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Computational analysis of microarray data has provided an effective way to identify disease-related genes. Traditional disease gene
selection methods from microarray data such as statistical test always focus on differentially expressed genes in different samples
by individual gene prioritization. These traditional methods might miss differentially coexpressed (DCE) gene subsets because
they ignore the interaction between genes. In this paper, MIClique algorithm is proposed to identify DEC gene subsets based on
mutual information and clique analysis. Mutual information is used to measure the coexpression relationship between each pair
of genes in two different kinds of samples. Clique analysis is a commonly used method in biological network, which generally
represents biological module of similar function. By applying the MIClique algorithm to real gene expression data, some DEC
gene subsets which correlated under one experimental condition but uncorrelated under another condition are detected from the
graph of colon dataset and leukemia dataset.
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1. Introduction

Microarray data may provide much useful information for
disease gene identification and medical diagnosis because
microarray has the ability to measure the expression levels
of thousands of genes simultaneously [1]. Among the huge
number of genes, only a small fraction of them show
strong correlation with a certain phenotype. Many statistical
and supervised methods such as ¢-test, neural network are
utilized to mine genes that are differentially expressed under
different conditions [2, 3]. However, these gene selection
techniques are often based on individual gene prioritization
by measuring the correlation of each gene with particular
disease types. The individual gene prioritization list does
not indicate interaction relationships among genes. So
these traditional techniques might ignore the differentially
coexpressed (DCE) gene subsets which are defined to be
highly correlated under one experimental condition but
uncorrelated under another condition [4]. Disease-related
differentially coexpressed genes are those which exhibit
similar expression patterns in normal samples but share no
similarity in disease samples. Figure 1 depicts the simulated

differentially coexpressed disease genes between normal
samples (samples1-20) and disease samples (samples 21-40).
The coexpression pattern in normal samples disappears in
disease samples.

Identification of disease specific DEC gene subsets is
very helpful for disease diagnosis and clinical treatment. The
DEC genes should be analyzed by gene subsets instead of
individual genes. Clustering algorithms are often used to
find gene groups which display similar expression profiles
[5, 6]. However, the DEC genes only show highly correlated
expression patterns in one biological state, not across the
entire dataset. Biclustering is a method to identify gene
subsets exhibiting consistent patterns over a subset of exper-
imental conditions, but this method is still not proper for
identification of DEC gene groups because the experimental
conditions may not be in the same biological state [7, 8].

Kostka and Spang proposed the first method to inves-
tigate DEC gene subsets by using an additive model and a
stochastic search algorithm [9]. AlteredExpression was an
improved algorithm based on additive model to detect opti-
mal DEC gene subsets with best RRV (ratio of residual vari-
ance between two different samples) and minimal F-score
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Figure 1: Hllustration of differentially coexpressed (DEC) disease
gene subset between normal samples and disease samples. The left
20 samples are normal samples and the right 20 samples are disease
samples.

[10]. Varadan and Anastassiou proposed an approach called
Entropy Minimization and Boolean Parsimony (EMBP) to
identify gene subsets whose joint expression state predicts the
presence or absence of a particular disease with minimum
uncertainty [4]. The coXpress was developed to identify
groups of gene that are differentially coexpressed in different
biological states by using a resampling method to calculate
t-value for each clustered group [11]. These methods took
into account all possible gene subsets by searching the whole
dataset; it was a huge computational burden as the number
of genes increases.

In this paper, the MIClique algorithm is proposed
to explore DEC gene subsets in an intuitive way based
on mutual information (MI) and clique analysis. Mutual
information is used to measure the coexpression relationship
between each pair of genes in two different kinds of samples,
and then the symmetric mutual information matrices are
binarized by selecting two threshold values. The adjacency
matrix of graph is obtained by logical operation with vertices
corresponding to genes and edges corresponding to rela-
tionships between genes. Gene cliques detected by MIClique
represent DEC gene subsets, which are highly correlated
under one experimental condition but uncorrelated under
another condition.

2. Materials and Methods

2.1. Mutual Information (MI). The interaction relation-
ships of genes are very complex, including linear and
nonlinear. Compared with linear similarity measures such
as FEuclidean distance and Pearson correlation [12, 13],
the mutual information is a general measure of statistical
dependence between variables and capable of detecting any
type of functional relationship, which is widely used in gene
expression analysis [14]. For the application of MI on gene
expression data, the continuous experimental data need to
be partitioned into discrete intervals or bins [15]. Entropy
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and MI are two central concepts of Shannon’s theory of
information [16]. Table 1 describes the related concepts of
MI.

