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Measures of interaction (connectivity) of the EEG are at the forefront of current

neuroscientific research. Unfortunately, test-retest reliability can be very low, depending

on the measure and its estimation, the EEG-frequency of interest, the length of the

signal, and the population under investigation. In addition, artifacts can hamper the

continuity of the EEG signal, and in some clinical situations it is impractical to exclude

artifacts. We aimed to examine factors that moderate test-retest reliability of measures

of interaction. The study involved 40 patients with a range of neurological diseases and

memory impairments (age median: 60; range 21–76; 40% female; 22 mild cognitive

impairment, 5 subjective cognitive complaints, 13 temporal lobe epilepsy), and 20 healthy

controls (age median: 61.5; range 23–74; 70% female). We calculated 14 measures of

interaction based on the multivariate autoregressive model from two EEG-recordings

separated by 2 weeks. We characterized test-retest reliability by correlating the measures

between the two EEG-recordings for variations of data length, data discontinuity,

artifact exclusion, model order, and frequency over all combinations of channels and

all frequencies, individually for each subject, yielding a correlation coefficient for each

participant. Excluding artifacts had strong effects on reliability of some measures, such

as classical, real valued coherence (∼0.1 before, ∼0.9 after artifact exclusion). Full

frequency directed transfer function was highly reliable and robust against artifacts.

Variation of data length decreased reliability in relation to poor adjustment of model

order and signal length. Variation of discontinuity had no effect, but reliabilities were

different between model orders, frequency ranges, and patient groups depending on the

measure. Pathology did not interact with variation of signal length or discontinuity. Our

results emphasize the importance of documenting reliability, which may vary considerably

between measures of interaction. We recommend careful selection of measures of

interaction in accordance with the properties of the data. When only short data segments
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are available and when the signal length varies strongly across subjects after exclusion

of artifacts, reliability becomes an issue. Finally, measures which show high reliability

irrespective of the presence of artifacts could be extremely useful in clinical situations

when exclusion of artifacts is impractical.

Keywords: reliability, reproducibility, connectivity, brain networks, MVAR model, TLE, MCI

1. INTRODUCTION

Measures of interaction are usually known as connectivity, despite
the criticism that the latter term is rather speculative (see also
Horwitz, 2003; Rockland, 2015). While the term connectivity
suggests that the measures characterize a physical connection, in
most cases a statistical measure of interdependence is applied to
signals recorded from the brain, which is not directly related to
physical connections. A paradigm shift in the sense of re-thinking
this concept of connectivity is highly warranted. Moreover, in
order to estimate and interpret these statistical properties, some
common problems need to be considered.

It was suggested that statistical weaknesses are the source of
the so-called reproducibility crisis (Baker, 2016). In view of the
importance of reliability of biomarkers for clinical trials and any
measurement in general (Lachin, 2004), a detrimental problem
is poor reproducibility of brain-network metrics (Welton et al.,
2015). We propose that a further paradigm shift in neuroscience
is needed in order to address the reproducibility crisis which has
reached the research on brain networks.

Reproducibility in terms of test-retest reliability of resting
state networks from magnetic resonance imaging was shown
to be affected by the choice of the frequency band and the
length of the time-series (Andellini et al., 2015). Graph
metrics of non-directed functional networks derived from
magnetoencephalography yielded an average intraclass-
correlation coefficient of 0.60–0.65, with higher test-retest
reliability in lower frequency networks compared to beta- and
gamma frequency ranges (Deuker et al., 2009; Jin et al., 2011).

In addition to frequency, trial number and signal-to-noise
ratio affect test-retest reliability of electroencephalographic
(EEG) interactions (Miskovic and Keil, 2015). Most importantly,
type of measure and the type of network characteristics exhibit
varying test-retest reliability; phase-dependent measures show
lower reliability than absolute power and classical coherence
over 30 days (Cannon et al., 2012). Long term follow-ups of up
to 2 years revealed intra-class correlation coefficients of 0.68–
0.80 for global interactions and of 0.12–0.73 for graph measures
(Hardmeier et al., 2014). Test-retest reliability in the sense of
correlation between measures obtained from EEG recordings
separated by 2 weeks for several directed measures of interaction
varies largely between measures; some measures demonstrate
high reliability with an average rho above 0.9 while others fall
below 0.5 (Höller et al., 2017).

Measures can be categorized into directed and undirected
measures, as being frequency dependent or frequency
independent, linear or nonlinear, with the latter relying on
information theory (Greenblatt et al., 2012). A common
approach which is widely used for estimation of both directed

and undirected, as well as frequency dependent and frequency
independent measures of linear interaction is the multivariate
autoregressive model (MVAR) (Marple, 1987; Greenblatt et al.,
2012):

Y(n) =

p∑

k =1

A(k)Y(n− k)+ U(n) (1)

where Y(n) = [y1(n), ..., yM(n)]T is a vector holding the values
of the M channels at time n, p is the model order, A(k)
are M × M coefficient matrices in which the element aij(k)
describes the dependence of yi(n) on yj(n − k) and U(n) is
the innovation process, which is assumed to be composed of
white and uncorrelated noise. Hence, the model with p coefficient
matrices A(k) is estimated on a given number N of subsequent
time samples. Naturally, the number of data samples should be
larger than the number of estimates (Kus et al., 2004). For the
multivariate autoregressive model we have to estimate M2 · p
coefficients and we haveM · N data samples.

It was suggested that N/(M · p) should be larger than 10
(Schlögl and Supp, 2006). However, whether this is a hard rule
or to which extent it can be violated is unclear. The effect of
the number of samples N with different estimation algorithms
for estimation of the model coefficients was tested by Schloegl
et al. (Schlögl, 2006) with a model order of 6 and M = 5.
Thus, N was required to be at least 30 and ideally above 300.
The authors reported varying numbers of N from 50 to 400. The
results showed that indeed, with increasing N the mean square
prediction error of the model decreased. However, even with
N = 100 the mean square prediction error was <2, which was
quite good in comparison to lower N. The study by Schloegl et
al. (Schlögl, 2006) was based on artificially generated samples,
in order to validate the predicted against the estimated values.
The simulation may not reflect non-stationarity like artifacts
or effects of drowsiness that occur when the EEG—like in the
clinical setting—is being recorded over 20 min. After all, even
if the estimation of the model is valid, the result can still suffer
from low reliability, because of the non-stationary nature of the
EEG (Hatz et al., 2015a).

