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Abstract
Steinernema feltiae is a moderately freeze-tolerant entomopathogenic nematode which sur-

vives intracellular freezing. We have detected by gas chromatography that infective juve-

niles of S. feltiae produce cryoprotectants in response to cold acclimation and to freezing.

Since the survival of this nematode varies with temperature, we analyzed their cryoprotec-

tant profiles under different acclimation and freezing regimes. The principal cryoprotectants

detected were trehalose and glycerol with glucose being the minor component. The amount

of cryoprotectants varied with the temperature and duration of exposure. Trehalose was

accumulated in higher concentrations when nematodes were acclimated at 5°C for two

weeks whereas glycerol level decreased from that of the non-acclimated controls. Nema-

todes were seeded with a small ice crystal and held at -1°C, a regime that does not produce

freezing of the nematodes but their bodies lose water to the surrounding ice (cryoprotective

dehydration). This increased the levels of both trehalose and glycerol, with glycerol reach-

ing a higher concentration than trehalose. Nematodes frozen at -3°C, a regime that pro-

duces freezing of the nematodes and results in intracellular ice formation, had elevated

glycerol levels while trehalose levels did not change. Steinernema feltiae thus has two strat-

egies of cryoprotectant accumulation: one is an acclimation response to low temperature

when the body fluids are in a cooled or supercooled state and the infective juveniles pro-

duce trehalose before freezing. During this process a portion of the glycerol is converted to

trehalose. The second strategy is a rapid response to freezing which induces the production

of glycerol but trehalose levels do not change. These low molecular weight compounds are

surmised to act as cryoprotectants for this species and to play an important role in its freez-

ing tolerance.
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Introduction
Water plays a vital role in the structural and functional stability of macromolecules and main-
tains the integrity of lipid membranes in biological systems [1]. When water is removed due to
osmotic dehydration or freezing the membrane may become permeable to solvents, mem-
branes may fuse and membrane particles can aggregate resulting in fatal damage [2]. Some
nematodes are anhydrobiotic (survive without water); such as Aphelenchus avenae [3], Angu-
ina tritici [4], Caenorhabditis elegans dauers [5] and Ditylenchus dipsaci [6], and some are
freeze tolerant; such as Steinernema feltiae [7] and Panagrolaimus davidi [8]. Most of these
nematodes produce low molecular weight compounds in response to dehydration or freezing
stress which act as cryoprotectants or anhydroprotectants [9,10,11].

Cryoprotectants are compounds that protect the organism from chilling and freezing injury
and thereby enhances its cold tolerance [12]. These include sugars such as trehalose, glucose,
fructose, and polyhydric alcohols such as glycerol, sorbitol, myo-inositol, ethylene glycol, ribi-
tol, erythritol and inositol [13]. These cryoprotectants depress the melting point of the body
fluids and thus decrease the amount of ice formed [14]. Trehalose is believed to assist the nem-
atodes with their short-term freezing stress, while long-term freezing survival may be attributed
to the presence of a recrystallization inhibition protein [11] which helps to stabilize the struc-
ture and size of the ice crystals after their formation [15]. Glycerol has also been shown to
increase the freezing tolerance of nematodes [16] and to permeate the membrane once the
water is lost [17]. Entomopathogenic nematodes have been reported to accumulate cryoprotec-
tants such as trehalose and glycerol in response to low temperature [9,18,19,20,21,22]. Accu-
mulation of these cryoprotectants in freeze tolerant nematodes are induced by either cold
acclimation [20] or cold and heat shock [19] prior to their anticipated freezing. However, there
is no report on the synthesis of cryoprotectants in nematodes in response to freezing, as has
been reported in some freezing tolerant earthworms [23].