The physical meaning of MI(X; Y) is the reduction of the
uncertainty of X due to knowledge of Y (or vice versa). Note
that H(X) = I(X; X), and so entropy is the self-information.
The nonnegative MI(X;Y) equals zero if and only if X and
Y are statistically independent, meaning that the variables X
and Ydo not follow any kind of dependence.

2.2. Clique Enumeration of Graph Theory. Graph theoretical
concepts are useful for the description and analysis of
relationships in biological systems. Clique analysis is a core
component of graph in many biological applications such as
gene expression networks analysis, cis regulatory motif find-
ing, and matching three-dimensional molecular structures
[17]. Generally clique represents biological module of similar
function and biological annotations.

For a simple undirected graph G with the set of vertices
and edges, two vertices are called adjacent if they are joined
by an edge. The degree of a vertex is the number of connected
edges; thus the degree of an isolated vertex is zero. Weight
of each edge is a value between the pair connection, which
might represent costs, lengths, or correlation, and so forth. A
complete graph is a graph with every pair of nodes joined
by an edge. Clique is complete subgraph and all pairs of
vertices in the clique are connected. A maximal clique is a
clique not contained in any other complete subgraph. The
adjacency matrix of an undirected graph is a symmetric
matrix B = (b;;) in which the entry b;; = 1 if the node
i and node j are connected by an edge and 0 otherwise.
If the graph is a clique, then B is a matrix with 1 off the
diagonal and 0 on the diagonal. If the graph contains a
clique, the adjacency matrix of that clique is a submatrix
of B. Identification of all maximal cliques in a graph is
a problem of clique enumeration [18]. Bioconductor, the
open project for the analysis and comprehension of genomic
data, provides a large collection of software for working with
graphs and cliques [19]. Some social network analysis tools
are also efficient in clique analysis [20].

But for imperfect systems or experimental data, the
requirement of complete connectivity for maximal cliques
is stringent; so more general notions of cohesive subgroups
should be considered including n-cliques, k-plexes, and k-
core [21]. For undirected and unweighted graph, a com-
monly used measure of network cohesion is density, which
simply refers to the ratio of the number of edges that is
actually present in the graph to maximum possible number
of edges. A large density indicates high interconnectedness
and cohesion in the network. The density of clique is 1.

2.3. The Main Process of MIClique. For each set of microarray
data E = (ejj) g involving N genes from S samples, e;; is the
expression value of the ith gene in jth sample. The sample
set is divided into two subsets: S; (normal samples) and S
(disease samples); so Enxs is also divided into (E;)yxs, and
(E2)nxs,- Differentially coexpressed disease genes are those
of high mutual information values in normal samples but of
low MI values in disease samples.
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TaBLE 1: Concepts of entropy and MI defined by Shannon’s theory of information.

Concepts of Shannon’s theory of information

Descriptions

H(X) = —%P(x)logzp(x)

HX 1Y) = =2p(x| y)log,p(x | y)
H(X,Y) = —g;p(w)logzp(x,y)
H(X,Y)=HX)+H(Y |X)=H(Y)+H(X |Y)
MICGY) = S5 p(x log, 200,

px)p(y)
MI(X;Y) = H(X) + H(Y) - HX,Y)

The uncertainty of a random variable X is measured by its entropy H(X);
p(x) is the probability density of X

The uncertainty of a random variably X given knowledge of another random
variable Y is measured by the conditional entropy H(X | Y)

The uncertainty of a pair of random variables X, Y is measured by the
entropy H(X | Y)

Given two random variables X and Y, the amount of information that each
one of them provides about the other is the mutual information MI(X;Y)

TaBLE 2: Genes accession numbers in each clique identified by
MIClique from colon dataset.

Clique number Genes in each clique

1 M63391 H64489 R87126 X74295
2 H64489 R87126 T92451 X74295
3 Ho64489 R87126 X74295 ]J02854
4 R87126 X74295 X86693 U19969
5 R87126 X74295 ]02854 U19969
6 M63391 R87126 X74295 U19969

The detailed process of MIClique is as follows.

Step 1. Calculating the mutual information of each pair of
genes in E; and E,, then two square symmetric mutual
information matrices (MI;)yxy and (MI,)yxy are obtained.
A big value of mutual information MI, (i, j) means that the
gene i and gene j are strongly coexpressed in normal samples,
while a low value represents weak coexpression.