Therefore, in addition to signal length, disruptions of the
time-series can severely affect the result. Such disruptions may
be introduced by artifacts, which are common in EEG studies,
but also by pathological activity in patient populations like spikes
in patients with epilepsy, unless these pathological events are
the events of interest that should be modeled. Artifacts such as
muscle activity or eye movements are typically excluded from the
analysis. It was shown that the automated artifact analysis showed
higher reliability over time than visual artifact analysis, which
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is likely attributed to the subjective nature of visual assessment
(Hatz et al., 2015b).

However, excluding artifacts is not always a good option.
First, in clinical applications, there may be instances of time
which are unique and which need to be assessed regardless of the
presence of artifacts. This is applicable to the onset of a seizure
in patients with epilepsy, or specific moments of enhanced
vigilance in chronically ill patients in a unresponsive wakefulness
syndrome. Moreover, we hypothesize that excluding artifacts
may additionally affect the model estimation. Leaving out the
problematic segments of data causes discontinuity of the time
series. Discontinuity of the time series can be a problem when
applying the MVAR model. The MVAR model looks k = 1...p
steps into the past. If there is an artifact in this period, this
causes a gap in the EEG. When the model is applied to the
concatenated EEG with excluded artifactual epochs, these gaps
can cause troubles. We hypothesize further, that the size of these
gaps could play a role.

In the present study, we aimed to characterize factors that
affect test-retest reliability of measures of interaction derived
from the EEG. We hypothesized that several factors contribute
to the reliability:

1. length of the signal,
2. discontinuity of the signal,
3. frequency resolution,
4. and model order.

We systematically assessed the test-retest reliability of a set of
interaction measures based on the multivariate autoregressive
model over two EEG recordings in order to assess effects of
the hypothesized moderators. The chosen datasets were resting-
EEG recordings separated by 2 weeks from patients with mild
cognitive impairment (MCI), subjective cognitive complaints
(SCC), temporal lobe epilepsy (TLE), and healthy controls (HC).
Thereby, in the present paper we extend our previous findings
on variability between measures and between neurological
subgroups (Höller et al., 2017) by examining the listed potential
moderators of reliability. A better understanding of these factors
could pave the way for a methodological paradigm shift in brain
network research.

2. METHODS

2.1. Ethics
The study was approved by the local Ethics Committee (Ethics
Commission Salzburg/Ethikkommission Land Salzburg; number
415-E/1429) and was designed according to the Declaration
of Helsinki. Written informed consent was obtained from all
participants. Healthy participants were remunerated for their
expenditure of time.

2.2. Subjects
We recruited a total sample of 70 participants at the Department
of Neurology, Paracelsus Medical University Salzburg, Austria,
from May 2012 to December 2015 within a larger study focused
on memory disorders. After exclusion of participants who did
not undergo both EEG-examinations (two TLEr, one TLEl,

three HC) and whose EEG was of poor quality (one SCC,
one TLEl, two HC) 60 participants remained for this analysis.
Poor quality of the EEG was defined as less than 4 s in
at least one of the two recordings after excluding segments
of 500 ms according to the automatic data inspection (see
Section 2.4).

The same data was used in a recent study on difference
in test-retest reliability between patient populations (Höller
et al., 2017). The data stems from a study in which we
were interested in memory impairments, so that we report
standard mini-mental state examinations in patients recruited
from the memory clinic (MCI and SCC subgroups) and the
Montreal cognitive assessment results for HCs, which was
employed in order to have a sensitive measure that should
disclose clinically relevant memory problems in the healthy
subgroup. In this original study, patients with TLE were recruited
regardless of memory complaints, so that no memory-screening
was implemented. More detailed information can be retrieved
from Table S1. The patients with MCI scored quite high on
the MMSE, which might be attributed to the poor sensitivity
of the MMSE in contrast to a full neuropsychological test
battery. Indeed, the diagnosis was not exclusively based on the
MMSE but on an extensive neuropsychological and neurological
examination.

Patients with amnestic MCI or SCC were recruited in the
memory outpatient clinic of the Department of Neurology,
Paracelsus Medical University Salzburg, Austria. We defined
patients with amnestic MCI according to level three and patients
with SCC according to level two of the global deterioration scale
for ageing and dementia described by Reisberg et al. (1982)
and Gauthier et al. (2006). Diagnosis was based on multimodal
neurological assessment, including imaging (high resolution 3T
magnetic resonance tomography, and single photon emission
computed tomography), and neuropsychological testing. We
excluded patients whose memory complaints/impairment could
be explained better by inflammatory, vascular, metabolic, or
traumatic background, or by major depression, psychosis, or any
pharmacological therapy.

Patients with refractory unilateral TLE were recruited in
the epilepsy outpatient clinic of the Department of Neurology,
Paracelsus Medical University Salzburg, Austria. Diagnosis was
based onmultimodal neurological assessment, including imaging
(high resolution 3T magnetic resonance tomography, and single
photon emission computed tomography), neuropsychological
testing, and video-EEG examination for up to 5 days. We
excluded patients with progressive lesions or immunological
causes of epilepsy. Table S2 provides detailed information about
the patients with TLE, including information of whether seizures
occurred within 24 h before or after the EEG-recording took
place (column “seizure”) and assessment of the EEG by a board
certified neurophysiologist (column “findings”).

The sample of healthy participants was recruited amongst the
students of the Paris Lodron University of Salzburg, Austria, as
well as amongst senior citizens associations in order to match
for sex and age. Healthy participants were free of a history for
neurological or psychiatric diseases and were not receiving any
psychoactive medication.
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Table S3 lists the medication of all included participants.
Medication was recorded on the first examination day. Since the
two examination days were set independently of visits to the
doctor, it is assumed that medication remains stable over the 2
weeks separating the two EEG recordings.

2.3. Data registration
EEG was recorded in a quiet room. Participants were instructed
to close their eyes and stay awake. Recordings lasted for 2–3min.
We used a BrainCap with a 10–20 system and a BrainAmp (Brain
Products GmbH, Germany) 16-bit ADC amplifier. The sampling
rate was 500 Hz. Of the 32 recorded channels, one was used to
monitor the lower vertical electrooculogram and one was used
to measure electrocardiographic activity. Two were positioned at
the earlobes for re-referencing purposes to remove the bias of the
original reference, which was placed at FCz. Data analysis was
conducted for data collected from the remaining 27 electrodes
F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz,
Pz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, and TP10.
Impedances were kept below 10 k�.

