
Introduction
Since the discovery of radiation at the end of the 19th 
century, radiotherapy has become one of the most impor­
tant modalities for treating cancer. The schedules (total 
radiation dose, dose per fraction, number of fractions, 
overall treatment time and volume irradiated) have been 
developed to maximize tumor kill and minimize normal 
tissue damage. The radiation dose prescribed depends on 
the cancer type and surrounding normal tissue tolerance. 
Doses are generally given so that <5% of patients suffer 
serious toxicity up to 5 years following radiotherapy [1,2]. 
Serious side effects such as bowel obstruction and 
incontinence can occur months to years after treatment, 
be extremely debilitating and impact negatively on the 
quality-of-life of cancer survivors.

Given the millions of cancer survivors worldwide, 
estimated at 2 million in the UK and 12 million in the 
USA, there is a need to increase our understanding of the 
molecular pathogenesis of radiotherapy toxicity, find 
ways of predicting those patients likely to suffer with 
long-term side effects, and develop new approaches for 
their amelioration. As there is a direct relationship 
between radiation dose and tumor control, the develop­
ment of side effects in a minority limits the dose that can 
be safely prescribed to the majority of patients. Develop­
ment of a test to predict those likely to suffer side effects 
should enable individualized radiation dose prescription 
to increase cancer cure while reducing the number of 
survivors suffering with the consequences of treatment.

In this review, we outline the current radiotherapy 
approaches and understanding of how this treatment 
works. Then we discuss toxicity and the importance of 
genetics. We then focus on recent developments in iden­
tifying the genetic variants underlying radiosensitivity 
and the results from the first genome-wide association 
studies (GWASs), which suggested that a polymorphism 
in the follicle-stimulating hormone receptor (FSHR) gene 
might be associated with erectile dysfunction in African-
American men after radiotherapy for prostate cancer [3] 
and variants in PRDM1 with second cancer induction 
following radiotherapy for Hodgkin’s lymphoma [4].

Radiotherapy for cancer
Around half of cancer patients receive radiotherapy [5], 
with an estimated 40% cured by radiotherapy compared 
with 49% by surgery and 11% by chemotherapy [6]. For 
some cancers of the head and neck, lung, cervix, bladder 
and prostate, radiotherapy can be used instead of surgery 
to achieve similar cure but with better functional results 
(for example, voice preservation for larynx cancers). For 
locally advanced cancers unsuitable for surgery, it is 
usually the only potentially curative option (for example, 
cervix). It is used neo-adjuvantly to shrink tumors prior 
to surgery (for example, rectal) and adjuvantly following 
surgery to target local microscopic spread of disease (for 
example, breast). As few tumors are cured by chemo­
therapy alone, improving the results of radiotherapy 
would impact significantly on cancer survival statistics. 
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Radiotherapy outcomes are improving because of tech­
nical developments allowing better radiation delivery to 
reduce the amount of normal tissue irradiated. Further 
gains will require a better understanding of molecular 
mechanisms and personalized treatment based on an 
individual patient’s biology.

Current radiotherapy approaches
The two main approaches are external beam radiotherapy 
(EBRT) and brachytherapy. EBRT is used most widely 
and involves radiation delivered from a machine outside 
the body (usually high energy X-rays from a linear 

accelerator). Radiation is given from different angles by 
moving the linear accelerator gantry so that multiple 
beams converge on a tumor. The area irradiated is deter­
mined by tumor imaging before treatment, and a target 
volume delineated to which margins are added to allow 
for microscopic spread and tumor movement. Until 
recently EBRT was planned in two dimensions and the 
radiation beam delivered from just a few angles (front 
and back, and sometimes both sides) with large box/
rectangular fields including adjacent normal tissues 
(Figure  1). With the development of computed tomo­
graphy (CT) and computers, tumors are now delineated 

Figure 1. Radiotherapy for cancer. (a) Treatment plan for a cervix tumor from 1990 with radiation delivered as two fields from the front and back 
- parallel opposed pair - with the gantry of the linear accelerator moving to deliver high energy X-rays from different directions. A large rectangular 
volume, including the central uterus containing the tumor, parts of the bowel (top) and the base of the spine (bottom), received the maximum 
planned dose. (b) Treatment plan for a cervix tumor from 2011 with radiation delivered as four fields (front, back, both sides) and multileaf 
collimators (metal leaves that move independently to block the path of the beam) to shape (conform) the maximum radiation dose not only 
around the large tumor but also to follow the lymph node chains where the disease had spread, while sparing as much normal tissue as possible. 
(c) Treatment plan from 2011 to treat pelvic sidewall disease following surgical resection for a cervix tumor. The intensity modulated radiotherapy 
was given as eight fields, with radiation intensity modulated along the beams using multileaf collimators to deliver the maximum dose to the 
tumor and to spare normal tissue. (d) Intensity modulated radiotherapy for a breast tumor. Examples of uneven radiation dose distribution using 
standard two-dimensional radiotherapy (left). The orange color depicts regions of unwanted high dose, superiorly and inferiorly. There is also an 
unwanted low-dose region depicted in green. Changing to intensity-modulated radiotherapy evens the dose distribution across the breast, as 
shown by the more homogeneous yellow color (right).

(b)

(d)(c)

(a)

West and Barnett Genome Medicine 2011, 3:52 
http://genomemedicine.com/content/3/8/52

Page 2 of 15



in three dimensions using conformal radiotherapy where 
beams are shaped using metal plates (multileaf colli­
mators) to shield normal tissue. EBRT is usually given as 
a course of multiple fractions, for example, 33 fractions of 
2 grays (Gy; the standard unit of absorbed radiation dose) 
given Monday to Friday over 6 to 7 weeks. Fractionation 
maximizes tumor kill and minimizes normal tissue 
damage. The number and size of fractions are tumor type 
and stage specific but the schedules vary between centers 
and countries.