Step 2. Binarizing the mutual information matrices by
selecting two threshold values Ty and T, (Ty > T),
respectively, for MI; and MI,, one has the following.

(1) EMI, (G, j) = Ty, then M; (4, j) = 1, else M; (i, j) = 0.
(ii) IF ML, (i, j) < T, then M>(i, j) = 1, else My (i, j) = 0.
(iii) M (i, j) = M1 (i, j) & M, (i, j).

(iv) Ifi = j then M (4, j) = 0.

The matrices M;and M, are binarized mutual informa-
tion matrices for MI; and MI,. M is a logical symmetric
matrix obtained by “AND” operation on M; and M,. If
M(i, j) is 1, it means that gene 7 and gene j are coexpressed in
normal samples while suffer an alteration in disease groups.

Step 3. The M matrix can be transformed to the adjacency
matrix of a graph G with vertices corresponding to genes
and edges corresponding to biological interactions. There
is an edge between vertices i and j in G if M(i,j) = 1.
The DEC disease genes, which present a similar expression
pattern in normal samples but suffer a distinct alteration in
disease samples, are represented as a completely connected
subgraph. So the problem of identifying DEC disease gene

subsets is converted into clique detection based on adjacency
matrix.

2.4. Threshold Selection. How to select the threshold values
of Ty and T, is very important for biological experimental
interpretation. Different threshold values lead to different
results. If the T is high and T is low, the graph has few edges
and many isolated vertices. As T} decreases and T, increases,
more edges are added to the graph, until it is completely
connected. A graph with a large number of isolated vertices
generally will fail to fall into a clique, but too many edges
will cause a lot of overlapped cliques, which also are not
very informative for data analysis. Proper thresholds will lead
to a proper percentage of isolated vertices and reasonable
experimental results. The threshold values are related with
data sources and data types, and so forth, and they can be
selected by graph density and percentage of isolated vertex.
Figure 2 gives the gene networks for normalized simulated
gene data by MIClique algorithm. The percentage of isolated
vertices decreases and the number of edges increases as T
decreases and T, increases.

3. Results and Discussion

Real gene expression data including colon dataset and
Leukemia dataset are selected to illustrate the application
of the proposed MIClique algorithm [22, 23]. The colon
dataset contains expression levels of 2000 genes with the
highest minimal intensity selected from 6500 genes across
62 samples, 40 tumor samples, and 22 normal samples.
The dataset was normalized before further data analysis.
The leukemia dataset contains gene expression profiles of
acute leukemias measured using Affymetrix high-density
oligonucleotide arrays: acute lymphoblastic leukemia (ALL)
and acute myeloid leukemia (AML). The dataset contains
7129 human genes, 47 cases of ALL (38 B-cell ALL and 9 T-
cell ALL), and 25 cases of AML. Only 3374 genes remained
after data preprocessing.

3.1. Results of Colon Dataset. Difterent threshold values are
selected for colon dataset. Figure 3 gives the percentage
of isolated vertices and the density of the graph (number
of edges present in graph divided by maximum possible
number of edges, which is CJyy,). The final thresholds for
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FIGURE 2: Gene networks for simulated gene data with different thresholds. (a) T} = 2.2; T, = 0.8; (b) Ty = 2.0; T, = 1.0; (¢) T} =
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FiGure 3: Different threshold values lead to different results for colon dataset. (a) Percentage of isolated vertices. (b) Density of the graph
(number of edges divided by maximum possible number of edges, which is C)-
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FIGURE 4: The cohesive subgroup identified from colon dataset; the
overlapped clique group with six cliques and eight genes.

U19969

X86693

colon data are selected as T} = 2.2 and T = 1.0. Then
the data are transformed into gene network by MIClique
algorithm.

The maximal cliques are detected from this gene
network, with the minimum size of clique as four. An
overlapped clique group with six cliques and eight genes
is found. Table 2 lists the gene accession numbers in each
clique and Figure 4 displays the overlapped clique group
graphically. These tightly overlapped cliques form a cohesive
subgroup. There are eight vertices and 19 edges in the
cohesive subgroups with the density of 0.68 (the maximum
possible number of edges is C3).

Figure 5 shows MI values of the eight genes, where
each plot is a representation of the MI matrix in either
the normal samples or disease samples. Each MI value in
the matrix is represented as a square, with the color of
the square representing the amount of value. The color
scale used is black to white, with black representing the
smallest value of MI and white representing largest value
of MI. The MI values range from 2.072 to 2.477 in normal
samples and from 0.508 to 1.095 in disease samples. This
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FIGURE 5: Images of the MI matrices for the eight genes in colon dataset. (a) Normal samples. (b) Disease samples.

