femur was 

then compared to data from previous in vitro experiments conducted by members of our 

research team and to clinical studies (Cross et al., 2012; Kim et al., 2017a; Liu et al., 2016).

In step one, a cadaveric experiment approved by our institutional review board was 

conducted to measure collateral ligament forces at full extension in a cadaver knee 

implanted with a TKA. A six-degrees-of-freedom robotic manipulator (ZX165U; Kawasaki 

Robotics, Wixom, MI) (Fig. 3) instrumented with a six-axis force-torque sensor (Theta; ATI, 

Apex, NC) (resolution: Fx = Fy = 0.13 N, Fz = 0.25 N, Tx = Ty = Tz = 0.008 Nm; limits: Fx 

= Fy = 1500 N, Fz = 3750 N, Tx = Ty = Tz = 240 Nm) was used to measure the forces 

applied to the knee joint (Imhauser et al., 2013). First, a PS TKA (LEGION, Smith & 

Nephew, Memphis, TN, USA) was installed on a pelvis-to-toe human cadaver (Male, 68 

years old) using the measured resection technique by an experienced arthroplasty surgeon 

(co-author, MC) (Supplementary material 1). After installing the trial components, the 

surgeon conducted a standard clinical assessment of knee balance in extension and in flexion 

while visualizing the respective lateral and medial gaps at the knee joint. At full extension, 

the medial and lateral gaps were both estimated to be <1 mm. At 90° of flexion, the medial 

gap was estimated to be <1 mm and the lateral gap was <2 mm. After implant installation, 

the femoral and tibial diaphyses were cut 20 cm from the joint line. All soft tissues on the 

tibia and femur within 11 cm of the joint line were preserved. The fibula was then cut 

approximately 5 cm distal to its head/neck junction and was fixed proximally to the tibia 
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using a wood screw. The exposed femur and tibia were then potted in bonding cement 

(Bondo, 3 M, St Paul, MN, USA). Subsequently, the femur was rigidly fixed to the ground 

through a pedestal and the potted tibia was fixed to the end effector of the robot with the 

knee in full extension. Anatomical axes were defined using a previously published 

registration technique (Camp et al., 2018; Imhauser et al., 2013). At full extension, the robot 

maintained a compressive force of 10 N while minimizing forces and torques in the 

remaining five directions to within 5 N and 0.4 Nm using a previously described algorithm 

(MATLAB; Mathworks, Natick, MA, USA) (Imhauser et al., 2013). Knee balance at full 

extension was confirmed using the industrial robot. Specifically, varus and valgus moments 

of ±6 Nm were applied to the knee and the resulting varus and valgus angulations were 0.7° 

and 1.6°, respectively. Finally, the superficial medial collateral ligament (MCL) and the 

lateral collateral ligament (LCL) were sectioned serially. The principle of superposition was 

used to measure in situ forces borne by each structure at full extension (Fujie et al., 1995).

In step two, six computational knee models were constructed based on cadaveric CT scans 

(Supplementary material 1). Twenty nonlinear springs representing eight ligaments were 

added to the tibiofemoral joint. Namely, the MCL, posterior oblique ligament (POL), LCL, 

anterolateral ligament (ALL), fabellofibular ligament (FFL), medial posterior capsule 

(PMC), and lateral posterior capsule (PLC), and oblique popliteal ligament (OPL) (Fig. 1). 

Ligament stiffnesses and insertion sites were defined using mean values from the literature 

and data from our previous studies (Elmasry et al., 2020; Kia et al., 2016). The slack lengths 

(l0) of the MCL, POL, LCL, and FFL were calibrated to produce forces equal to those 

measured in cadaveric robotic experiments conducted in our laboratory. For the POL and 