Brachytherapy involves placing radiation sources 
(radioactive seeds, needles, wires, pellets) into the body, 
within or close to a tumor. It is the treatment of choice in 
some centers for some breast and prostate cancers, and 
in most centers for locally advanced gynecological 
cancers. Different types of radioactive material are used. 
Radiation is also given systemically for some cancers as 
part of standard treatment, for example, radioactive 
iodine for some thyroid cancers [7] and radioimmuno­
therapy (monoclonal antibodies conjugated with radio­
nuclides) for some lymphomas [8].

New and emerging radiotherapy approaches
Technical developments are improving the delivery of 
radiation (Figure 1). One technique used increasingly [9] 
is intensity-modulated radiotherapy (IMRT), where doses 
are varied along multiple beams using multileaf colli­
mators to allow shaping to concave targets [10-13]. 
Evidence for the benefit of IMRT is now compelling [14], 
for example, randomized studies showing that IMRT 
reduces toxicity in head and neck [15,16] and breast 
[17,18] cancer. Another new approach being introduced 
is image-guided radiotherapy (IGRT) [19,20]. In IGRT, 
tumor motion can be tracked using radio-opaque 
markers implanted in or near a tumor. Changes in tumor 
position, size and shape during and between treatment 
fractions can therefore be monitored. This movement 
can be accounted for to improve the geometric accuracy 
of radiotherapy delivery and reduce volumes irradiated in 
shrinking tumors to spare normal tissues [21].There is an 
increasing diversity of IGRT approaches available from 
the different companies who manufacture linear 
accelerators. Stereotactic radiotherapy is a type of IGRT 
involving very detailed imaging and high radiation doses 
to small volumes. Proton treatment is being used 
increasingly, with more facilities becoming available 
worldwide. Proton therapy allows for high-dose radiation 
to be deposited very accurately at a fixed depth, and is 
particularly advantageous when the target lies close to 
critical normal tissue structure, such as in the treatment 
of the brain stem and in pediatric malignancies [22]. 
Protons have also been used in the treatment of prostate 
cancer to achieve dose escalation while minimizing doses 
to normal tissues [23].

How radiotherapy works
When radiation interacts with tissue energy, deposition 
along a track causes ionizations (ejection of an electron 
from an atom; approximately 105 per gray per cell) with a 
clustering of ionizations at radiation track ends. Ioniza­
tions produce free radicals (atoms with unpaired electrons), 
which are highly reactive and can break chemical bonds. 
The most harmful effect to cells is damage to DNA, for 
example, single-strand breaks, double-strand breaks 
(DSBs) and DNA crosslinks. DSBs are the most important 
as they are harder to repair than other DNA lesions 
because the two DNA ends can separate, and accompany­
ing base damage hampers DSB ligation [24]. Unrepaired/
misrepaired DSBs can be lethal/mutagenic. A single 
unrepaired DSB is lethal if it inactivates a critical gene or 
triggers apoptosis. Approximately 40 DSBs are induced 
per gray of sparsely ionizing radiation and most are 
repaired, with approximately one DSB unrepaired [25]. 
There are two main pathways for repairing DSBs: non-
homologous end joining (NHEJ) and homologous recom­
bination (HR) [26]. Figure 2 lists many of the genes 
involved. The two DNA repair pathways are complemen­
tary and are used in different situations. HR requires a 
homologous template, occurs during S and G2 phase 
(that is, in proliferating cells) and is error free [27]. 
Alternative NHEJ pathways operate when the classical 
route is impeded (for example, due to a gene mutation) 
and they involve the MRN (MRE11-RAD50-NBN) com­
plex important in HR, PARP1, XRCC1 and LIG1 or LIG3 
[27]. The MRN complex also controls sensing, signaling, 
regulation and responses to DSBs, including ATM activa­
tion. ATM phosphorylates Chk2, which targets Cdc25A 
for degradation, preventing its inhibition of Cdk1-Cyclin 
B and Cdk2-Cyclin B, leading to cell cycle arrest. ATM 
also phosphorylates p53 in response to DSBs. ATR is 
another protein recruited to DSB sites, and it signals via 
Chk2 to promote cell cycle arrest. Signaling via ATM/
ATR induces apoptosis or cellular senescence if DSB 
repair fails. Chromatin structure is also involved and 
ATM/ATR/DNA-PK cause phosphorylation of the 
histone H2AX on chromatin alongside DSBs.

Radiation causes other types of damage. Formation of 
reactive oxygen species (ROS; free radicals involving 
oxygen) and reactive nitric oxide species (RNOS) induce 
stress responses, inflammation, and release of cytokines, 
growth factors and chemokines [28,29]. The finding that 
ATM is also involved in protecting cells from ROS 
accumulation by stimulating NADPH production and 
promoting the synthesis of nucleotides for DSB repair 
[30] highlights the complex interplay between multiple 
molecular radiation responses.