The two EEG sessions were arranged to take place at the
same time of the day. For most participants, this requirement
was met by performing EEG within the same time-range around
noon, after lunch (1 pm.). This means that we aimed to keep
the time difference between the two recordings below 3 h.
For three participants (HC, SCC, TLEl) the time difference
was approximately 4 h, for two patients (MCI, TLEr) the time
difference was 6 h, and for one HC the time difference was 11 h.

Table S4 lists the results of a clinical evaluation of the EEGs of
all participants included in this study.

2.4. Data preparation
Data was pre-processed with Brain Vision Analyzer (Version
1.05.0005, Brain Products GmbH). In order to re-reference all
channels, a new reference was built by averaging the signal of
both earlobe electrodes. Butterworth Zero Phase Filters were used
for a high-pass filter from 1Hz (time constant 0.1592 s, 48 dB/oct)
and an additional notch filter (50 Hz) was applied.

An automatic artifact detection was carried out. Please note
that the automation of this procedure ensures objectivity, which
means at the same time that it is reproducible. Nevertheless, the
nature and number of artifacts surely depends on the specific
recording and participant. Maximal allowed voltage step per
sampling point was 50 µV (values which exceeded this threshold
were marked within a range of ±100 ms); maximal allowed
absolute difference on an interval of 200 ms was 200 µV and
lowest allowed absolute difference during an interval of 100 ms
was 0.5 µV (values which exceeded this were marked with a
surrounding of±500ms). The result of this artifact detection was
reviewed visually in order to determine whether the automated
detection yielded reasonable results and whether poor data
quality was due to noise on the reference electrodes, which led
to exclusion of the dataset.

The preprocessed data was exported into a generic data format
and imported to Matlab R© (release R2016b, The Mathworks,
Massachusetts, USA).

2.5. Data length
In order to provide the same amount of data for each participant,
data was shortened to the shortest available length across
participants. The shortest length was 123.5 s. Thus, a total of
123.5 ·500 ·27 = 1, 667, 250 samples were available for estimation
of up to 272 · 250 = 182, 250 coefficients for the model order
250. By doing so, N/(M · p) = 9.15 was in the upper part of the
range of 1.67−13.33 as presented in Schlögl (2006), where a ratio
>3 yielded a mean square prediction error <2 and robust results
across different model estimators.

2.6. Data discontinuity and data length
variation
Feature extraction was performed in 5 variants, illustrated in
Figure 1:

1. Complete data: over the whole dataset (all 123.5 s); thus, the
data was continuous but included artifacts.

2. Artifact-free data: data was segmented into 500 ms segments
(250 sampling points); if the segment overlapped with a
marked artifact, it was excluded from further analysis for all
channels; the remaining segments were concatenated; thus,
the data was discontinuous without artifacts.

3. Length variation: the estimation of the features was repeated
by increasingly cutting 500 ms at the beginning of the data at
each repetition; thus, the data was continuous with artifacts
and we varied data length.

4. 0.5 s cut-outs: data was segmented into 500 ms segments (250
sampling points); in loops the estimation of the features was
repeated by increasingly leaving out every second segment;
thus data was discontinuous with artifacts, we varied length
and discontinuity.

5. 1 s cut-outs: data was segmented into 500 ms segments (250
sampling points); in loops the estimation of the features was
repeated by increasingly leaving out two segments after every
third segment; thus data was discontinuous with artifacts, we
varied length and discontinuity with larger gaps compared to
the previous variant.

2.7. Frequency effects
We were interested in reliability of classical frequency ranges
delta (1–4 Hz), theta (5–7 Hz), alpha (8–13 Hz), beta (14–30 Hz),
gamma (31–80 Hz), and high gamma (81–125 Hz) and the effect
of averaging within these frequency ranges on reliability.

When statistically determining and evaluating the reliability
of the measures of interaction, we calculated reliability in three
variants:

• Frequency averaging: reliabilities were calculated for all
variants of discontinuity (1–5) when values were averaged in
classical frequency ranges.

• Frequency averaging/no averaging vs. model order and

artifacts: reliabilities were calculated for each model order
from 1 to 250 and the complete data vs. artifact-free data
scenarios, once when values were averaged and once when
values were not averaged in classical frequency ranges before
calculation of reliability.
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FIGURE 1 | Variations of data length and discontinuity. The blue shape is the

data, the red rectangles represent left-out data, the green star indicates which

versions were submitted to feature extraction. (1) Analysis over the whole

dataset; (2) excluding artifacts in 500 ms segments; (3) repeated feature

estimation by shortening 500 ms at the beginning in each repetition; (4) data

was segmented into 500 ms segments; repeated feature estimation by

increasingly leaving out every second segment; (5) data was segmented into

500 ms segments; repeated feature estimation by increasingly leaving out

every second and third segment.

• Reliability within frequency ranges: we calculated reliability
for every frequency range separately, without averaging across
frequencies, on the artifact-free data.

2.8. Feature Extraction
We estimated a set of measures of interaction between all of
the 27 selected channels. The estimation was performed for
each of the participants. The measures were calculated based
on the multivariate autoregressive model with the functions
mvfreqz.m and mvar.m from the BioSig toolbox (Schlögl and
Brunner, 2008) with model order from 1 to a maximum of 250,
that is, equaling the length of the segmented data and enabling

us to model at least one oscillation for each of the examined
frequencies. In order to estimate the multivariate autoregressive
model we used partial correlation estimation with unbiased
covariance estimates (Marple, 1987), which was found to be the
most accurate estimation method according to Schlögl (2006).
The model was then transformed from the time-domain into the
z-domain and the f -domain, which accordingly yield two transfer
functions. The multivariate parameters in the frequency domain
that can be derived from these transfer functions were computed
for 1 Hz frequency steps between 1 and 125 Hz. The measures of
interest were the following:

• Spectrum: This contains the auto- and the cross-spectrum,
which is the Fourier transform of the cross-covariance
function (Murthy, 1963).

• Direct causality: Direct causality was developed by Kaminski
et al. (2001) to overcome the problem that the directed transfer
function does not distinguish between direct and indirect
information flows. Direct causality is the only measure that is
not computed for each frequency.

• Transfer function: This transfer function is related to the
non-normalized directed transfer function (Eichler, 2006).

• Transfer function polynomial: This is the frequency
transform of a polynomial describing the transfer function.
The absolute of the squared transfer function polynomial
is the non-normalized partial directed coherence (Eichler,
2006).

• Real valued coherence: By considering the real part of the
complex-valued coherence (Nolte et al., 2004), the result is an
ordinary coherence (Schlögl and Brunner, 2008). We will refer
to it as coherence.

• Complex coherence: By considering the imaginary part of the
complex-valued coherence (Nolte et al., 2004), we get complex
coherence.