In the present study, we have examined S. feltiae for potential cryoprotectants following
low-temperature acclimation and freezing regimes that result in cryoprotective dehydration
(freezing at -1°C) or intracellular freezing (freezing at -3°C) [7]. Cryoprotective dehydration
was first described in earthworm cocoons and describes a situation where ice formation in the
soil or water surrounding an animal does not produce freezing within its body. Its body con-
tents thus remain liquid and water is lost to the surrounding ice, due to the difference in vapour
pressure between the nematode’s body fluids and the surrounding ice, so that the animal dehy-
drates [24]. The Antarctic nematode Panagrolaimus davidi was the first nematode shown to
survive intracellular freezing [24] but other nematodes, including S. feltiae, have more limited
abilities to do so [7,25].

Since the cold tolerance mechanism and the ability of S. feltiae to survive freezing varies
with different acclimation and freezing manipulations [26], the main aim of this study was to
compare the cryoprotectant profiles of this nematode after these treatments. In addition to
cryoprotectants induced by cold acclimation, this study for the first time describes the accumu-
lation of cryoprotectants in nematodes in response to the freezing process per se.

Methods

Nematode culture, freezing and acclimation regimes
Infective juveniles of S. feltiae were locally-collected strains obtained from AgResearch Lincoln.
The species is cosmopolitan, temperate in nature and was collected from the Lincoln area in
New Zealand. The culture was maintained in the last instar larvae of the bee wax moth, Galleria
mellonella at 22°C. Third-stage infective juveniles of S. feltiae were harvested from dead G.
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mellonella larvae in White traps [27], and passed through two layers of tissue paper to obtain
active nematodes. Nematodes were either acclimated at 5°C for two weeks or processed fresh
after harvesting at room temperature as non-acclimated controls. Test samples were a 1 ml sus-
pension of about 100 nematodes in artificial tap water [28]. A third regime was freshly har-
vested infective juveniles subjected to freezing at −1°C and left overnight in the refrigerated
circulator. This regime results in cryoprotective dehydration [26]. A fourth regime was freshly
harvested infective juveniles frozen at −3°C and held for 75 minutes, resulting in intracellular
freezing of the infective juveniles [7]. The nematodes were removed from the refrigerated cir-
culator in the frozen state after holding for 75 minutes and processed immediately.

Sugars and polyols analysis
Low molecular weight cryoprotectants were analysed by gas chromatography, as described by
Wharton et al [11]. The non-acclimated infective juveniles were washed in artificial tap water
[28] and centrifuged to get a concentrated pellet. Artificial tap water was added to make up the
suspension to just over 1 ml. The weight of a 10 μl subsample of each regime was determined
after drying in an oven to calculate the total dry weight of the nematode sample. Exactly 1 ml
of nematode suspension was then either frozen at −3°C (producing intracellular freezing, sub-
jected to overnight freezing at −1°C (cryoprotective dehydration), or centrifuged (non-accli-
mated control at room temperature) and the supernatant removed. Then 20 μl dulcitol (as an
internal standard) and 1 ml extraction mixture (cold chloroform/methanol/dH2O; 8:3:1 v/v)
was added to each sample. The samples were then transferred to a glass homogenizer and
homogenized for 15 minutes on ice until the nematodes disrupted completely. The homoge-
nate was then transferred to a glass centrifuge tube followed by 1 ml of dH2O used to rinse the
homogeniser. The homogenate was centrifuged at 3000 rpm for 10 minutes and the top aque-
ous layer taken. The aqueous portion was then passed through a Bond Elute SCX column (Var-
ian SPP: preconditioned by passing through 2 ml methanol, then 2 ml methanol:0.1 M HCl,
and then 2 ml 0.1M HCl) and collected in Eppendorf tubes. The column was rinsed with 0.5 ml
dH2O, which was added to the sample. The sample, now containing everything minus lipids
and proteins, was dried down under nitrogen in a heating block at 40°C. When the sample was
small enough, it was transferred to a chromatography vial. The completely dried sample in the
vial was capped, used immediately or stored in a desiccator until use.