When radiation interacts with tissues, ionizations 
produce free radicals that damage DNA. Cells respond by 
undergoing cell cycle arrest to allow DNA damage repair. 
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Most damage is repaired, but unrepaired damage causes 
cell death via necrosis or apoptosis. In general, cells do 
not die immediately after irradiation - death occurs after 
replication is attempted often after three or four cell 
divisions. Proliferating cells are more sensitive than 
quiescent cells to radiation-induced killing because they 
have less time to repair damage. Misrepaired DNA 
damage can cause genomic instability - cells can replicate 
but damage and cell kill can occur after many cell 
divisions - and cancer induction after many years. The 
genome of some people is more unstable than others and 
individuals with cancer-prone conditions associated with 
genomic instability, such as ataxia telangiectasia, tend to 
be radiosensitive. Tumors are more susceptible to the 
DNA damaging effects of radiation because the cells are 
generally proliferating faster compared with surrounding 
normal tissues. Also, because of the many genetic 
changes that occur in tumors they are generally less able 
to repair or correctly repair radiation-induced DNA 
damage. Figure 2 shows many of the important genes 
involved in cell and tissue response to radiation covering 
the mechanisms known so far. Until the last decade, 
DNA damage responses dominated research in the area 
and understanding the repair pathways continues to be a 
key area of research. There is increasing interest though 
in understanding the mechanisms involved in 

radiation-induced inflammatory and stress responses to 
ROS and this is also a key area of research. The latter is 
particularly important for understanding how radiation 
affects cells not directly irradiated - bystander cell killing 
[31].

Side effects of radiotherapy
All patients receiving potentially curative radiotherapy will 
experience toxicity. There is variation in severity from 
minor to severe and in duration from weeks to a lifetime. 
Very rare extreme toxicity results in death and is usually 
associated with an undiagnosed radiosensitive genetic 
condition [32]. There are several grading systems for 
recording radiotherapy side effects, with the common 
toxicity criteria for adverse events system being used 
increasingly. Toxicity is not generally documented system­
atically in routine clinical practice because it is too time 
consuming [33]. Grading is generally on a scale of none, 
mild, moderate or severe, with some as either none or yes 
(for example, sterility following ovary/testes irradiation).

Side effects are typically local occurring in irradiated 
sites and are numerous, variable and site dependent 
(Table 1). Acute toxicity occurs during or shortly after 
completion of treatment and is usually reversible. Acute 
effects occur in rapidly proliferating tissues as a result of 
cell death, for example, skin (erythema, dermatitis, 

Figure 2. Summary of the pathways and mechanisms involved in cell and tissue response to radiotherapy. The interaction of ionizing 
radiation with tissues leads to multiple types of DNA damage (for example, base damage, single-strand breaks, double-strand breaks). Double-
strand breaks are harder to repair and are the most important DNA lesion induced by radiation. Radiation also produces reaction oxygen (ROS) and 
nitrogen (RNOS) species that stimulate cytokine, growth factor and chemokine responses. There are multiple interconnected signaling networks 
that respond to radiation damage that can lead to cell death, cell senescence, genomic instability, mutations and inflammatory response. Some of 
the key genes involved in the processes are shown. The information taken from Bentzen (2006) [28], Jeggo and Lavin (2009) [80] and Bhatti et al. 
[132]. HR, homologous recombination; NHEJ, non-homologous end joining; NOS, nitric oxide synthase; SOD, superoxide dismutase.
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desquamation, hair loss), intestine (diarrhea) and bladder 
(cystitis). Acute effects are generally manageable (for 
example, use of feeding tube for patients with head and 
neck cancer) and transient due to proliferation and re­
population by surviving stem cells. Late effects, mani­
festing months to years after radiotherapy, can be 
permanent and are dose limiting. An example is fibrosis, 
which can lead to obstruction of bowel or urethra follow­
ing irradiation of tumors in the pelvis, and hardening in 
the breast following radiotherapy for breast cancer. 
Severe late toxicity impacts negatively on quality-of-life 
(for example, bowel incontinence) and can be life-
threatening (for example, bowel obstruction). The long 
time course for their development prevents titration of 
dose against toxicity in individual patients, and the 
relationship between acute and late effects remains 
unclear [34-36].

The pathogenesis of late toxicity includes fibrosis, 
atrophy and vascular damage and the molecular processes 
involved are shown in Figure 2. Fibrosis represents an 
inflammatory-mediated proliferation response of surviv­
ing fibrocytes to growth factors, cytokines and chemo­
kines released following irradiation [28]. Atrophy (tissue 
shrinkage) reflects cell kill. The effects of fibrosis and 

atrophy include hardening and shrinkage of an irradiated 
breast or the development of strictures and malabsorp­
tion in irradiated small bowel. Vascular damage can cause 
small vessel dilation, manifesting as telangiectasia in the 
skin or hematuria (blood cells in urine due to bleeding) in 
an irradiated bladder. Alternatively, vascular damage can 
cause small vessel constriction, which manifests as 
ischemia and necrosis, and examples include bowel per­
foration and fistulae. Other important late effects include 
hormone deficiencies, infertility and, in patients with a 
long life expectancy, second malignancies.