• Partial coherence: This is the partial coherence, calculated
with an alternative method as provided in the biosig-toolbox.
Partial coherence, also known as Gersch causality, was first
designed to identify epileptic foci by Gersch and Goddard
(1970). The authors proposed that one channel is said to drive
the other channels if the first channel explains or accounts for
the linear relation between the other two. The real part of the
partial coherence was used.

• Partial directed coherence: Partial directed coherence as an
extended concept of partialized coherence, is a measure of
the relative strength of the direct interaction between pairs of
regions (Baccalá and Sameshima, 2001).

• Partial directed coherence factor: The partial directed

coherence factor (Baccalá and Sameshima, 2001) is an

intermediate step between partial coherence and partial
directed coherence. It adds directionality to partial coherence,

but includes instantaneous causality, which is undesirable

when examining processes that evolve over time such as an
epileptic seizure (Schuster and Kalliauer, 2009).

• Generalized partial directed coherence: Themajor advantage

of generalized partial directed coherence (Baccalá et al., 2007)

over partial directed coherence is its robustness against scaling

differences between the signals (Taxidis et al., 2010).
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• Directed transfer function: Like directed coherence, directed
transfer function represents information that flows from one
region to another over many possible alternative pathways
(Kaminskí and Blinowska, 1991).

• Direct directed transfer function:The direct directed transfer
function extends the concept of directed transfer function by
distinguishing between direct and indirect causal relations of
signals (Korzeniewska et al., 2003). As such, the concepts of
partial coherence and directed transfer function are combined.

• Full frequency directed transfer function: The difference
between the directed transfer function and the full frequency
directed transfer function (Korzeniewska et al., 2003) is that
the directed transfer function is normalized by the total
frequency content of the considered frequency band, while
the full frequency directed transfer function is normalized
with respect to all the frequencies in the predefined frequency
interval. As such, the full frequency directed transfer function
priorizes those frequencies which contribute the most to the
power of the signal (van Mierlo et al., 2011).

• Geweke’s Granger Causality: This is a modified version of
Geweke’s Granger Causality (Geweke, 1982), concretely the
bivariate version as in Bressler et al. (2007).

2.9. Measuring Test-Retest Reliability
We decided not to use the parametric intra-class-correlation
to measure the test-retest reliability, but to perform a non-
parametric Spearman correlation (such as in Fein et al.,
1983; Gasser et al., 1985; Salinsky et al., 1991) because we
did not want to impose a model assuming a linear relation
between measurements. We measured reliability by Spearman
rank correlation between the two times of registration for each
measure of interaction and for each of the 60 participants,
across the Cartesian product of all frequency × electrode ×

electrode combinations (or electrode × electrode combinations
for direct causality). Thus, for each participant and each of
the variations of data discontinuity, data length, model order,
frequency averaging, and each individual frequency band we
obtained one correlation coefficient.

The results were reported descriptively because the number of
moderators andmeasures would result in amultiple comparisons
problem, the correction of which would have caused a very low
power of the study. Thus, the distribution of the correlation
coefficients was assessed descriptively with boxplots over the
variation of the moderators of interest. The boxplots represent
the range between the first and the third quartile as a box
alongside with the median (red line in the middle of the box),
and the whiskers are drawn to ±2.7σ, that is 99.3% coverage and
extended to the adjacent value, which is the most extreme data
value that is not an outlier. Outliers are represented as red crosses
and defined as values that are greater than q3+1.5·(q3−q1) where
qi is the ith quartile.

3. RESULTS

3.1. Sample
Table 1 gives an overview of the demographic characteristics of
patients included in the subgroups.

3.2. Effect of Artifacts
First, we compared test-retest reliability calculated over the whole
dataset (complete data, that is, 123.5 s) with the artifact-free data,
that is, the dataset when artifacts were excluded. The complete
data variant included artifacts but could be assumed to be
continuous, while the artifact-free data variant is discontinuous
because of the excluded artifacts. For this purpose, measures
were averaged over frequency ranges before calculation of
reliabilities.

As we can see from Figure 2, for most measures, excluding
artifacts increased test-retest reliability. This effect was very
strong for spectrum and coherence. For measures such as direct
directed transfer function and full frequency directed transfer
function test-retest reliability was high in both cases, with and
without artifacts.

3.3. Effect of Artifact-Free Data Length
Table 2 shows the correlation values of a Spearman correlation
between the test-retest reliabilities and the number of artifact-
free segments, averaged across the two sessions. We can see that
the relations vary considerably between measures. Bonferroni
correction requires p-values to be below 0.0036, which yields
significant positive correlation for transfer function, partial
coherence, generalized partial directed coherence, directed
transfer function and full frequency directed transfer function.
These measures show a higher reliability with increasing number
of artifact-free segments.

3.4. Effects of Discontinuity vs. Length
We present the effects of discontinuity alongside with the
modification of data length, in order to demonstrate descriptively
which of the two effects is larger. We found that the measures
exhibit different modulation patterns, so that we picked three
measures which seem to be exemplary for the three types of
modulations.

Figure 3 shows the effects of length and discontinuity
variation on reliability for partial coherence, full
frequency directed transfer function, and real-valued
coherence.

Partial coherence shows an expected pattern of strong and
monotonic decrease of reliability beginning quite early over the
course of leaving out segments, with first signs visible around
70 left-out segments and a strong decrease after 160 segments.
The other two cut-out variants show the same effect, visible as a
decrease in reliability which is almost parallel to the decrease of
reliability over variation of data length. Thus, discontinuity does
not additionally reduce reliability, the main moderator is data
length.

The second possible pattern of reliability changes is
demonstrated in the example of full frequency directed
transfer function. For full frequency directed transfer function,
shortening of the data decreases reliability after removing more
than approximately 220 segments. That is, only when the data
length is shorter than about 13 s, reliability is affected. Indeed,
this corresponds approximately to the signal length when the
ratio between number of samples and coefficients to estimate
drops below 1 (13 · 500)/(27 · 250) = 0.96). The outliers change
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TABLE 1 | Sample overview.

