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Mitochondrial DNA revealed the validation of Quasipaa robertingeri (Amphibia:
Anura: Dicroglossidae) and its population genetic diversity
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ABSTRACT
The spiny frog Quasipaa robertingeri is endemic to a narrow region of southwest China and its taxo-
nomic validation is still controversial. Based on COI gene sequences of 110 individuals from seven pop-
ulations of Q. robertingeri and its related species, we investigated the phylogenetic position and
population genetic structure of the species. Phylogenetic analyses indicated that Q. robertingeri was
deeply genetically separated from its closely related species Q. boulengeri, indicating the validation of
the species. All samples of Q. robertingeri were clustered into two divergent lineages. Haplotype net-
work, AMOVA, and genetic distance estimations also supported the separations of the two groups.
Neutrality tests indicated that one lineage has been likely independently experienced a recent popula-
tion expansion, leading to a secondary contact area between the two lineages.
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Introduction

The spiny frog Quasipaa robertingeri belongs to the family
Dicroglossidae (Amphibia, Anura; Frost 2020), and is com-
monly found in the mountain streams at elevations ca.
400–2000 m in a narrow region, bordering Sichuan and
Guizhou provinces and Chongqing City in southwest China
(Fei et al. 2009, 2012). The validation of the species is still on
debates. Some molecular phylogenetic studies suggested
that it should be synonym with Q. boulengeri, which is
broadly sympatric with Q. robertingeri (Che et al. 2009; Zhang
et al. 2018). But Fei et al. (2009, 2012) still recognized Q. rob-
ertingeri as a valid species based on morphology. Whatever,
there has been no work with comprehensive sampling on
the population level of the species and its related species to
resolve the systematic problems.

In recent years, a variety of human-caused threats espe-
cially excessive captures and habitat destructions lead to the
dramatic decline of Q. robertingeri (Jiang et al. 2016). In view
of the serious threats and their high sensitivity to environ-
mental factors, this species was listed as the VU (vulnerable)
species in the red list of China’s vertebrates (Jiang et al.
2016). However, knowledges especially on the population
diversification of this species remains scarce, and it is obliga-
tory for us to put strategies to resolve the status of the spe-
cies. Investigations on population diversification of the VU
species would promote conservation of its endemic germ-
plasm resources and genetic diversity.

In light of its rapid rate of evolution and maternal inherit-
ance (Sun et al. 2012), mitochondrial DNA markers have been
often used to evaluate genetic diversity, detect phylogenetic
relationships, and recognize phylogeographic clusters (Weiss
et al. 2011; Liu et al. 2015; Wang et al. 2017). In this study,
the mitochondrial cytochrome oxidase subunit I (COI) gene
was used to investigate phylogenetic position of Q. robertin-
geri and its population genetic diversity.

Materials and methods

A total of 110 specimens of Q. robertingeri were collected
from seven localities (P1–P7) scattered in the boundary of
Sichuan and Guizhou provinces and Chongqing City, China
(Figure 1(A,B); Table 1). In addition, 10 specimens of Q. bou-
lengeri were also collected in six same places together with
Q. robertingeri (Figure 1(A)). Tissues were collected and stored
separately in 95% ethanol before specimen fixation.
Specimens were preserved in the Chengdu Institute of
Biology, Chinese Academy of Sciences (CIB, CAS). Total DNA
was extracted from the tissues using a standard
phenol–chloroform extraction procedure (Sambrook et al.
1989). COI primers and PCR protocols follow Che et al.
(2012). Sequencing was conducted in both directions using
the same primers as used in the PCR using ABI3730 sequen-
cer in Shanghai Generay Biotech Co. Ltd. (Shanghai, China).
The new sequences were deposited in the GenBank with
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Figure 1. Sampling localities in this study and phylogenetic relationships of Quasipaa robertingeri. (A) Sampling localities in this study, showing sympatric distribu-
tions of Q. robertingeri and Q. boulengeri. (B) Maximum-likelihood tree based on COI gene sequences of Q. robertingeri and its congeners. Bootstrap support values
were denoted near nodes. (C) Sampling localities in this study, showing distributions of lineages of Q. robertingeri. (D) Phylogenetic relationships of haplotypes of Q.
robertingeri. (E) Haplotype network of Q. robertingeri. The circle size is proportional to the number of samples. One black dot means one mutation.