A challenge for radiogenetic/radiogenomic studies is to 
obtain cohorts of patients with good quality (that is, com­
plete, longitudinal, including pre-treatment, and compre­
hensive) toxicity data along with other data on possible 
non-genetic risk factors (Table 2). Several factors influence 
the likelihood of a patient developing toxicity; these 
factors are broadly related to physics (for example, 
toxicity increases with increasing radiation dose and 
volume), concurrent treatments (for example, chemo­
therapy tends to increase toxicity), patient history (for 
example, patients with comorbidities such as diabetes 
and rheumatoid arthritis tend to suffer more toxicity, 
smoking increases toxicity) and genetics. The challenge 

Table 1. Radiotherapy toxicity

Site/tissue	 Acute	 Late

Skin	 Erythema, dry skin, desquamation, transient hair loss, dermatitis, 	 Subcutaneous fibrosis (induration/hardening), dry skin (loss 
	 pain	 of sweat glands), atrophy (thinning), dyskeratosis,  
		  telangiectasia (blood vessel damage), permanent hair loss,  
		  pigmentation, ulceration (necrosis)

Central nervous system	 Tiredness, nausea, edema, transient radiation myelitis with 	 Fibrosis, demyelination, vascular damage, necrosis, cognitive 
	 numbness, paresthesia and ‘electric-shock’-like sensation often 	 decline, hearing loss, hypopituitarism, myelopathy, paralysis 
	 precipitated by neck flexion (Lhermitte’s syndrome)	

Head and neck	 Erythema, edema, oral mucositis, pain	 Fibrosis, telangiectasia, dry mouth (xerostomia), dental caries,  
		  osteo-radionecrosis, cartilage necrosis

Eye	 Local irritation , watery eyes (increased lacrimation)	 Cataract formation, dry eyes (xerophthalmia), weeping  
		  eye (epiphora) due to impaired lacrimal drainage,  
		  impairment of corneal sensation leading to damage, corneal  
		  ulceration and corneal keratinization, retinal hemorrhage,  
		  exudate and degeneration, optic atrophy

Esophagus/stomach	 Mucositis, dysphagia, gastritis, pain, vomiting	 Fibrosis, stenosis, strictures, obstruction, ulceration

Lung	 Pneumonitis (dyspnea, non-productive cough and chest tightness)	 Fibrosis (scarring), dyspnea

Breast	 Edema	 Lymphoedema, fibrosis (hardening), atrophy (shrinking) 

Intestine	 Mucositis, malabsorption, vomiting, diarrhea, pain, tenesmus, 	 Malabsorption, adhesions, stenosis, obstruction, proctitis,  
	 passage of mucus, bleeding	 fistulae, incontinence, telangiectasia (leading to rectal  
		  bleeding), ulceration

Kidney, ureter, bladder	 Radiation nephritis, cystitis, increased micturition, dysuria, 	 Chronic radiation nephritis (proteinuria, nocturia),  
	 hyperemia, mucosal edema	 progressive nephropathy with hypertension, and proteinuria,  
		  fibrosis, ulceration, obstruction, incontinence

Reproductive tract	 Vaginal mucositis, cessation of menstruation	 Sterility, induction of menopause, vaginal stenosis, vaginal  
		  obstruction, vaginal dryness, erectile dysfunction 

Bone and cartilage		  Growth retardation of growing bone, osteoradionecrosis,  
		  cartilage necrosis

Hemopoietic	 Decreased total white cells (leukopenia), decreased platelets  
	 (thrombocytopenia) 
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for radiogenetics/radiogenomics is to quantify accurately 
the non-genetic risk factors so that the influence of 
genetics can be detected reliably.

Genetics of radiosensitivity
Radiosensitivity is a broad term applied to cells, tissues 
and individuals. Different cell types vary in radio­
sensitivity as do cells from different individuals. Some 
tissues are more tolerant of radiation because of their 
organization - if a small part of a lung is destroyed by a 
high dose of radiation, lung function can be maintained 
by remaining healthy tissue, but if a small section of 
spinal cord is damaged it can lead to paralysis. Some 
tissues are sensitive because they have a higher level of 
proliferation or undergo apoptosis. Individuals also vary 
in radiosensitivity and this can be associated with cellular 
radiosensitivity and/or genomic instability.

Measuring radiosensitivity
Radiosensitivity is typically measured in research studies 
(not routine clinical practice) using cells (mainly blood 
lymphocytes or fibroblasts cultured from skin samples). 
Cells are irradiated and can be assayed using several 
approaches (Figure 3). The gold standard is a clonogenic 
assay, which is a sensitive method for measuring radio­
sensitivity over several logs of cell kill. Clonogenic assays 
assess reproductive integrity, that is, ability of single cells 
to form a colony with a minimum of 50 cells (representing 
at least five to six cell divisions) [37]. Other assays are 
used to assess radiosensitivity: chromosome damage 
endpoints, DNA damage endpoints, apoptosis [38,39] 
and cell cycle delay [40]. Examples of chromosome 
damage endpoints are G2 [41] and micronucleus [42] 
assays (Figure  3). An example of a DNA damage assay 
involves scoring radiation-induced gammaH2AX foci 
[43]. Measurements of radiosensitivity in humans show 
the heritability of the trait (Table 3) and an approximate 
normal distribution (like other polygenic traits such as 
height) [41,44] (Figure 3). Current understanding is that 
radiosensitivity is an inherited polygenic trait, dependent 
on the interaction of many genes/gene products involved 
in multiple cell processes [45].

Which genes are important?
Study of genetic syndromes associated with mutations in 
genes in DNA repair pathways provided the first insight 
into human variations in radiosensitivity. Ataxia telan­
giectasia, associated with mutations in ATM, was the first 
reported syndrome with extreme clinical (life-threatening 
radiotherapy toxicity) and cellular radiosensitivity [46]. 
Other syndromes have been identified associated with 
mutations in genes involved in DNA recognition and 
repair, cellular radiosensitivity, genomic instability and 
cancer pre-disposition (Table 4). As NHEJ is involved in 
VDJ recombination (DNA rejoining process during T 
and B cell development), syndromes involving defective 
NHEJ genes are also associated with immunodeficiency. 
Several syndromes are associated with genomic insta­
bility and a high risk of radiation-induced cancers, for 
example, Li-Fraumeni (TP53) and retinoblastoma (RB1) 
[47], but cellular and clinical radiosensitivity are not 
generally seen [44]. Other evidence comes from experi­
mental data showing mutations in genes involved in 
DNA repair pathways increase cellular radiosensitivity, 
for example, the radiosensitive Chinese hamster ovary 
cell lines (gene mutated): irs1 (XRCC2), irs2 (XRCC8), 
irs3 (RAD51C), irs20 (PRKDC), IRS1-SF (XRCC3), xrs5 
(XRCC5) and XR-1 (XRCC4) [48].