FFL, forces measured in a native knee that was previously tested were utilized to calibrate 

their slack lengths (FFL: 1 N and POL: 18 N) (Kia et al., 2016). For the MCL and LCL, 

forces measured in the robotic experiment described above were targeted. A generalized 

reduced gradient optimization algorithm was utilized to minimize the differences between 

the resultant ligament forces predicted by the model Fi
m  and those measured in the 

cadaveric experiments Fi
e  at full extension (Eq. (1)) (Kia et al., 2016):

min ∑
i = 1

4
∑
j = 1

a
F i, j

m
l, l̇ , l0

2
1
2

− Fi
e

4

(1)

a = total number of fibers comprising each of the 4 ligaments included in the optimization; 

i= ligament number; j= fiber number

Fim = sMCL, LCL, FFL, POL

Fie = 45, 66, 1, 18 N

a = 6, 1, 1, 3 fibers
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The ALL was observed to be slack at full extension; therefore, its slack length was increased 

by 15% of its length at full extension. At this stage, the slack lengths of the posterior capsule 

fibers comprising the PMC, PLC, and OPL were set equal to their fiber lengths at full 

extension prior to calibration in the next steps. The optimization was conducted with the 

knee fixed at full extension while allowing the tibia to move in the proximal–distal direction 

under 10 N of compression to resolve penetration of the articular surfaces. The remaining 

degrees of freedom were held constant.

In step three, a 2D static equilibrium model of a passive extension exam, which is commonly 

used to clinically evaluate flexion contracture, was generated to measure the knee extension 

moments (Fig. 4) (Bengs and Scott, 2006). The model represents a surgeon holding the foot 

of the patient at the heel with the toes pointing upward, the patient in a supine position, and 

their leg extending under the force of gravity. The force applied by the surgeon to lift the leg 

(Fsurgeon) was measured using the moment equilibrium equation about the hip joint (Fig. 4a 

and Eq. (2)). The internal moment at the knee (Mknee) was measured using the moment 

equilibrium equation about the knee joint using the isolated foot and shank segment (Fig. 4b 

and Eq. (3)). Subject-specific measures of the weight and center of mass of the thigh, shank, 

and foot were estimated using anthropometric data and CT scans of each cadaveric leg 

(Table 1). The six subjects had body weights spanning those found in TKA patients (range: 

511–1201 N). The center of mass of the thigh and shank were assumed to be distal to the 

center of the hip and knee joints by 41% and 45% of the length of the femur and tibia, 

respectively (De Leva, 1996). The weight of the thigh, shank, and foot were assumed to be 

14.2%, 4.3%, and 1.4% of the bodyweight, respectively (De Leva, 1996).

∑ Moment = 0 − W Tℎigℎ * d4 * cos(30) − W Sℎank d3 * cos(30)
+d2 * cos(20) − W Foot d3 * cos(30) + d1 * cos(20)

+ FSurgeon * d1 + d3 * cos(10) = 0
(2)

∑ Moment = 0 − MKnee − W Foot * d1 * cos(20)
− W Sℎank * d2 * cos(20) + FSurgeon * d1 = 0 (3)

WThigh, WShank, and WFoot represent the weights of the thigh, shank, and foot, respectively. 

Fsurgeon is the force applied by the surgeon to the foot and Mknee is the internal knee 

moment. d1 is the shank length; d2 is the distance between the shank center of mass and the 

knee joint; d3 is the thigh length; and d4 is the distance between the thigh center of mass and 

the hip joint.

In step four, the estimated subject-specific extension moments were applied to the six 

computational models at full extension (Fig. 5a). The magnitude of force carried by the 

posterior capsule (i.e., PMC, PLC, and OPL) to counterbalance this moment was recorded. 

Next, each knee model was flexed to 10° by rotating the femur by 10° about its medial–

lateral axis while allowing the tibia five degrees of freedom (i.e., three translations, internal/

external rotation, and varus/valgus rotation). With the knee fixed at 10° of flexion, the slack 

length of each component of the posterior capsule, l0, was decreased to produce the forces 

required to resist the applied extension moments described in step three (Fig. 5b). 
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Accordingly, a maximum passive extension of 10° was attained in the six models under the 

simulated passive extension exam.