Table 1. Genetic diversity and neutrality tests of Quasipaa robertingeri.

Pop ID Locality Latitude (� N) Longitude (� E) n Haplotype h p Tajima’s D Fu’s Fs

P1 Hejiang Co., Sichuan Prov. 28.6305 106.3004 21 H1–H5, H7, H9 0.667 0.00381 –0.60288 –1.017
P2 Jiangjin Dist., Chongqing City 28.6788 106.4176 11 H5, H7 0.600 0.00229 –1.05652 –0.290
P3 Chishui City, Guizhou Prov. 28.4499 105.9799 15 H6, H15, H16 0.448 0.00212 –1.68946 1.225
P4 Locality A, Xishui Co., Guizhou Prov. 28.4585 106.159 16 H10, H16 0.400 0.01259 1.29798 11.825�
P5 Locality B, Xishui Co., Guizhou Prov. 28.4664 106.3779 14 H7, H8, H9 0.670 0.00311 1.10915 2.093
P6 Locality A, Gulin Co., Sichuan Prov. 28.1861 105.7408 10 H15, H16 0.200 0.00037 –1.11173 –0.339
P7 Locality B, Gulin Co., Sichuan Prov. 28.2399 105.7517 23 H11H16 0.518 0.00135 –1.35873 –3.046
Lineage A – – – 50 H1–H5, H7–H10 0.736 0.00443 –0.07680 –0.499
Lineage B – – – 60 H6, H11H16 0.354 0.00111 –2.10347� –3.658
Total – – – 110 H1–H16 0.755 0.01771 1.11413 4.923�
n: number of samples; h: haplotype diversity; p: nucleotide diversity.�p< .05.
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accession numbers MW143300–MW143315 and
MW143325–MW143334. For phylogenetic comparisons, corre-
sponding sequences of two ‘Q. robertingeri,’ five Q. boulen-
geri, one Q. jiulongensis, one Q. exilispinosa, one Q. spinosa,
one Q. shini, one Q. verrucospinosa, one Q. yei, and one
Nanorana parkeri were downloaded from GenBank (GenBank
accession nos.: JN700886, KY441640, KC686711, KF199152,
KX233867, KX233868, KX645665, KF199149, MH938690,
MG820454, MK093237, KR087899, KJ700855, and KP317482).

Sequences were assembled and aligned using BioEdit
7.0.9.0 (Hall 1999) with default settings. Haplotypes were rec-
ognized using DnaSP 5 (Librado and Rozas 2009).
Phylogenetic relationships of haplotypes of Q. robertingeri
and its related species were reconstructed using maximum
likelihood (ML), as implemented in the program PHYML 3.0
(Guindon et al. 2010). Nanorana parkeri was used as out-
group according to Che et al. (2009). For ML analyses, the
best-fitting nucleotide substitution model was selected under
the corrected Akaike information criterion (AICc) using
JMODELTEST 2.1.7 (Guindon and Gascuel 2003; Darriba et al.
2012). The optimal nucleotide substitution model (GTRþ IþG)
was selected for the analyses. Non-parametric bootstrapping
with heuristic searches of 1000 replicates was used to assess
confidences of branches in ML trees. Pairwise uncorrected p-
distances between clades and populations were estimated
using MEGA 6 (Tamura et al. 2013). In addition, a haplotype
network of Q. robertingeri was constructed using maximum
parsimony method in TCS 1.21 (Clement et al. 2000).

Haplotype diversity (h) and nucleotide diversity (p) were
estimated using DnaSP. Genetic signals of departure from
neutrality or potential population expansion were estimated
for populations using Tajima’s D (Tajima 1989) and Fu’ Fs (Fu
1997) statistics, estimated in DnaSP.