Other genes of interest are downstream effectors of 
cellular responses to radiation-induced damage, such as 
those involved in the control of apoptosis and cell cycling 
(Figure  2). Cells able to undergo apoptosis or having 
impaired cell cycle arrest following irradiation tend to be 
radiosensitive [49-51]. As ROS/RNOS are important 
(Figure 2), genes encoding antioxidants involved in free-
radical scavenging are also implicated, for example, 
superoxide dismutase (SOD1), glutathione S-transferases 
(for example, GSTA5) and catalase (CAT), and germline 
genetic variations that predispose to increased levels of 
ROS may predispose to increased radiation toxicity [52]. 
ROS/RNOS pathways are less widely studied than those 
involving DNA repair in terms of cellular and clinical 
radiosensitivity, but there is evidence that changing levels 
of antioxidants can alter cellular radiosensitivity [53,54]. 
Cytokines such as transforming growth factor beta 

Table 2. Information for radiogenetic/radiogenomic studies

Category	 Information

Tumor	 Type, stage (tumor, node, metastases (TNM)), pathology, volume

Patient	 Age, smoking history, alcohol use, ethnicity, weight, height, breast volume for breast patients (cup size), co-morbidity (for example, diabetes,  
	 collagen vascular disease, hypertension, inflammatory bowel disease)

Treatment	 Total dose, number of fractions, dose per fraction, overall treatment time, use of chemotherapy, use of hormone therapy, use of surgery and  
	 postoperative complications, concurrent medications (for example, statins)

Physics	 Total radiation dose, dose per fraction, overall treatment time, planned doses to critical normal tissues

Toxicity	 Pre-treatment data and collection a minimum at end of treatment, 6 months and then yearly. Use of site-specific patient-reported toxicity  
	 preferable as primary endpoints as physician-reported toxicity underestimates toxicity. Physician-reported toxicity 
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(TGFB1), tumor necrosis factor alpha (TNF), interferons 
and interleukins are also involved in the development of 
toxicity. For example, IL17 receptor knockout mice have 
enhanced myelotoxicity and impaired hemopoietic 
recovery following irradiation [55]. There is now sub­
stantial evidence for the importance of TGFB1 in the 
pathogenesis of fibrosis following radiotherapy [28,56]. In 
comparison with DNA repair defects, however, there is 
less evidence for a direct role in clinical and cellular 
radiosensitivity but the area has been less widely studied. 
Irradiated homozygous TGFB1 knockout fibroblasts 
were more radiosensitive than wild-type fibroblasts [57]. 

However, patients with Marfan syndrome associated with 
mutations in FBN (fibrillin-1; increases interstitial fibro­
sis and TGFB1 activation in murine knockouts) under­
going radiotherapy showed no increased toxicity [58]. It 
is an area requiring further study.

Genetic variation and radiotherapy toxicity
Numerous studies have reported associations between 
genetic variation reported as SNPs in the candidate genes 
described above and radiotherapy toxicity (Table 5). 
However, most studies have involved only small patient 
numbers and no replication. The only replication study 

Figure 3. Measuring radiosensitivity. There are many assays for measuring radiosensitivity. The gold standard is a clonogenic assay where single 
cells are plated and allowed to grow for 1 to 4 weeks to assess ability to form colonies. (a) Colonies from fibroblasts cultured from a human skin 
sample. As it takes several weeks to culture fibroblasts and carry out a clonogenic assay, more rapid assays are often used. (b) An example of a more 
rapid assay is the G2 assay: a peripheral blood sample is taken, lymphocytes are stimulated to proliferate with the mitogen phytohemagglutinin, 
after 72 hours the cells are irradiated with 0.5 gray (Gy), and after 30 minutes colcemid is added for 60 minutes to arrest cells at metaphase that 
were in G2 when irradiated. The number of chromosome aberrations (arrows) is scored relative to unirradiated controls [41]. (c) Another example 
is the micronucleus assay: peripheral blood lymphocytes are irradiated with approximately 2 Gy and incubated for 2 days, cytochalasin B is added 
to prevent cytoplasm division after mitosis, and cells are harvested after 1 day and the number of micronuclei per 100 to 1,000 cells is scored 
[42]. Demonstration of cellular radiosensitivity in individuals with life-threatening radiotherapy toxicity or cancer-predisposing syndromes usually 
involves fibroblasts and derivation of radiation survival curves. (d) Survival curves for a number of individuals, including one (blue line) with ataxia 
telangiectasia, showing extreme cellular radiosensitivity. Parameters can be obtained from fitting curves to the data and parameters that reflect 
the initial slope, such as alpha and surviving fraction at 2 (SF2) or 3 Gy, are better at showing differences in radiosensitivity between people [133]. 
(e) Normal (that is, non-syndromic) individuals vary in radiosensitivity with a distribution that is approximately normal [134].
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carried out failed to validate previous findings [59]. The 
lack of independent validation for any of the SNPs 
studied makes it impossible to say with certainty whether 
any predispose a patient to suffer toxicity. Due to the 
generally small numbers studied and overestimation of 
risks associated with rare alleles, the studies have lacked 
the statistical robustness required for changing patient 
management [45,60].

