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Abstract

The recent advance of single cell sequencing (scRNA-seq) technology such as Cellular Indexing of Transcriptomes and Epitopes by
Sequencing (CITE-seq) allows researchers to quantify cell surface protein abundance and RNA expression simultaneously at single
cell resolution. Although CITE-seq and other similar technologies have gained enormous popularity, novel methods for analyzing this
type of single cell multi-omics data are in urgent need. A limited number of available tools utilize data-driven approach, which may
undermine the biological importance of surface protein data. In this study, we developed SECANT, a biology-guided SEmi-supervised
method for Clustering, classification, and ANnoTation of single-cell multi-omics. SECANT is used to analyze CITE-seq data, or jointly
analyze CITE-seq and scRNA-seq data. The novelties of SECANT include (1) using confident cell type label identified from surface
protein data as guidance for cell clustering, (2) providing general annotation of confident cell types for each cell cluster, (3) utilizing
cells with uncertain or missing cell type label to increase performance, and (4) accurate prediction of confident cell types for scRNA-seq
data. Besides, as a model-based approach, SECANT can quantify the uncertainty of the results through easily interpretable posterior
probability, and our framework can be potentially extended to handle other types of multi-omics data. We successfully demonstrated
the validity and advantages of SECANT via simulation studies and analysis of public and in-house datasets from multiple tissues.
We believe this new method will be complementary to existing tools for characterizing novel cell types and make new biological
discoveries using single-cell multi-omics data.
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Significance Statement:

The recent advance of single-cell sequencing technology such as CITE-seq, which quantifies cell surface protein abundance and
RNA expression, simultaneously at single-cell resolution, has quickly gained enormous popularity. Motivated by the fact that novel
statistical methods or bioinformatical tools are in urgent need for analyzing such new data type, we developed SECANT to analyze
CITE-seq data or jointly analyze CITE-seq and scRNA-seq data. As a biology-driven method, SECANT utilizes biological guidance
derived from cell gating, which is considered as gold standard for cell type classification and will be of great usefulness to immu-
nologists who are used to working with flow or mass cytometry data. Besides, SECANT quantifies the uncertainty of result with
direct interpretation through a model-based approach.

Introduction
Single-cell RNA-sequencing (scRNA-seq) technologies have ad-
vanced rapidly for understanding cell heterogeneity and discov-
ering rare cell types from normal and disease tissues (1, 2, 3, 4,
5). Embedded in the popular scRNA-seq platform such as the 10x
Genomics Chromium System (6), the recently developed CITE-seq

(Cellular Indexing of Transcriptomes and Epitopes by sequencing)
(7) [or similar REAP-seq (RNA expression and protein sequencing)
(8)], and cell hashing technologies (9) allow for immunopheno-
typing of single cells based on cell surface expression of specific
proteins together with simultaneous transcriptome profiling and
sample origin detection within a cell. More omics types of single
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cell data are emerging (10, 11, 12). In these single-cell multi-omics
experiments, the abundance of different kinds of features such as
mRNA or cell surface protein is converted into a quantitative and
sequenceable readout through the use of DNA-barcoded antibod-
ies and can be measured by the count of Unique Molecular Index
(UMI) and Antibody-Derived Tags (ADT), respectively, simultane-
ously at single-cell resolution.