Polyols and sugars were converted to their trimethylsilyl derivatives by adding 20 μl Silprep
(Alltech, Deerfield IL). The vial was sealed with parafilm as the Silprep is sensitive to water,
rotated slowly to dissolve the sample and allowed to incubate for 15 minutes at room tempera-
ture. Five microlitres of the sample was injected into an Econocap EC-5 capillary column (All-
tech, New Zealand) on a gas chromatograph (GC; Agilent 6890N Series gas chromatography
system; Agilent Technologies, Wilmington, USA) controlled by GC Chemstation software run
on a PC. Polyols and sugars were identified and quantified according to their retention times
and peak areas with reference to standards.

The concentrations of all the three cryoprotectants in each treatment were determined and
compared with the controls. Total carbohydrates measured were also calculated for each treat-
ment and compared between treatments and with the control. Either one way analysis of vari-
ance (one-way ANOVA) or multivariate analysis of variance (MANOVA) was carried out
using the Statistical Package for Social Sciences (SPSS) ver. 15.0 [29] to see if the carbohydrate
concentrations measured were significantly different among the treatments. Means were sepa-
rated using Tukey’s multiple comparison test.
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Results
Three carbohydrates trehalose, glycerol and glucose were detected by gas chromatography in
the infective juveniles of S. feltiae. Trehalose and glycerol were the major cryoprotectants
detected, with glucose being a minor component. The initial amount of glycerol (56.32±3.8 mg
g−1 dry weight, 193 mM) was significantly higher than that of trehalose (27.94±3.0 mg g−1 dry
weight, 23 mM) and glucose (1.1±0.2 mg g−1 dry weight, 2 mM) in the non-acclimated controls
(P<0.05). Nematode samples acclimated for two weeks at 5°C have significantly increased lev-
els of trehalose and glucose, compared with non-acclimated controls (P<0.05). However, glyc-
erol levels dropped significantly (P>0.05) (Fig 1).

In nematode samples frozen overnight at −1°C (cryoprotective dehydration), there was a
significant increase in the concentration of all three carbohydrates (P<0.05) in comparison
with non-acclimated controls. Trehalose increased three-fold, compared to a two-fold increase
in glycerol. However, the total concentration of glycerol was higher than that of trehalose (Fig
1). Freezing at -3°C (intracellular freezing) induced the accumulation of glycerol but not of tre-
halose or glucose. In nematodes undergoing intracellular freezing, the concentration (81±4.1
mg g−1dry weight, 68 mM) of glycerol was significantly higher (P<0.05) than that in non-
acclimated controls, but trehalose and glucose concentrations did not change significantly
(P>0.05) (Fig 1).

Glycerol concentrations differed significantly (P<0.05) in all three treatments, with the
maximum concentration (Fig 1, 129.6±5.8 mg g−1 dry weight, 444 mM) in samples undergoing
cryoprotective dehydration, followed by the concentration in nematodes undergoing intracel-
lular freezing.

Fig 1. Concentration of sugars and polyol accumulated in the infective juveniles of S. feltiae in non-
acclimated controls (open bars), after two weeks’ acclimation at 5°C (closed bars), after freezing
overnight at −1°C (cryoprotective dehydration: horizontal line bars) and after freezing at −3°C for 75
minutes (intracellular freezing: diamond bars). An asterisk above the bars of acclimated and frozen
treatments indicates a significant difference from the non-acclimated control (P<0.05). Error bars represent
standard errors of 3 replicates.

doi:10.1371/journal.pone.0141810.g001
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The level of trehalose reached its maximum value (95.4±4.4 mg g−1 dry weight, 80 mM) in
nematodes acclimated for two weeks at 5°C (Fig 1), this was not significantly different to that
of samples undergoing cryoprotective dehydration but it was significantly higher than that of
samples undergoing intracellular freezing. Glucose levels were very low in nematodes undergo-
ing intracellular freezing and reached their highest levels (5.4±0.5 mg g−1 dry weight, 9 mM) in
samples undergoing cryoprotective dehydration.