First genome-wide association studies
With the rapid reduction in cost of genotyping, there is 
increasing interest in carrying out GWASs to identify 
new genes associated with toxicity. Kerns et al. [3] 
recently reported the results of the first GWAS. In a study 
of African-American patients with prostate cancer, 27 
who developed erectile dysfunction after radiotherapy 
were compared with 52 controls. The SNP rs2268363 in 
the follicle-stimulating hormone receptor gene (FSHR; 
involved in testes development and spermatogenesis) was 
associated with erectile dysfunction with a P-value that 
reached genome-wide significance (P = 5.5 × 10-8) and an 
odds ratio of 7.0 (95% confidence interval 3.4 to 12.7). Of 
course, we cannot state with certainty that the FSHR SNP 
is associated with radiotherapy toxicity until the finding 
is validated. Unfortunately many highly significant 
phenotype-genotype associations are found in GWASs 
but few are replicated because of a high level of false 
positives due to studying several hundred thousand 
SNPs, population stratification and genotyping artifacts 
[61]. SNPs with rare minor allele frequencies and poor 
genotype call rates are unlikely to replicate [61]. With the 
caveat that the findings require validation, the study of 
Kerns et al. represents an important first step for the 
radiotherapy community and it is interesting that the 
SNP possibly identified is tissue specific.

Another recent study carried out a genome-wide 
screen of microsatellite markers in 360 patients with a 
variety of cancers and identified a marker in the promoter 
region of SEM3A (required for neuronal development) 

associated with acute radiotherapy toxicity [62]. Again, 
there has been no confirmatory study but, as the gene 
had no previous known role in modulating radio­
sensitivity, the authors showed that siRNA knockdown 
increased fibroblast radioresistance [62].

A third GWAS looked at 277 lymphoblastoid lines to 
identify SNPs associated with radiosensitivity measured 
in vitro. The work employed pharmacogenetic methods 
measuring viability after graded radiation doses (up to 
45 Gy) and analyzed area under dose response curves to 
measure radiosensitivity, none of which is a standard 
radiobiology approach. The following genes were identi­
fied and suggested to influence radiosensitivity using 
siRNA (in tumor cell lines): C13orf34, MAD2lI, PLK4, 
TPD52 and DEPDC1B [63].

The three GWASs described above all have their limita­
tions; it remains to be seen whether the findings are valid­
ated and no firm conclusions can be drawn. However, they 
represent important first steps towards identifying geno­
types associated with radiosensitivity/radiotherapy toxicity 
and in collecting the samples and data required that 
should eventually contribute to international pooled 
replication studies as other GWASs emerge in the next 
few years. It is interesting that the genes possibly 
identified in the three studies are not obvious radiation-
associated candidate genes; this is consistent with current 
opinion that we have insufficient understanding of the 
molecular pathogenesis of radiotherapy toxicity as a 
polygenic phenotype. Information from GWASs of other 
phenotypes suggest the allelic architecture underlying 
radiosensitivity will include a spectrum ranging from 
rare, highly penetrant to low-risk common alterations 
[60]. Although GWASs are currently only expected to 
capture a fraction of the genetic determinants because 
several hundreds of thousands of patients must be 
studied to identify variants with small effects, it is impor­
tant that the radiotherapy research community work 
together to pick this ‘low hanging fruit’. Such work is vital 
to ensure we have the samples and data to exploit new 

Table 3. Evidence for heritability of radiosensitivity as a human trait

Study population	 Assay*	 Heritability (%)	 Reference

16 Radiosensitive breast cancer survivors and 37 first-degree relatives, 	 G2	 82	 [41] 
4 breast cancer survivors with normal radiosensitivity and 15 first-degree relatives

23 Cancer survivors, 29 partners, 38 offspring, 27 controls	 G2	 67	 [76]

148 Monozygotic and 57 dizygotic twin pairs; 50 siblings	 Apoptosis	 63	 [77]

199 Father, mother, offspring trios	 Apoptosis	 61	 [78]

38 Dizygotic and 16 monozygotic twin pairs	 Apoptosis; cell cycle delay	 68; 59	 [40]

29 Cancer survivors, 29 partners, 53 offspring	 G2	 58 to 78	 [79]

39 Monozygotic and 10 dizygotic twin pairs	 MN	 68	 [42]

*Peripheral blood lymphocytes were used in all studies. The G2 assay involves scoring chromosome damage in cells irradiated in G2 phase of the cell cycle. The 
micronucleus (MN) assay involves irradiating cells and preventing progression through mitosis. Radiation-damaged chromosomes form micronuclei that are counted.
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research strategies being developed to identify rare 
variants, for example, including populations with differ­
ent ethnicity/founder populations where variants are 
more prevalent and studying structural variation (for 
example, copy number variants) [64].