Results

Alignment resulted in 504 base pair long sequences. Sixteen
haplotypes were recognized from 110 individuals from seven
populations of Q. robertingeri (Table 1). Phylogenetic analyses
clustered the 16 haplotypes of Q. robertingeri into a clade
(Figure 1(C,D)). Ten specimens of Q. boulengeri collected in
this study were nested with five Q. boulengeri sequences and
two sequences named as ‘Q. robertingeri’ downloaded from
GenBank in a clade (Figure 1(C)). The Q. robertingeri clade,
the Q. boulengeri clade, and one Q. verrucospinosa were clus-
tered into a big clade (bootstrap support ¼ 70%) separating
from other congeners (Figure 1(C)) though the relationships
of the three species in this clade were not resolved. The Q.
robertingeri clade contains two divergent lineages, lineages A
and B. Lineage A contained nine haplotypes (Haps 1–9), and
lineage B contained seven haplotypes (Haps 10–16) (Figure
1(C)). Lineage A contained samples from populations P1, P2,
P4, and P5, and lineage B contained samples from popula-
tions P3, P5, P6, and P7 (Figure 1(B)).

The least mean genetic distance between Q. robertingeri
and its congeners was 11.5% (vs. Q. boulengeri). Genetic dis-
tance between lineages A and B of Q. robertingeri was 3.4%.

Genetic distances between populations fall in the range of
0.0–4.8%, with an overall average at 2.3%.

Haplotype diversity (h) and nucleotide diversity (p) are
presented in Table 1. The total haplotype diversity of Q. rob-
ertingeri was 0.755. Lineage A had higher haplotype diversity
(0.736) than B (0.354). In populations, the population P4
showed the highest haplotype diversity (0.670), followed by
the P1 population (0.667) and P2 (0.518), and other popula-
tions showed low haplotype diversity (h< 0.5). The total
nucleotide diversity was 0.01771, but two major lineages
have low nucleotide diversity (p< 0.045). The population P4
showed the highest nucleotide diversity (0.01259) and other
populations exhibited low nucleotide diversity (p< 0.0039). In
the total population and lineage A, Tajima’s D, and Fu’s Fs
tests all resulted in no-significant positive values (p>.05), and
as well, all populations had no significant negative values
(p>.05; Table 1), suggesting that there was no recent popula-
tion expansion in these groups. As note, in lineage B,
Tajima’s D was significant negative (p<.05; Table 1), indicat-
ing a signal for a recent expansion on population size of
this lineage.

Discussion

In this study, we explored the phylogenetic status and diver-
sification of the mountain frog Q. robertingeri through sam-
pling populations across its narrow distributional range in
southwestern China (Figure 1(C)). Che et al. (2009) and
Zhang et al. (2018) all based on sequences of a very little
number of samples of ‘Q. robertingeri’ proposed that ‘Q. rob-
ertingeri’ was invalid. However, in our tree based on mito-
chondrial COI gene sequences showed that the samples
recognized as ‘Q. robertingeri’ in Che et al. (2012) and Zhang
et al. (2018) were nested into the Q. boulengeri clade, but the
true Q. robertingeri samples was divergent from its closely
related species Q. boulengeri and Q. verrucospinosa (Figure
1(D)). Moreover, the smallest genetic distance on COI gene
was 11.5% between Q. robertingeri and Q. boulengeri, being
much higher and near four times of 3% as interspecific gen-
etic distance proposed by Zhang et al. (2018) and Vences
et al. (2005). Hence, all COI sequences recognized as ‘Q. rob-
ertingeri’ on GenBank were misidentified, and Q. robertingeri
should be a valid species. Obviously, Q. robertingeri and Q.
boulengeri are sympatric in the distributional range of Q. rob-
ertingeri (Figure 1(C)), easily preventing the classifications of
the two species also with the reason on the superficially mor-
phological similarity of them. Our result indicated that to
evaluate the validity of a species should first take a compre-
hensive sampling on population level of it and its closely
related species.

All 110 samples of Q. robertingeri were clustered into two
major divergent lineages (Figure 1(D,E)). They should repre-
sent long-time evolutionary units of biodiversity with mean
genetic distance of 3.4%. But within each lineage, the diver-
gence between haplotypes was shallow indicating that popu-
lations in each lineage were probably young. Neutrality tests
suggested that lineage B has been experienced a recent
population expansion. Accordingly, the locality for the
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population P4 located between the distributional ranges of
lineages A and B might be the secondary contact area. Based
on the results of this study, we at least need to protect each
independent lineage of the endemic species as soon as pos-
sible to avoid losing important genetic diversity.
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