Group N Age w (%) r (%) MMSE/MOCA MAT MOS ZAN BDI

MCI 22 68.5 (48–76) 11 (50) 21 (95) 28.5 (25–30) 110 (80–125) 100 (80–125) 97.5 (80–135) 7 (0–21)

SCC 5 57.0 (52–74) 2 (40) 5 (100) 28.5 (27–30) 110 (100–115) 95 (90–130) 105 (95–125) 14 (4–21)

TLEr 6 33.5 (21–51) 3 (50) 5 (93) – 97.5 (80–110) 95 (85–105) 87.5 (80–95) 9 (0–27)

TLEl 7 55.0 (36–66) 6 (86) 7 (100) – 95 (70–105) 85 (65–115) 95 (80–110) 10 (0–20)

HC 20 61.5 (23–74) 14 (70) 18 (90) 28 (26–30) 115 (85–130) 120(75–135) 115 (90–140) 3 (0–15)

N, Number; w, number of women; r, number of right-handed participants; MMSE, mini mental state examination; employed only in patients with MCI and SCC; MOCA, Montreal cognitive

assessment—employed only in HC subgroup; Wechsler subscales MAT, matrices; MOS, mosaics; ZAN, repeat numbers; BDI, Beck Depression Inventory; age and neuropsychological

values are given as median with (range); MCI, mild cognitive impairment; SCC, subjective cognitive complaints; TLEr/TLE l, right/left lateralized temporal lobe epilepsy; HC, healthy

controls.

FIGURE 2 | Effect of artifacts and artifact exclusion on test-retest reliability of the assessed measures. For each measure two boxplots indicate the complete data and

artifact-free data variant, respectively. “-ae” indicates the boxplot of the respective measure when artifacts were excluded. S, spectrum; DC, direct dausality; hh,

transfer function polynomial; AF, transfer function; COH, real valued coherence; iCOH, imaginary part of complex valued coherence; pCOH2, partial coherence; PDC,

partial directed coherence; PDCF, partial directed coherence factor; GPDC, generalized partial directed coherence; DTF, directed transfer function; dDTF, direct

directed transfer function; ffDTF, full frequency directed transfer function; GGC, Geweke’s Granger causality.

TABLE 2 | Spearman correlation coefficients for the relationship between

test-retest reliability based on artifact-free data and included number of

artifact-free segments.

Measure rho p-value

Spectrum 0.36 0.005

Direct causality −0.16 0.23

Transfer function 0.45 0.0003

Transfer function polynomial 0.29 0.02

Real valued coherence 0.30 0.02

Complex coherence 0.28 0.03

Partial coherence 0.53 0.00001

Partial directed coherence 0.12 0.36

Partial directed coherence factor 0.10 0.44

Generalized partial directed coherence 0.43 0.0007

Directed transfer function −0.01 0.95

Direct directed transfer function 0.50 0.00004

Full frequency directed transfer function 0.37 0.0032

Geweke’s Granger causality −0.04 0.78

Number of artifact-free segments was averaged across two sessions. P-values are

uncorrected. Bold font indicates significance at the Bonferroni-corrected level p < 0.0036.

after removing more than 120 segments, indicating that for
single subjects the effect of data length may be stronger than
for others. The other two cut-out variants (middle and bottom
subplot) show no strong variation. Overall, full frequency
directed transfer function seems to be quite reliable as long as a
few seconds are left for calculation.

For real valued coherence the effect is somewhat surprising.
Variability increases after more than about 125 segments were
left out, that is, when about 61 s remain, and reaches a maximum
when more than 140 segments were left out. After leaving out
more than 190 segments, the mean reliability across subjects rises
from reliabilities around 0.1 to values close to 1. The variance
becomes smaller along with a slight decrease of reliability again
toward the end of the variation, that is, when more than 225
segments were removed, that is, when about 11 s remain for
analysis. For coherence, discontinuity has no remarkable effect
on the anyway low reliability values. Only a few single outliers
show higher reliability when leaving more segments out, which
might be an analogous increase in variability across subjects such
as when shortening the data.

The figures for all other measures are included in the
Supplementary Material. A similar pattern as for real-valued
coherence, that is, increase of variability and reliability when
reducing the data length by 130 to 200 segments and decrease
toward the very end, can be found for spectrum, transfer
function (but with a short and low increase of reliability,
only), complex coherence, and Geweke’s Granger causality. A
similar pattern as for full frequency directed transfer function,
that is, a decrease when data length becomes very short,
can be found for direct causality, partial directed coherence,
partial directed coherence factor, directed transfer function,
and direct directed transfer function. A similar pattern as
for partial coherence with a very strong decrease, visible also
for the other two variants of variation, can be found for
transfer function polynomial and generalized partial directed
coherence.
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FIGURE 3 | Boxplots of test-retest reliabilities for partial coherence (A), full frequency directed transfer function (B), and real-valued coherence (C). (i) Length variation

by successively shortening data by segments of size 500 ms (250 samples). (ii) 0.5 s cut-outs: successively leaving out every second segment of size 500 ms (250

samples). (iii) 1 s cut-outs: successively leaving out every second segment of size 1,000 ms (500 samples). The x-axis represents the number of removed segments.

3.5. Model Order and Frequency Averaging
The effects of model order and frequency averaging are very
small in contrast to the effect of artifact exclusion. In order to
demonstrate this we present figures including the variation of
model order, frequency averaging and exclusion of artifacts.

Two observations can be made across all measures. Most
measures show a tendency toward lower reliability when no
frequency averaging is performed. However, when excluding
artifacts affects reliability of a measure, this effect is more
prominent than the effect of frequency averaging. Basically, we
can observe two different behaviors among the measures.

The most frequent behavior was found for transfer function,
partial coherence, partial directed coherence, generalized partial
directed coherence, partial directed coherence factor, Geweke’s
Granger causality and all variants of directed transfer function
(direct and full frequency), where reliability decreases for model
orders 1–5 and then increases up tomodel order 30 when artifacts

are included; for excluded artifacts, there is only little change
in the lower model orders, but without frequency averaging
there is a small decrease of reliability over the whole range of
increasing model orders. Figure 4A illustrates this pattern with
the exemplary measure directed transfer function.

Spectrum, real-valued coherence, and complex coherence
exhibit almost no effects of model order, despite a slight decrease
of reliability over model orders 1–20 when artifacts are included
and no frequency averaging was performed (see Figure 4B for
real-valued coherence as an example). The Figures for the other
measures are given in the Supplementary Material.

In summary, we suggest that the model order that is most
suitable for obtaining reliable values is high, but should allow
that the ratio N/(M · p) is large, as well. Model orders below
5 are unstable for some measures, but when the model order
approached half of the sampling rate, the reliability dropped
down, as well, which might be an effect of the reduced ratio
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FIGURE 4 | Boxplots of test-retest reliabilities vs. model order for for directed transfer function (A) and real valued coherence (B). (i) top row: complete data (with

artifacts), with frequency averaging; (ii) second row: artifact-free data, with frequency averaging; (iii) third row: complete data without frequency averaging; (iv) bottom

row: artifact-free data, without frequency averaging.

between available samples N for model estimation and number
of parameters to estimateM · p (model order times channels).