TaBLE 3: Eight differentially coexpressed genes in cohesive subgroup identified from colon dataset.

Accession number Gene symbol UniProtKB ID Gene descriptions

M63391 DESMIN (DES) P17661 Human desmin gene, complete cds

H64489 CD37 P11049 Leukoyte antigen CD37 (Homo sapiens)

R87126 MYH9_HUMAN P14105 Myosin heavy chain, nonmuscle (Gallus gallus)

T92451 TPM2 P07951 Tropomyosin, Fibroblast and epithelial muscle-type (Human)
X74295 ITGA7 Q13683 H.sapiens mRNA for alpha 7B integrin

02854 MYL2 P10916 Myosin regulatory light chain 2, smooth muscle isoform (Human)
X86693 SPARCLI(Hevin) Q14515 H.sapiens mRNA for hevin like protein

U19969 ZEB1(ZEB) Q13088 Human two-handed zinc finger protein ZEB mRNA

Normalised gene expression values

Samples

Figurk 6: Differentially coexpressed profiles of the eight genes in
two kinds of samples; samples 1-22 represent normal samples and
samples 23—62 are disease samples.

view shows all the MI values in an intuitive way. These
eight genes form a differentially coexpressed gene subset,

which is disease-related gene module identified by MIClique
algorithm. Table 3 lists the Genbank accession number, the
gene symbols, accession number in UniProtKB (UniProt
Knowledgebase), and gene descriptions given by colon data.
The UniProtKB is the central hub for the collection of
information on proteins such as amino acid sequence,
protein name or description, taxonomic data, and biological
ontology [24]. Figure 6 depicts gene expression profiles of
the eight genes in normal and disease samples. As shown in
Figure 6, the profiles of these genes are highly coexpressed
in normal samples (samples 1-22) while the coexpression
pattern disappears in disease samples (samples 23-62).
Table 4 lists gene annotations of the eight genes from
Gene Ontology (GO) obtained by AmiGO searching tool.
GO is a database to support biologically meaningful annota-
tion for the description of the molecular function, biological
process, and cellular component of gene products [25]. As
observed in Table 4, some of the genes are of the common
biological functions and involved in the same biological
processes such as muscle development, calcium ion binding,
and regulation of striated muscle contraction. The results of
Aigner et al. showed that ZEBI is associated with human
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FIGURE 7: Images of the Euclidean distance matrices for the eight genes from colon dataset. (a) Normal samples. (b) Disease samples.
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FIGURE 8: Images of the Pearson correlation coefficient matrices for the eight genes from colon dataset. (a) Normal samples. (b) Disease

samples.

colorectal cancer, and ZEB1 is a key player in pathologic
epithelial to mesenchymal transition (EMT) associated with
tumour progression [26]. Claeskens et al. have proved that
Hevin is downregulated in many cancers and Hevin may
be a potential target for cancer diagnosis and therapy [27].
Meanwhile the results of colon dataset by MIClique coincide
with those of other researchers. For example, all these eight
genes are included in the differentially expressed genes for
colon dataset selected by unified framework [28]; some of
these genes are consistent with the results of other researchers
[29-31].

3.2. Comparisons with Other Similarity Measures. The def-
inition of the similarity measures is very important for
identification of the relationships among genes. Euclidean

distance and correlation coefficient are traditional similarity
measures commonly used in gene expression analysis. But
both of them are unsuitable for nonlinear relationships that
might exist between the patterns. Euclidean distance fails
to detect the simultaneous upregulated or downregulated
expression levels with large amplitude absolute changes.
Compared with Euclidean distance and Pearson correlation
coefficient, the usage of the MI measure yields a more
significant performance [32].

Figures 7 and 8 show Euclidean distance values matrices
and Pearson correlation coefficient values matrices of the
eight genes identified by MIClique from colon dataset
respectively. The Euclidean distance values range from 2.025
to 7.073 in normal samples and range from 1.676 to 5.497
in disease samples. The Pearson correlation coefficient values
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TABLE 4: GO annotations of eight DEC genes identified from colon dataset by MIClique.