Finally, in step five, a common surgical technique for treating flexion contracture was 

simulated by re-cutting the distal femur in increments of 2 and 4 mm (Fig. 5c) and keeping 

the tibial insert thickness constant. Each TKA model was then extended until the resultant 

force carried by the posterior capsule again equaled that of the tensioned capsule at the 

original 10° contracted position. The new flexion angle was measured after the two 

additional resections and compared to a previous cadaveric study performed by several 

members of our research team (Cross et al., 2012) and clinical data from the literature (Kim 

et al., 2017a; Liu et al., 2016). The statistical significance of the comparison was determined 

using a two-sample, two-tailed t-test (p< 0.05). Assuming a β of 20% and an α of 5%, a 

sample size of six provides adequate statistical power to detect an effect size of ≤1.27° 

compared to the previous studies (Cross et al., 2012; Kim et al., 2017a; Liu et al., 2016). 

Since these previous studies reported a change in extension angle between 3 and 4° after 2 

and 4 mm of distal resection, an effect size of 1.27° was sufficient since it is at least 2.3 

times less than the expected change in extension angle.

3. Results

The in situ forces carried by the MCL and LCL measured in the robotic experiment were 45 

and 66 N, respectively. The predicted ligament forces Fi
m  obtained after optimization of 

ligament slack were within 0.2 N of those measured in the cadaveric experiment Fi
e  for the 

six computational models. The average slack lengths of each of the four ligaments, defined 

as a percentage of the fiber length at full extension (L0/Le), were 95.6% for the distal MCL, 

95.3% for the proximal MCL, 93.3% for the LCL, 95.7% for the POL, and 99.9% for the 

FFL (Table 2).

The moments estimated in the passive extension exam for knees 1 through 6 were 9.4, 10.5, 

7.6, 13.7, 5.5, and 8.7 Nm, respectively. The forces generated in the three capsular structures 

varied across the six knee models, ranging from 53 to 150 N in the PMC, from 31 to 111 N 

in the PLC, and from 49 to 125 N in the OPL (Table 3). The calibrated slack lengths, defined 

as a percentage of the fiber length at full extension (l0/le), ranged from 66 to 79% in the 

PMC, from 76 to 81% in the PLC, and from 83 to 90% in the OPL (Table 3).

Resecting the distal femur by an additional 2 and 4 mm caused the knee models to achieve 

mean extension angles of 5.4 ± 0.6° and 1.7 ± 0.9°, respectively (Fig. 6). The mean 

predictions of the maximum extension angle after resecting the femur by 2 and 4 mm were 

within 1.2° (p ≥ 0.32) and 1.6° (p ≥ 0.25), respectively, of the mean extension angle reported 

in previous studies (Table 4).

4. Discussion

A new method of simulating flexion contracture in a computational model of TKA was 

presented. The method tuned the collateral ligaments and posterior capsule to be specific to 

patients with PS TKA who present with a 10° flexion contracture during a common clinical 
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exam of passive extension. We found that the amount of extension gained by additional 

resection of the distal femur was in good agreement with the results of previous studies 

(Table 4). This finding suggests that the computational model is a credible surrogate to study 

flexion contracture in TKA and a tool to evaluate the mechanical impact of surgical 

approaches to treat this clinical condition.

The forces carried by the collateral ligaments following TKA vary depending on the bone 

resection technique, implant design, and whether ligament releases were performed 

(Elmasry et al., 2019; Kanamiya et al., 2002; Kia et al., 2018). Therefore, we carried out a 

robotic experiment using a cadaveric knee implanted with TKA to measure forces carried by 

the collateral ligaments at full extension in a knee with a PS TKA implanted using measured 

resection. The MCL (45 N) and LCL (66 N) carried higher forces than those previously 

reported for a native knee (MCL = 4 N and LCL = 20 N) (Kia et al., 2016). Surgeons often 

produce a soft tissue envelope that is tighter than the native knee in extension; thus, this 

finding is consistent with clinical practice (Shelton et al., 2019). Subsequently, in the six 

computational models, the calibrated slack lengths of the MCL and LCL were 95.6 and 

93.3% of their respective lengths at full extension (Table 2). Calibrating ligament slack 

length to those of a knee following TKA is important because ligament forces are highly 

sensitive to this property (Cullen, 2014).