In 2011, the results were published of the first GWAS 
looking at radiotherapy-induced second cancers [4]. The 
study involved individuals who underwent radiotherapy 
for Hodgkin’s lymphoma as children: 100 cases and 89 
cancer-free controls in a discovery cohort and 96 cases 
and 82 controls in a replication cohort. Two variants at 
chromosome 6q21 were identified implicating PRDM1 
(also referred to as BLIMP1). PRDM1 encodes a trans­
cription factor that acts as a repressor of beta-interferon 
gene expression to co-ordinate response to viral infection 
by regulating proliferation and differentiation. There are 
a number of interesting observations to make from the 
study. First, the implication that altered immune function 
increases the risk of radiation-induced cancers. Second, 
the effect sizes associated with the SNPs identified were 
higher than expected from observations emerging for 
other traits (per allele odds ratios of 2 to 4) [65]. Third, 
although relatively few individuals were studied (com­
pared with other GWASs) the findings were not only 
replicated but also confirmed in a functional assay. The 
high effect size was attributed to a strong genetic sus­
ceptibility with young age of radiotherapy as the contri­
bution of genetics to cancer susceptibility is likely to 
decrease with age as environmental and lifestyle factors 
exert an increasing influence [65], which is also a likely 
explanation for the ability to use a small sample size.

The increasing recognition that most GWASs must 
include thousands of patients [45,60] led to the establish­
ment of a radiogenomics consortium in 2009 [66]. The 

consortium created an important link between existing 
collaborative groups [67-69] and other smaller consortia. 
The consortium should provide a route for sharing and 
developing expertise and quality assurance procedures, 
developing best practices for data collection, and pooling 
data and carrying out replication studies. There are many 
challenges in radiogenomics: (1) radiotherapy schedules 
vary between centers and countries; (2) recording radio­
therapy toxicity is not routine and there are multiple 
scoring schemes; (3) there are multiple sites (for example, 
breast, head and neck, prostate) and multiple endpoints 
involved within each site (Table 1); (4) there is no 
consensus on the best toxicity time point to use (acute, 
2 or more years); (5) there is no standardization of possible 
non-genetic risk factor data collection (Table 2); (6) more 
work is required to improve our ability to incorporate 
radiation physics data (the actual dose received by 
surrounding normal tissues); (7) we need to determine 
the best way of pooling data from multiple studies. A key 
advance in the area will be the standardization of data 
collection and further GWASs involving large cohorts.

Predicting response to radiotherapy
Studies measuring radiosensitivity to predict radio­
therapy toxicity have used a variety of assays, yielded 
mixed results and there is currently no method suitable 
for routine clinical use that accurately assesses the 
radiosensitivity of an individual [70]. There has been little 
standardization of the methods used and the approaches 
are varied in terms of samples (for example, blood, skin, 
plasma), timing (for example, before, during) assays (for 
example, clonogenic, DNA damage, chromosome damage, 
level of apoptosis assessed using flow cytometry, cytokine 
production assessed using ELISA, gene expression profiling, 

Table 4. Genes involved in human radiosensitivity identified from syndromes

Gene	 Characteristics	 References

ATM	 Mutated in individuals with AT; chromosomal instability, immunodeficiency, cancer predisposition, extreme clinical and 	 [46,80]
	 cellular radiosensitivity; central component of signaling responses to DNA damage

MRE11	 Mutated in individuals with AT-like disorder; immunodeficiency, cellular radiosensitivity; part of MRN complex involved in DNA 	 [81]
	 damage detection and initiation of response

LIG4	 Mutated in individuals with LIG4-syndrome; chromosomal instability; immunodeficiency, clinical and cellular radiosensitivity; 	 [82]
	 part of NHEJ pathway

NBN	 Mutated in individuals with Nijmegen breakage syndrome; chromosomal instability; immunodeficiency; clinical and cellular 	 [83]
	 radiosensitivity; cancer predisposition; part of MRN complex involved in DNA damage detection and initiation of response

RAD50	 Mutated in individual with Nijmegen breakage syndrome-like disorder; chromosomal instability; no immunodeficiency, cellular 	 [84]
	 radiosensitivity; part of MRN complex

RNF168	 Mutated in individuals with RIDDLE syndrome; cellular radiosensitivity; immunodeficiency; recruitment of 53BP1 to sites of DSBs	 [85]

DCLRE1C	 Encodes artemis; mutated in individuals with radiosensitive severe combined immunodeficiency (RS-SCID); cellular radiosensitivity; 	 [82]	
involved in NHEJ

PRKDC	 Encodes DNA-PKcs; DNA-PK-RS-SCID syndrome; immunodefiency; cellular radiosensitivity; involved in NHEJ	 [43]

SMCL1A 	 Mutated in individuals with Cornelia de Lange syndrome; chromosomal instability; cellular radiosensitivity during G2 phase; sister	 [86]
and SMC3	 chromatid cohesion

AT, ataxia telangiectasia; NHEJ, non-homologous end joining.
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Table 5. SNPs and risk of radiotherapy toxicity

Gene(s) investigated 	 Cancer	 Number	 Association(s)	 Reference

21	 Esophageal	 81	 XRCC2, GSTP1	 [87]

TP53	 Lung	 253	 Yes	 [88]

XRCC1	 Prostate	 603	 Yes	 [89]

XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, MGMT	 Breast	 87	 XRCC1, XRCC3, MSH2	 [90]

59	 NSCLC	 173	 PTGS22, IL1A, IL8, TNF, MIF, NOS3	 [91]

XRCC1, OGG1, MRCC3	 Breast	 43	 No	 [92]

TGFB1, XRCC1, XRCC2	 Head and neck	 60	 TGFB1, XRCC1, No. risk alleles	 [93]

XRCC1	 Breast	 119	 Yes	 [94]

ATM	 Lung	 253	 Yes	 [95]

ATM, GSTP1, SOD2, XPD, XRCC1	 Breast	 69	 No. risk alleles	 [96]

211	 Cervix	 243	 NPAT-ATM, AURKA	 [97]

TGFB1, L10P, C509T, G915C	 Breast	 190	 No	 [98]

TGFB1	 Breast	 778	 No	 [99]