Although there are a large number of existing tools for ana-
lyzing droplet-based scRNA-seq data (13, 14, 15, 16, 17, 18, 19),
model-based statistical methods for analyzing single-cell multi-
omics data are still in urgent need. We will focus on analyzing
CITE-seq data, one of the most informative multi-omics types, in
this paper, although the method can be generalized to other types
of bimodal multi-omics data where one data modality focuses on
generating confident cell type labels in a supervised manner while
the other data modality focuses on clustering cells in an unsu-
pervised manner. For convenience, we use ADT data to denote
surface protein data in this paper. CITE-seq refers to single-cell
multi-omics data with both scRNA-seq and ADT measurements
for each cell. There are a number of cutting-edge methods for sur-
face protein imputation with scRNA-seq data (20, 21) and for joint
clustering of both protein and RNA features (20, 22, 23). These
methods, although having demonstrated their outstanding per-
formance, all tend to utilize a data-driven approach but do not
use much of existing biological knowledge. For example, it is a
common approach in joint clustering methods to integrate pro-
tein and RNA data by transforming both features onto a similar
space. However, by doing so, the important underlying biological
information from surface protein marker could be undermined.
On the contrary, biological researchers often consider cell surface
markers as the gold standard to define cell types in molecular bi-
ology, where researchers identify distinguished cell types through
cell gating such as flow cytometry with a list of classic differentia-
tion (CD) markers, such as CD3, CD4, CD8, and CD19 (24, 25, 26, 27,
28). Thus, a more biological knowledge-driven approach should
consider putting more weight on ADT data for the purpose of cell
clustering and cell type identification. For example, ADT data are
used to first label the well-defined (confident) cell types, such as
B cells, Monocytes, CD4 + T cells, CD8 + T cells, and natural killer
(NK) cells, which are then employed as guidance for clustering
with RNA data. This approach utilizes a great amount of biological
knowledge to avoid a common issue that some cell clusters iden-
tified with RNA data are in fact mixtures of multiple general cell
types with respect to protein data (29, 30, 7). The recently devel-
oped scDCC proposed to integrate prior information into the mod-
eling process to guide a deep learning model for latent represen-
tation and clustering, which can be applied to CITE-seq data (31).
Besides cell clustering, ADT data can also play a role in cluster an-
notation. Current methods for cluster annotation rely on post-hoc
differential expression (DE) analysis on RNA data, and researchers
need to select a couple of plausible DE gene markers from a long
list. However, it is often challenging since gene markers are not
always correlated with their corresponding surface markers as
observed from the data (32). Thus, we expect it vastly beneficial
to provide researchers some confident cell type annotation from
ADT data to help figure out the identities of cell subtypes. An-
other popular research topic is to jointly analyze data from CITE-
seq and scRNA-seq, by which we can assume the cell composi-
tions are similar though batch effect may exist. There are many
advantages of joint analyzing CITE-seq and scRNA-seq data, e.g.
the addition of an extra RNA data could help increase clustering
performance due to a larger sample size, and we can also provide

the additional confident cell type annotation identified with ADT
data to scRNA-seq data.

Motivated by the above demands, in this study, we propose a
novel framework, namely SECANT, for protein-guided cell clus-
tering and general cluster annotation with CITE-seq data. If addi-
tional scRNA-seq datasets from similar cell populations are avail-
able, SECANT can be used to jointly analyze data from CITE-
seq and scRNA-seq to predict confident cell types for scRNA-seq
data, and enhance the performance of cell clustering and gen-
eral annotation of confident cell types for each cell cluster. Our
method utilizes a model-based approach motivated by classic
statistical models in semi-supervised learning (33). As a biolog-
ical knowledge-driven approach, the input of our method from
ADT data is the confident cell type label, which can be obtained
through cell gating or other existing methods (24, 25, 26, 27, 28).
To overcome a common issue in cell gating that there are always
cells distributed near or on the gating boundaries (e.g. the ver-
tical or horizontal cut-off lines in a two-parameter scatter plot),
which makes it hard to correctly identify their cell type with pro-
tein data, instead of excluding those cells from the analysis, which
will cause the loss of sample size and potential the drop of some
novel cell subtypes, our method is specifically designed to accom-
modate those cells with “uncertain” labels from protein data into
our model so that we can fully utilize their transcriptomic in-
formation. In addition, as a model-based approach, our method
can provide clustering and prediction uncertainty through poste-
rior probability, which can be useful in downstream analysis, and
readily adapted to rigorous statistical inference in a confirmatory
study. We use extensive simulation studies to demonstrate the va-
lidity of our proposed method, and we illustrate the usefulness
and easy interpretation of our method with CITE-seq datasets
from human peripheral blood mononuclear cells (PBMC), bone
marrow, and upper lobe lung tissues.