A clinical exam of passive knee extension is commonly used to evaluate the degree of 

flexion contracture (Bengs and Scott, 2006; Liu et al., 2016). Since passive extension 

depends on the weight and length of the leg (Fig. 4), we utilized six subjects with body 

weights that spanned those in typical TKA patients (range: 511–1201 N) (Table 1). This 

heterogeneity in each subject’s weight yielded variability in both the applied subject-specific 

extension moments (range: 9.4–13.7 Nm) and the resulting decrease in the slack of the 

posterior capsule required to achieve a flexion contracture of 10°. This finding implies that 

surgeons should account for the mass and limb length of the patient when interpreting the 

degree of flexion contracture based on a passive extension exam. More specifically, a flexion 

contracture could be more severe (i.e., greater contraction) in heavier, taller patients than the 

same degree of contracture in a lighter, shorter patient.

In four out of the six models, the PMC carried the most force (ranging from 53 to 150 N) in 

response to subject-specific extension moments (Table 3). This finding emphasizes the role 

that each ligament plays in contracting the knee and is consistent with the common clinical 

practice of surgeons first releasing the medial aspect of the posterior capsule of the femur to 

increase knee extension (Chai et al., 2020; Scuderi and Kochhar, 2007). The slack length of 

the structures comprising the posterior capsule, namely the PMC, PLC, and OPL, decreased 

substantially (by 10–34%) relative to their respective lengths at full extension (Table 3). 

While the stiffness of the posterior capsule could also increase with flexion contracture, we 

could not generate the targeted contracture by only increasing the stiffness in our 

computational models. Thus, reduction in the resting length (i.e., slack length) of the 

capsular tissues is likely a major component of this common clinical entity.

The impact of resecting 2 and 4 mm of additional distal femur on maximum knee extension 

was consistent among the six knees (Fig. 6). In a cadaveric study by Cross et al. (2012), a 
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10° flexion contracture was simulated by imbricating, via suturing, the posterior capsule. 

Additional distal femoral resection of 2 and 4 mm was performed and the mean maximal 

knee extension of 6.4° ± 2.5° and 1.4° ± 1.8° was achieved, respectively. In another study 

(Liu et al., 2016), spacer blocks were placed during a TKA, and the degree of knee flexion 

was measured with computer navigation. With 2, 4, and 6 mm block augments, a mean of 

3.4°, 6.7°, and 11.4°, respectively, was observed. Finally, in a study of patients with a flexion 

contracture undergoing computer navigated TKA (Kim et al., 2017a), the measured mean 

change in flexion angle following 2 mm of additional resection was 4.8 ± 2.1°. The 

maximum difference between our model’s prediction and these previous studies was 1.2° 

and 1.6° after the 2 and 4 mm of additional resection, respectively, with no significant 

difference (p ≥ 0.25) (Table 4). Accordingly, our in silico model is comparable to in vitro 
and clinical models in simulating flexion contracture.

We acknowledge several limitations of our study. First, contracture of the posterior capsule 

was simulated in our computational models by altering the slack length of the elements 

representing the posterior capsule. However, posterior capsule contracture can also be 

attributed to ligament stiffening, the presence of osteophytes, or other subject-specific 

properties. It is unknown whether our method is valid for knees presenting with different 

contractures and/or different implants. Thus, our model only represents one possible 

mechanism for flexion contracture in TKA. Second, our methodology and results 

corroborated three previously published studies. Two of the three studies, however, used 

cruciate-retaining prosthesis (Kim et al., 2017a; Liu et al., 2016). Third, we did not simulate 

contraction of the collateral ligaments or other ligamentous structures in the knee that may 

contribute to a patient’s flexion contracture because this study focused on contracture in the 

posterior capsule. Fourth, we defined collateral ligament tension in the six knee models 

based on experimental data of one well-balanced mechanically aligned knee. Intraoperative 