MC1R	 Mixed 	 30	 Yes	 [100]

APEX1, XRCC1, XRCC2, XRCC3, XPD, TP53, P21	 Breast	 409	 TP53	 [101]

TGFB1	 NSCLC	 164	 Yes	 [102]

XRCC3, RAD51, XRCC5, LIG4, XRCC6	 Head and neck	 88	 XRCC3, XRCC6	 [103]

XRCC1, APEX1, OGG1, XRCC2, XRCC3, NBN, XPA, ERCC1, XPC, 	 Prostate	 405	 No	 [104]
TP53, P21, MDM2

TGFB1	 Prostate	 445	 No	 [105]

GSTA1, GSTM1, GSTT1, GSTP1, MPO, SOD2, NOS3, CAT	 Breast	 390	 GSTA1, NOS3	 [52]

VEGF 	 Prostate	 99	 Yes	 [106]

TGFB1	 Prostate	 141	 Yes	 [107]

3,144 SNPs in 494 genes	 Breast	 156	 Associations	 [108]

SOD2, XRCC1, XRCC3	 Prostate	 135	 XRCC1, SOD2, SOD2+XRCC3	 [109]

ATM, SOD2, XRCC1, XRCC3, TGFB1, RAD21	 Mixed severe reactors	 30	 No. risk alleles	 [39]

TP53, CDKN1A	 Breast	 22	 No	 [110]

450 SNPs in 115 genes	 Prostate	 197	 SART1, ID3, EPDR1, PAH, XRCC6	 [111]

999 SNPs in 137 genes	 Breast	 399	 CD44, MAD2L2, PTTG1, RAD9A, LIG3	 [69]

TGFB1, XRCC1, APE1, DHFR, CX3CR1, MTHFR, EPHX1	 Breast	 167	 XRCC1, TGFB1	 [112]

ATM	 Breast	 252	 Yes	 [113]

GSTM1, GSTP1, GSTT1	 Breast	 253	 GSTP1	 [114]

CAT, SOD2, MPO, NOS3	 Breast	 446	 No	 [115]

XRCC1 	 Breast	 247	 Yes 	 [116]

TP53, p21 	 Breast	 446	 No	 [117]

XRCC3, XRCC2, NBS1 	 Breast	 446	 No	 [118]

TGFB1 	 Gynae	 78	 No	 [119]

49 	 Prostate	 83	 LIG4, ERCC2, CYP2D6	 [120]

TGFB1, SOD2, XRCC1, XRCC3, APEX, ATM 	 Breast	 120	 No	 [59]

GSTA1, GSTP1, GSTM1, GSTT1	 Breast	 446	 GSTP1	 [121]

ERCC4 	 Head and neck	 130	 Yes	 [122]

XRCC1, APE1, XPD 	 Breast	 446	 XRCC1, APE1	 [123]

TGFB1, SOD2, XRCC1, XRCC3, APEX, ATM	 Breast	 52	 TGFB1	 [124]

XRCC1, XRCC3, OGG1 	 Gynae	 62	 No. risk alleles	 [125]

XRCC1 	 Breast	 254	 Yes	 [126]

TGFB1	 Breast	 103	 Yes	 [127]

TGFB1, SOD2, XRCC1, XRCC3, APEX	 Breast	 41	 No. risk alleles	 [128]

ATM 	 Breast	 254	 Yes	 [129]

SOD2 	 Breast	 80	 No	 [130]

RAD21 	 Mixed	 19	 Yes	 [131]

Gynae, cervix and endometrial cancer; No. risk alleles, number of homozygous rare and heterozygous alleles for the various SNPs studied; NSCLC, non-small cell lung 
cancer, SNP, single nucleotide polymorphism.
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proteomics, metabolomics). A long-term goal of the 
research area is to develop a test that predicts the likeli­
hood of a patient suffering side effects [45]. Theoretical 
studies have shown that such a test should improve the 
therapeutic ratio of radiotherapy by allowing dose 
escalation in radioresistant patients [45]. Predictive 
clinical models are being developed [71,72]. These cancer 
type-specific or endpoint-specific models integrate clinical 
(for example, diabetes, age, smoking, hormonal therapy) 
and dosimetric (mean doses to critical normal tissues) to 
obtain an estimate of the probability of developing 
toxicity. The models can easily be extended to incorporate 
genotyping data. An example comes from Kerns et al. [3], 
where four SNPs identified in their GWAS were better at 
predicting erectile dysfunction than a combination of 
clinical factors (age, stage, radiation dose, hormone use, 
diabetes, smoking). However, the finding should be 
interpreted with caution, as predictive value is generally 
overestimated when the model is created and evaluated 
in the same study population, particularly if the same 
data were first used to select the strongest genetic 
predictors out of a large set of genotyped variants [73].

Conclusions
GWASs are increasing understanding of the genetic 
variation underlying common traits and diseases and, in 
pharmacogenomics, are starting to identify genetic 
determinants of drug efficacy and adverse effects [74,75]. 
Radiogenomics is an emerging and developing research 
area, and it faces many challenges surrounding the collec­
tion of sufficiently large cohorts with detailed recording 
of toxicity and information on non-genetic risk factors, 
which are not generally collected routinely. The GWASs 
of Kerns et al. [3] and Best et al. [4] are important 
because they are the first radiogenomics studies pub­
lished, but the field will only advance with international 
data-sharing and methodology-sharing co-operation. 
The establishment of a Radiogenomics Consortium should 
provide a route for addressing the need for standardizing 
data collection, pooling data and replication studies.
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