3.6. Reliability Within Frequency Bands
In order to document whether the classical frequency bands
differed between each other with respect to reliability, we
calculated reliability for every frequency range separately,
without averaging across frequencies, on the artifact-free data.

Most measures showed higher reliability for lower frequencies
theta and alpha, and lower reliability for gamma ranges. However,
reliability in the delta range was low for some measures such as
coherence, as well (see Figure 5A). For other measures such as
full frequency directed transfer function this trend could not be
found, with a quite similar distribution across frequency ranges
(see Figure 5B).

Boxplots for all other measures except direct causality, which
is not frequency dependent, are given in the Supplementary
Material.

3.7. Relation between Pathology and Data
Length Dependent Reliability
Since the variations of data disruption by leaving out segments
(cut-out variations 4 and 5) did not show an effect on reliability,
we present here only the effects of data length in relation to
pathology. We prepared scatter plots representing the course
of reliability over the length of the signal used for calculation
of measures and colored the dots according to the neurological
populations. Basically, the scatter plots represent what can be

seen in the box-plots from Section 3.4. As an example, we include
the scatter plot of full frequency directed transfer function in
Figure 6. The dots represent the pathological groups, so that we
can see whether there is a differential pattern across groups. Some
of the patients with TLE can be found on the lower range of
the distribution. However, this observation does not interact with
signal length.

A scatter plot for relation between reliability based on clean
trials with number of clean trials for full frequency directed
transfer function as given in Figure 7 confirms the linear trend
as statistically characterized in Table 2. However, the relation
between reliability and trial numbers is quite parallel across
groups.

Scatter plots for all other measures are shown in the
Supplementary Material. In sum, there are differences between
groups so that we suggest that studies comparing different groups
of participants by some measure of interaction should always
report alongside an estimate of reliability. This procedure should
ensure that the reported group differences are not merely due to
fluctuations that are stronger in the one or the other group.

4. DISCUSSION

What affects test-retest reliability of measures of interaction? As
suggested by previous publications (David et al., 2004; Braun
et al., 2012) our results confirm that the most important factor
is the measure itself. Depending on this choice, other factors
may or may not play a role. A qualitative overview of how the
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FIGURE 5 | Boxplots of test-retest reliabilities for coherence (A) and full frequency directed transfer function (B) in separated frequency ranges.

FIGURE 6 | Scatter plot of test-retest reliabilities for full frequency directed

transfer function vs. number of excluded segments of size 500 ms. The x-axis

represents the number of segments that were cut out from the end of the

signal. Dots represent values of individual participants. Colors indicate groups

MCI, mild cognitive impairment; SCC, subjective cognitive complaints; TLEr,

temporal lobe epilepsy with focus on the right hemisphere; TLEl, temporal lobe

epilepsy with focus on the left hemisphere; HC, healthy controls.

assessed moderators affect reliability of the examined measures
of interaction is summarized in Table 3.

In comparison to related work, the varying reliability between
measures is highly plausible. Albeit other studies did not examine
exactly the same measures, it is worth to mention that Hardmeier
et al. (2014) reported test-retest reliability between 0.12 and 0.80
using the phase locking index, depending on which frequency
band was examined and depending on the level of integration
(local/global). A similar variance in reliability was reported only
in our own recent study (Höller et al., 2017); but it should be
noted that no other study on reliability involved a comparably
large set of measures and factors that affect reliability (Deuker
et al., 2009; Jin et al., 2011; Miskovic and Keil, 2015).

We found quite stable and high reliability for variants of the
directed transfer function, especially the full frequency directed
transfer function. Indeed, for many applications full frequency

FIGURE 7 | Scatter plot of test-retest reliabilities for full frequency transfer

function vs. number of clean segments of size 500 ms. Calculation of

test-retest reliabilities was based on segments without artifacts, only. The

x-axis represents the average number of segments across two sessions

included in the analysis. Colors indicate groups MCI, mild cognitive

impairment; SCC, subjective cognitive complaints; TLEr, temporal lobe

epilepsy with focus on the right hemisphere; TLEl, temporal lobe epilepsy with

focus on the left hemisphere; HC, healthy controls.

directed transfer function could be considered a good choice, but
there are some issues that should be considered when selecting
it. For example, the reliability drops when the signals get shorter.
This is most likely an effect of the poor adjustment between signal
length and model order, since we kept the model order constant
when varying signal length. Thus, it should be first examined
in future studies whether a lower model order in designs with
shorter EEG segments, for instance, event-related designs, would
lead again to a high reliability of full frequency directed transfer
function.

4.1. Data length
As for fMRI (Altmann et al., 2016), we would expect that longer
signals lead to higher reliabilities, which was true for most but not
for all of the examined measures. The highly reliable measures
direct and full frequency directed transfer function drop in
reliability when the signals become very short (<13 s). This
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TABLE 3 | Qualitative overview of relevance of moderators for reliability of measures.

Measure ∼ Reliability Artifacts Data length Discontinuity Model order Frequency Pathology

Spectrum 0.2–0.9 + + − − + −

Direct causality 0.6 − − − + −

Transfer function 0.3−0.5 + + − + o −

Transfer function polynomial 0.1−0.5 + o − + o +

Real valued coherence 0.1−1 + o − + + o

Complex coherence 0.1−0.5 + o − − + o

Partial coherence 0.5 − + − + o +

PDC 0.5 − − − o − o

PDC factor 0.4 − − − + − −

Generalized PDC 0.4 − + − + − +

DTF 0.7 o − − + − −

Direct DTF 0.8 − + − + − +

Full frequency DTF 0.9 − + − o − +

Geweke’s Granger causality 0.5−0.7 + − − + − −

PDC, Partial directed coherence; DTF, directed transfer function; +, highly relevant; o, moderate; −, low relevance.

corresponds approximately to the signal length when the ratio
between number of samples and coefficients to estimate drops
below 1 (13 · 500)/(27 · 250) = 0.96) so that the estimation of
the model results in an underdetermined problem. In contrast,
reliability of coherence is higher with shorter segments, which
seems plausible since coherence does actually not depend on
model order. Chu et al. (2012) found that stable networks,
that is, reliably replicable networks could be identified with the
cross-spectrum and real valued coherence across signal lengths
of 100 s. Measures such as coherence can be estimated on
short signal lengths such as individual trials of cognitive tasks,
with reliabilities well above those of phase-dependent measures
(Miskovic and Keil, 2015).