data show wide knee-to-knee variability in tibiofemoral contact forces in knees that were 

deemed balanced, which may indicate variation in collateral ligament tension (Elmallah et 

al., 2016). Therefore, our findings may not be representative of all possible ligament 

tensioning scenarios; sensitivity analyses should be used in the future to identify the impact 

of variable ligament tensioning on model predictions. Fifth, we utilized PS TKA; therefore, 

our results may not apply to TKA where the posterior cruciate ligament is preserved. Sixth, 

the PS implant system that was used in the cadaver experiment differed from the one that 

was used in the computational model. Since the implants have similar multi-radius designs 

and measured resection techniques were used to install each implant, the difference in 

ligament tensions is likely minimal. Finally, our model did not include a patellofemoral 

joint. Joint line elevation, due to additional femoral resection, may incur impingement of the 

patella against the tibial insert; a condition that may cause pain and flexion limitation (Bengs 

and Scott, 2006; Bong and Di Cesare, 2004). However, these conditions were correlated with 

joint line elevations >8 mm (Partington et al., 1999), which was not investigated in this 

study. Therefore, the effect of excluding the patellofemoral joint on the results of this study 

is likely minimal.

In conclusion, we developed computational models of TKA representing a knee with a 

flexion contracture of 10°. These models were informed by cadaveric measures of collateral 

ligament forces at full extension and a simulated clinical exam of passive extension. The 
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predictions of the models corroborated passive extension angles measured in previous in 
vitro and clinical studies following additional distal femur resections. Accordingly, the 

computational method presented in this study could be a credible surrogate to evaluate the 

mechanical impact of flexion contracture and its surgical treatment in TKA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A computational model of a posterior stabilized total knee arthroplasty that was developed 

using the pipeline described in Supplementary material 1. The model included a total of 20 

ligament fibers representing the collateral ligaments and posterior capsule: (a) Medial 

ligaments, (b) Posterior capsule, and (c) Lateral ligaments. PMC: medial posterior capsule, 

PLC: lateral posterior capsule, OPL: oblique popliteal ligament, LCL: lateral collateral 

ligament, ALL: anterolateral ligament, FFL: fabellofibular ligament, MCL: superficial 

medial collateral ligament, POL: posterior oblique ligament.
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Fig. 2. 
Flow chart demonstrating the steps used to calibrate the slack lengths of the collateral 

ligaments and posterior capsule in the computational model of total knee arthroplast (TKA) 

with flexion contracture. PMC: posterior medial capsule; PLC: posterior lateral capsule; 

OPL: oblique popliteal ligament.
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Fig. 3. 
Image of the six-degrees-of-freedom robot and a cadaveric knee implanted with total knee 

arthroplasty. The knee is mounted to the robot at full extension. The robot is instrumented 

with a six-axis force-torque sensor.
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Fig. 4. 
Two-dimensional free body diagrams representing the clinical exam of passive extension. (a) 

Diagram of the full leg to determine the force applied by the surgeon to lift the foot. (b) 

Diagram of the shank and foot segments to determine the internal moment at the knee. Rhip: 

reaction force at the hip; WThigh: thigh weight, WShank: shank weight; WFoot: foot weight; 

and Fsurgeon: surgeon lifting force; d1: shank length; d2: distance from the center of the knee 

joint to the center of mass of the shank; d3: thigh length, d4: distance from the center of the 

hip joint to the center of mass of the thigh; CoM: center of mass.
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Fig. 5. 
Methods used to simulate a 10° flexion contracture in the computational model. A. applying 

an extension moment to the knee joint to estimate the reaction forces in the elements 

representing the posterior capsule; B. flexing the knee by 10° and calibrating the slack 

length of the posterior capsule ligaments to generate the forces estimated in A; C. 

proximalizing the femoral component to simulate additional 2 and 4 mm distal femoral 

resection relative to the baseline position.
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Fig. 6. 
The flexion angle at baseline and following 2 and 4 mm of additional distal femoral 

resection for the six knee models.
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