The concentrations of total carbohydrates measured in all the treatments, with the excep-
tion of samples undergoing intracellular freezing, was significantly higher (P<0.05) than that
in the non-acclimated controls (Fig 2). The maximum total amount of carbohydrates measured
(215.9±12.2 mg g−1 dry weight) was recorded in nematode samples undergoing cryoprotective
dehydration which was significantly different to those in the other treatments (P<0.05). There
was no significant difference in the level of total carbohydrates measured between samples
acclimated for 2 weeks at 5°C, and samples undergoing intracellular freezing (P>0.05).

Discussion
Two sugars (trehalose, glucose) and a polyol (glycerol) were detected in the infective juveniles
of S. feltiae. Trehalose and glycerol were in high concentrations and function as cryoprotectants
in many organisms [13]. Both overnight freezing at −1°C (cryoprotective dehydration) and
freezing at -3°C for 75 min (intracellular freezing) induced the accumulation of glycerol, but
long-term acclimation (two weeks at 5°C) significantly decreased glycerol levels. Trehalose, in
contrast increased to 95.4±4.4 mg g−1, 80 mM after two weeks at 5°C. This concentration is
close to that previously reported from S. feltiae (82.28±4.4 mg g−1dry weight) and other

Fig 2. Concentration of total carbohydrates measured in the infective juveniles of S. feltiae after
exposing them to various acclimation and freezing regimes.Different small letters above the bars
indicate that treatments are significantly different (P<0.05). Error bars represent standard errors of 3
replicates.

doi:10.1371/journal.pone.0141810.g002
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entomopathogenic nematodes acclimated at 5°C for a week [9,20]. The decline in the glycerol
level after two weeks acclimation at 5°C suggests that glycerol might be converted to glycogen
and then to trehalose via the pathway from glycogen to trehalose [13], which is suggested by
the elevated level of trehalose after two weeks’ acclimation at 5°C.

Glycerol concentrations increased on intracellular freezing but trehalose concentrations did
not change. This is the first study on nematodes that has demonstrated cryoprotectant synthe-
sis in response to freezing (in addition to acclimation). In the moor frog Rana arvalis [30] and
the wood frog Rana sylvatica [31] it has been noted that ice nucleation triggers the synthesis of
glucose during freezing. The concentration of glucose was higher in frozen frogs than it was in
the unfrozen supercooled state. Some freezing tolerant earthworms also synthesize glucose in
response to freezing [26]. In a freeze tolerant slug glucose accumulation is also triggered by
freezing [32]. In the brown tree frog Litoria ewingii, the level of glycerol and not glucose
increases upon freezing [33], as seen in the present study on nematodes. However, in freeze tol-
erant reptiles cryoprotectants are poorly developed [34]

The significant increase of glycerol but not trehalose during freezing suggests that glycerol
plays a more important role than trehalose in the survival of nematodes once they are frozen.
The glycerol response is rapid in response to dehydration and it quickly equilibrates the
osmotic pressure [17]. Glycerol is a penetrating cryoprotectant [12] and readily permeates
across membranes [35]. Therefore, its role during freezing could be more important than tre-
halose, which is a non-penetrating cryoprotectant [12]. Trehalose does not change during
freezing and thus its role as a stress protectant is more likely to be before or on the onset of
freezing. However, the presence of trehalose in the frozen nematodes suggests that its cryopro-
tective properties may still operate in the freezing process per se; nevertheless the concentra-
tion is less than that of glycerol. Trehalose is an important cryoprotectant but does not
increase during the freezing process, suggesting that some other factors could be involved in
coping with long-term freezing stress in this nematode after ice formation. S. feltiae is a freeze
tolerant species and can survive intracellular freezing [7]. For a freeze tolerant species recrys-
tallization or the migration of still-liquid salty domains could be quite damaging [36,37].
However, this species has been shown to have small ice crystals post freezing, and may thus,
exhibit recrystallization inhibition activity which is likely to be responsible for the long term
survival of freezing [7].