By definition, a long signal is not required for non-directed
measures such as coherence, because they do not take the past
of the signal into account. Therefore, signal length is more
important for directedmeasures, because estimation of themodel
relies on a sufficient number of samples. A tradeoff between
model order and signal length needs to be considered when short
signals are of interest. In contrast, for non-directed measures
a shorter signal is better, because a longer signal increases the
chance for a large variation of the signal over the course of
the recording, which in turn, might result in overall unreliable
results.

4.2. Artifacts
In general, reliability of most directed measures was more robust
against artifacts than reliability of non directed measures such
as coherence or spectrum. We could speculate that directed
measures are robust against artifacts, because artifacts occur at
irregular points in time. Thus, they do only contribute as noise to
the model estimation, but not alter the result per se. In contrast,
the estimation of power always includes also irregular activity
such as artifacts, heavily influencing measures such as coherence
and spectrum which strongly reflect power characteristics of the
signal. Another potential explanation is that directed measures
may show a tendency toward the mean, and therefore exhibit less

fluctuation, which in turn makes them less affected by artifacts.
However, both of these explanations cannot fully explain our
results since for example Geweke’s Granger causality showed
considerable increase of reliability when artifacts were excluded.
Future simulation studies could help to characterize the relation
between directionality of measures, reliability, artifacts, and
signal length.

We could speculate that the way artifacts are identified and
removed could seriously affect those measures of interaction that
are more susceptible to artifacts. Various methods are available
for artifact correction, but it seems that exclusion of artifacts is
still the best choice for analysis of connectivity (van Diessen et al.,
2015). Especially the use of independent component analysis may
introduce spurious similarity between the signals due to the back-
transformation with exclusion of noisy signals. This makes it
extremely interesting, that some of the assessed measures are
robust against artifacts in terms of reliability.

4.3. Frequency bands
Depending on the measure of interest, some frequency bands
are less reliable. Some measures show higher reliability in the
frequency ranges around the alpha range and lower reliability in
the delta and gamma range. Our data suggest that averaging the
measures within specified frequency ranges increases reliability
for some measures.

Previous studies documented a high variance between subjects
along with high test-retest reliability within subjects over long
time ranges of absolute power in traditional frequency bands
(Gasser et al., 1985; Dustman et al., 1999; Grandy et al., 2013;
Näpflin et al., 2016). Hatz et al. (2015b) reported test-retest
reliability across three annual EEG recordings with intraclass
correlation coefficients. Lower frequencies (delta, theta) were
slightly less reliable than high frequencies (alpha, beta). Our
results for measures such as coherence resemble very much the
reliability of phase locking indices as reported by Hardmeier
et al., with lower reliability in theta and beta frequency band
and higher reliability along with higher variability in the alpha
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range (Hardmeier et al., 2014). The potential effect of the
frequency band needs to be taken into account when choosing
the measure of interaction for the analysis and when results in
different frequency ranges are compared to each other. Moreover,
averaging within frequency ranges is highly recommended
because it seems to lead to more reliable results.

The full-frequency directed transfer function is more robust
against frequency effects, because the normalization technique
included in the formulation of this measure takes into account
the variation between the sub-bands. The interaction within each
frequency sub-band is normalized by the content of all sub-bands
(Korzeniewska et al., 2003). This method prioritizes the sub-
band which contributes most band-power to the signal. It is a
nice coincidence that the alpha range is not only the sub-band
contributing mostly to the power of the signal, but in addition it
is also the most reliable sub-band. Therefore, the reliability of all
sub-bands benefits from the high reliability in the alpha range.

4.4. Pathology
So-called microstates are an effective way of differentiating
subnetwork activity by accounting for stationarity and thus,
increasing the reliability of the detected networks (Khanna
et al., 2014). Indeed, only when accounting for stationarity
within subnetworks, the difference between the stable group of
patients with mild cognitive impairment and progressive group
with Alzheimer’s disease became evident (Hatz et al., 2015a).
While measures of interaction are frequently implemented
as biomarkers in studies involving clinical populations, the
reliability of the results is only rarely reported. We replicated the
previously documented differences of reliability between patients
with temporal lobe epilepsy and healthy controls (Höller et al.,
2017), which was also dependent on the measure of interaction.
In the present work we could show that this effect did not interact
with data length. However, we addressed no other interactions
of the potential moderators with pathology, because this was
already addressed in a previous study. As reported previously, the
differences in reliability between pathological groups are specific
to regions and frequency ranges, and these differences vary across
measures (Höller et al., 2017).

Differences between patient groupsmay be inconsistent across
studies due to poor reliability of measures of interactions rather
than the differences between the patients themselves. Future
research should consider this aspect when selecting the measures
of interest. For example, we found that measures that are highly
reliable such as the full frequency directed transfer function differ
in reliability between the examined populations. That is, when
comparing populations by means of this measure it should be
considered that differences could also be due to a difference in
reliability between the groups.

Nevertheless, when searching for differences between
pathological groups, it might not always be advantageous to
select the most reliable measure, if this measure is insensitive
to specific characteristics of the investigated patients. Moreover,
even if coherence is highly sensitive to differences between
neurological populations and even if it is reliable at short-term
intervals, this measure is highly affected by volume conduction,
which reduces the neurobiological significance of the revealed

interactions. On the other hand, the directed measures are
supposed to unravel the direction of information flow between
the assessed regions—in the sense of a time-lagged similarity of
the signals. This allows to examine the propagation dynamics
of events of interest, such as epileptic seizures or interictal
epileptiform events. Nevertheless, seizures are typically EEG
recordings that are highly contaminated by artifacts, which poses
specific demands on the choice of the measure, highlighting the
advantage of measures such as direct and full frequency directed
transfer function, which were found to be quite robust against
artifacts in the signal.

4.5. Model Order
Most studies in the literature use a fixed model order as we did
for discontinuity variation. We varied model order across the
scenarios of frequency averaging and artifact exclusion. Varying
model order alongside with discontinuity variation was not done
for reasons of computational complexity and because we could
already see that the major effect is not discontinuity per se
but the measure of interest, signal length and the exclusion of
artifacts. Model order can be defined by several criteria, but
it was recommended to choose the maximum possible model
order (Schlögl and Supp, 2006), which is exactly what we have
implemented in the present paper when we varied discontinuity.
Another possibility is to determine the optimal model order
according to the Akaike information criterion (Kaminski et al.,
2001; Babiloni et al., 2005). However, the estimation of the
MVAR model is strongly related to model order with respect
to the oscillations that can be represented by the model order.
Obviously, a lower model order emphasizes higher frequencies,
because the model is not able to capture the full length of slow
oscillations. In contrast, a high model order might cover the
whole range of frequencies of interest, but the model order is
limited by the number of data samples that are needed to estimate
the model. A high model order most likely negatively impacts
reliability when the number of to be estimated parameters
exceeds the available samples.