Gene Symbol Ontology GO Terms
Biological process Cytoskeleton organization; muscle contraction; regulation of heart contraction
DESMIN Cellular component  Z disc
Molecular function ~ Protein binding; structural constituent of cytoskeleton
CD37 Biological process Protein amino acid N-linked glycosylation
Cellular component ~ Plasma membrane; integral to plasma membrane
Actin cytoskeleton reorganization; actin filament-based movement; angiogenesis; blood vessel
Biological process endothelial cell migration; cytokinesis; membrane protein ectodomain proteolysis; monocyte
MYH9 differentiation; platelet formation; protein transport; regulation of cell shape
Cellular component Cleavage furrow; contractile ring; cytoplasm; cytosol; integrin complex; nucleus; plasma
membrane; ruffle; stress fiber
Molecular function Actin ﬁ%ame.nt b‘inding.; ATPase activity; microfilament motor activity; protein anchor; protein
homodimerization activity
Biological process Regulation of ATPase activity
TPM2 Cellular component  Muscle thin filament tropomyosin
Molecular function Actin binding; structural constituent of muscle
[TGA7 Biological process Cell-matrix adhesion; muscle organ development; integrin-mediated signaling pathway
Molecular function  Calcium ion binding; protein binding; receptor activity
. . Cardiac myofibril assembly; heart contraction; negative regulation of cell growth; regulation of
Biological process . . . . .
MYL2 striated muscle contraction; ventricular cardiac muscle morphogenesis
Cellular component  Sarcomere
Molecular function Actin monomer binding; calcium ion binding; myosin heavy chain binding; protein binding;
structural constituent of muscle
SPARCLI Biological proce.ss Signfil tra.nsdu.cti(?n
Molecular function  Calcium ion binding
. . Cell proliferation; immune response; negative regulation of transcription from RNA
Biological process - s
ZEB1 polymerase II promoter; regulation of transcription, DNA-dependent

Molecular function

Transcription coactivator activity; transcription corepressor activity; transcription factor
activity; zinc ion binding

TaBLE 5: Differentially coexpressed genes correlated in ALL but not in AML in Leukemia dataset.

Accession numbers Gene symbols UniProt Gene descriptions

HG4074-HT4344 FEN1(RAD2) P39748 Rad2

141870 RB1 P06400 Retinoblastoma 1 (including osteosarcoma)

U18062 TAF7(TAFII55) Q15545 Human TFIID subunit TAFII55 mRNA

M92287 CCND3 P30281 Cyclin D3

U28833 RCANI1(DSCR1) Q9UF15 Down syndrome critical region protein (DSCR1) mRNA
X56468 YWHAQ P27348 14-3-3 protein tau

X84373 NRIP1(RIP140) P48552 Nuclear factor RIP140

723064 RBMX P38159 Heterogeneous nuclear ribonucleoprotein G

range from 0.151 to 0.946 in normal samples and range from
0.242 to 0.891 in disease samples. Both of the figures display
no indication of differentially coexpression patterns among
the eight genes.

3.3. Leukemia Data. The samples of leukemia dataset are
divided into two subclasses of disease samples: acute lym-
phoblastic leukemia (ALL) and acute myeloid leukemia
(AML). The MIClique algorithm is applied to the prepro-
cessed and normalized leukemia dataset with T} = 2.2 and
T, = 0.9. A group of DEC genes is identified, which are

coexpressed in ALL samples but not in AML samples. The
MI values of these eight genes in DEC group range from
1.944 to 3.348 in ALL samples and range from 0.764 to 1.225
in AML samples with the average MI values 2.550 in ALL
samples and 0.934 in AML samples, respectively. Table 5 lists
the Genbank accession numbers, gene symbols, and gene
descriptions given by leukemia dataset. Besides the MIClique
can identify DEC genes correlated in AML but not in ALL.
All these DEC genes are helpful for understanding disease
pathogenesis of leukemia and biological function of gene
modules.



4. Conclusions

The difference between the MIClique and supervised gene
selection methods is that MIClique algorithm evaluates
the contributions of genes to phenotype by gene subets,
rather than individual genes. Although the aim of MIClique
is not to select discriminative genes between normal and
disease tissues, or between different types of disease samples,
the identified genes are still very informative for samples
classification. For example, most of the genes identified
by MIClique from colon dataset are also differentially
expressed genes, which are consistent with the results of other
researches.

It is clear that the MIClique algorithm is very efficient
in identifying DEC genes. The DEC genes focus on the
interaction among gene pairs and disease-related gene
network, which is very important for understanding disease
pathogenesis and biological function of gene modules. The
MIClique algorithm has provided a new and intuitive way to
biological and clinical cancer research.
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