The difference in cryoprotectant concentrations after different acclimation or freezing
regimes could also be due to the different temperatures (−1, −3, +5°C) used in the treatments
tested in the present study. However, trehalose accumulation was more time than temperature
dependent as there was no significant difference in trehalose concentration between nematodes
undergoing cryoprotective dehydration or acclimated at 5°C for two weeks. Also in our previ-
ous experiments there was a significant improvement in survival when the exposure time of
nematodes at −1°C was extended from 75 minutes to overnight [26]. During this extended
exposure to the same temperature, the nematodes may accumulate more cryoprotectants, as an
acclimation response to low temperature, which accounts for the difference in their survival.

Since the nematodes themselves do not freeze at −1°C [7], this extended exposure of nema-
todes may also result in loss of water from the nematode body due to cryoprotective dehydra-
tion [26,38]. Thus the accumulation of cryoprotectants at −1°C could be a response to both
desiccation and low temperature. Dehydration results in the synthesis of desiccation protec-
tants such as trehalose and glycerol from glycogen [39] or from lipids [35]. Freezing survival is
correlated with the elevated levels of trehalose and glycerol accumulated when the nematodes
are acclimated slowly over an extended period of time (~ 14 hours) before freezing. In a recent
study, Shapiro et al [40] exposed various entomopathogenic nematodes including S. feltiae to
freezing and desiccation stress but could not find any correlation between desiccation and
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freezing tolerance. However, their freezing regime and rate of cooling was different than those
used in the present study.

The synthesis of trehalose continues, as long as the nematodes are unfrozen, with glycerol
being converted into trehalose via glycogen. Trehalose and glycerol have been widely reported
as cryoprotectants in animals [13] including several nematode species [41,42,43]. These cryo-
protectants act colligatively by replacing the water and thus decreasing the amount of ice
formed in the body [44]. They depress the melting point and thus lower the supercooling
point, enabling the nematode to avoid freezing in some species. This could prevent the infective
juveniles of S. feltiae from freezing at high sub-zero temperatures, such as −1°C [26]. Cryopro-
tectants can also act non-colligatively by protecting cell membranes and proteins from dena-
turation, maintaining the osmotic balance [45]. Glycerol as a cryoprotectant was first reported
by Salt [46] from insects. Grewal and Jagdale [20] correlated cold acclimation-induced treha-
lose accumulation with survival in three species of entomopathogenic nematodes, including S.
feltiae both at 5 and 25°C. The amount of trehalose was high at 5°C [9]. S. kushidai also accu-
mulates 1.4% dry weight trehalose when acclimated at 5°C for 20 days [9]. The freeze tolerant
Antarctic nematode Panagrolaimus davidi also elevates trehalose but not glycerol levels when
acclimated at 5°C [11]. Qiu and Bedding [21] showed that S. carpocapsae and four other species
of entomopathogenic nematodes accumulated more trehalose at 5°C than at any other temper-
ature, thus trehalose accumulation in response to cold stress could be a common characteristic
of the infective juveniles of entomopathogenic nematodes. The present study supports this
notion.

Steinernema feltiae thus, has two strategies of cryoprotectant accumulation: one is a response
to low-temperature acclimation where the body fluids are in a cooled or supercooled state and
the infective juveniles produce trehalose before freezing. During this process glycerol is partly
converted to trehalose. The second strategy is a rapid response to freezing which induces the
production of glycerol but trehalose levels do not change. Cryoprotective dehydration produces
high concentrations of both trehalose and glycerol, suggesting that both an acclimation and a
freezing response are triggered. Both glycerol and trehalose act as cryoprotectants in this species
and play an important role in its freezing tolerance.
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