4.6. Limitations
A potential confounder for reliability is volume conduction.
Volume conduction is per-se highly reliable, since the structural
properties of the brain stay the same unless a brain lesion,
surgical intervention, or severe atrophy cause changes at a
larger scale. Thus, measures of interaction that are susceptible
to volume conduction might result in artificially high reliability.
Obviously, volume conduction in the EEG is problematic
when assessing brain networks (Christodoulakis et al., 2015).
Volume conduction and activity at the reference can lead to
artificial high coherence values. Imaginary coherency (Nolte
et al., 2004) and partial coherence (Gersch and Goddard, 1970)
solve the problem only to some extent. Directional measures,
namely directed coherence (Saito and Harashima, 1981) and
directed transfer function (Kaminskí and Blinowska, 1991),
partial directed coherence (Baccalá and Sameshima, 2001),
direct directed transfer function (Korzeniewska et al., 2003),
full frequency directed transfer function (Korzeniewska et al.,
2003), and generalized partial directed coherence (Baccalá et al.,
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2007) are considered to support the estimation of propagating
networks, but can not fully avoid the bias of volume conduction.
Volume conduction should be quite stable across time, so
that we can assume that those measures being more sensible
to volume conduction may yield higher reliability than e.g.,
imaginary coherence, which is being claimed to be less affected
by volume conduction (Nolte et al., 2004). As a phase-dependent
measure, imaginary coherence makes strong assumptions about
stationarity of the signal, which may, in turn, be the reason why
reliability of these measures is so poor. Nevertheless, correlation
of the phase locking index with inter-electrode distance yielded
considerable correlation coefficients of−0.19 for the unweighted,
and −0.4 for the weighted variant of this measure in high-
density EEG (Hardmeier et al., 2014). This correlation may partly
explain the high test-retest reliability values reported in this
study in terms of intraclass correlation coefficients of up to 0.79.
That is, in high-density EEG volume conduction contributes
significantly to measures of interaction and, most likely, to their
reliability, even if they are phase-dependent. The situation might
be a bit different when looking at magnetoencephalography,
which should be less affected by volume conduction effects.
Mutual information between wavelet coefficients yielded graph
theoretical characteristics that were highly reliable (Deuker et al.,
2009).

The volume conduction problem could be solved by assessing
signals at the source level, that is, by implementing blind source
separation techniques (Gomez-Herrero et al., 2008). However,
source space brings different problems along such as the non-
existence of a unique solution and still, even in source space
the problems of field spread and volume conduction are not
completely solved (van Diessen et al., 2015).

Somewhat related to volume conduction, also the choice
of the reference might be a factor that should be considered.
We chose to re-reference against linked-earlobes, since the
common average reference is unlikely to approximate a zero sum
reference in low-density EEG recordings as in the present study
(Schiff, 2005; Nunez and Srinivasan, 2006). There is no unique
recommendation for the choice of the reference. To what extent
the choice of classical or more sophisticated references such
as infinity reference, Laplacian, or mitigation of the influence
of neural activity in the common average reference are related
to estimation of connectivity is unclear (van Diessen et al.,
2015), and the effect of the reference on reliability needs to be
determined in future studies.

Moreover, the subsamples drawn from neurological
populations were quite small, so that conclusions for the
individual populations are limited. In addition, the group of
healthy controls was drawn from students, as well as elderly
people that attended the University 50+ programme, an offer of
the University of Salzburg for people with the desire to attend
University classes for selected topics of interest. It is possible that
this interest in learning and the high education of the control
group caused a general bias.

It is of interest that even with a very reliable measure
such as the full frequency directed transfer function and a
long data segment, there are participants with a very low
reliability. The outliers in the bottom right corner of Figure 7

include participants from almost all groups. The reason for this
poor reliability in this sample of participants remains unclear.
However, we suppose that factors that we did not control for
might play a role, such as duration and quality of sleep in the
night before the recording, amount of mind wandering during
rest, consumption of caffeine or tobacco, etc. Future studies
addressing these factors may explain outliers such as those found
in the present study.

A further aspect that deserves more attention in the future
is the interval between the EEG measurements. The interval
implemented in this study was 2 weeks, that matches exactly one
phase of the female cycle of 4 weeks. It is of interest whether
future studies could systematically examine sex-differences with
respect to test-retest reliability, since it is known that the
menstrual cycle affects resting state alpha frequency Broetzner
et al. (2014). Moreover, the typical length of neurorehabilitative
therapies or follow-up examinations on medication acting upon
the central nervous system should be considered. Two weeks
might seem a bit short in view of the longer-term effects of
therapeutical programs.

Finally, task related electroencephalographic recordings are
suggested to be more reliable than resting-state recordings,
since the cognitive activity during a resting state cannot be
controlled sufficiently (McEvoy et al., 2000; van Diessen et al.,
2015). Therefore, future studies should examine the reliability of
measures of interaction during cognitive tasks.

In sum, this work addressed a considerable number of
potential moderators of test-retest reliability. The results were
reported descriptively because the number of moderators and
measures would have caused a multiple comparisons problem,
which was unfeasible to be corrected. Nevertheless, there are
several other putative moderators that leave room for further
investigations in future studies.

5. CONCLUSIONS

In this study we could demonstrate that in addition to the
choice of the measure, signal length affects reliability of measures
of interaction, while discontinuity of the signal has no effect.
Exclusion of artifacts is relevant for reliability of most non-
directed measures such as coherence, but not for most directed
measures such as direct, full frequency, or classical directed
transfer function. Similarly, differences between reliability within
frequency ranges is moderated by the choice of the measure.
As shown previously, reliabilities differ between patients with
different neurological conditions, but these differences do not
interact with discontinuity or signal length, nor with artifact
exclusion. Model order is relevant for most measures within
the examined range of model orders. Choosing a high model
order is recommendable, but the design should be limited
by calculating the ratio between available samples and to-be
estimated parameters is highly recommended. We suggest that
the future of brain network research should be guided by
a paradigm shift in order to fight the reproducibility crisis.
Scientists should argue the choice of measures of interaction to
be used for a specific study by considering the factors that affect
reliability.
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