Results
General workflow of SECANT
The general workflow of SECANT is shown in Fig. 1. Our method
can work with CITE-seq data (scRNA + ADT) only or jointly ana-
lyze CITE-seq and scRNA-seq data. When analyzing CITE-seq data
only, the raw data matrices need to first undergo some data pre-
processing steps, and the inputs of SECANT include the confident
cell type labels built from ADT data and the latent space of RNA
data after dimension reduction. SECANT considers ADT cell type
labels as general guidance for cell clustering with RNA data by in-
troducing certain constraints through a probabilistic concordance
matrix. We establish a statistical model and maximize the log-
likelihood of the observed data to estimate the concordance ma-
trix and ADT-guided cell clustering results. Through the estimated
concordance matrix, SECANT enables confident cell type anno-
tation for each cluster (e.g. cluster 1 and cluster 2 are potential
subclusters of B cells). For joint analysis of CITE-seq and scRNA-
seq data, the latent spaces of pooled RNA data are required to be
similar in distribution so that the clustering parameters are com-
monly shared by both data. The inclusion of the RNA data from
scRNA-seq into the model could increase the precision of estimat-
ing concordance matrix as well as ADT-guided cell clustering re-
sult. Also, our model can predict the ADT confident cell type la-
bels for cells from scRNA-seq experiment, where the latter does
not have information regarding protein abundance. Other impor-
tant benefits of SECANT include utilizing cells with uncertain cell
type label from ADT data, and providing uncertainty of the results
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Fig. 1. General workflow of SECANT. In this study, we used manual gating or Gaussian mixture model (GMM) to classify confident cell types with ADT
data, and used scVI for dimensional reduction and batch effect correction with RNA data for data preprocessing.

(“soft labels”) in terms of posterior probability. Details about our
statistical models can be found in the “Methods” section.

Identifying confident cell types with ADT data
In the first step, we obtain the confident cell type label directly
through manual gating with ADT data, motivated by the fact that
it has been a widely used tool for cell type identification with
flow cytometry and mass cytometry data, and the corresponding
pipelines proposed by the biologists are quite mature (26, 28). In
addition, the bi-modal or multimodal mixture Gaussian distribu-
tion structure of log-transformed ADT count fits gating pipeline
naturally. In Fig. S1, we summarize a workflow to illustrate how
to gate some confident cell types for PBMC from ADT data. How-
ever, one of the major challenges of manual gating is its subjective
choice of gating boundary. In general, a less stringent boundary
will introduce mixture of target cells with other cell types, while a
more stringent boundary will lead to less target cells to be identi-
fied (Fig. S2). To overcome this challenge, our method is designed
to utilize cells with uncertain cell type label. It is worth noting
that tools other than manual gating can also be used for identify-
ing confident cell types with ADT data (24, 25, 27).

Preprocessing of scRNA-seq data
RNA data need to undergo preprocessing for dimension reduc-
tion and batch effect correction. In this paper, we applied scVI
to process real data for both purposes. scVI is a popular Python-
based tool that utilizes variational autoencoder for nonlinear di-
mensional reduction and batch effect correction (15). We also
tested the performance of batch effect correction on two public
PBMC datasets (Fig. S3). To be specific, we first processed RNA
data with scVI, and the resulting latent space, which follows a
low-dimensional multivariate Gaussian distribution, is then used
as the input of SECANT. In general, other tools for dimension re-
duction and batch effect correction such as Seurat (34) can also

be used for data preprocessing in our proposed framework, al-
though the distribution assumed in the statistical model is subject
to change for better data fitting.

Simulation results
Clustering performance of SECANT with CITE-seq data
We first assessed the performance of SECANT with simulation
studies. For convenience, we simulated data from mixture mul-
tivariate Gaussian distribution to mimic the latent space of RNA
data through scVI, where the distribution parameters includ-
ing cluster-specific mean vector, covariance matrix, and cluster
weight are obtained from fitting SECANT on a public PBMC dataset
processed by scVI. We fixed the number of confident cell types to
be 5, assigned confident cell type labels according to the estimated
best configuration (e.g. cluster 1 and 2 belong to confident cell
type 1, etc.) and generated random noise on the simulated label to
mimic the manual gating result from ADT data. To be specific, we
randomly sampled a subset of cells, each with probability pU , from
the pool and changed their label to “uncertain.” To assess the per-
formance of our method under different scenarios, we varied the
total number of cells (or sample size, N = 500, 1000, 2000), num-
ber of clusters (K = 8, 10, 12), dimensionality (D = 5, 10, 20),
and proportion of uncertain labels (pU = 0, 0.2, 0.4, 0.6) un-
der different settings. We simulated 100 datasets under each
setting.

In Fig. 2, we use Uniform Manifold Approximation and Projec-
tion (UMAP) plot (35), a popular nonlinear dimension reduction
tool used in single cell analysis, to visualize an example of our
simulated data (N = 1000, K = 10, D = 10, pU = 0.2). Figure 2A
is colored by the five confident cell types (type 1 to type 5), which
refer to B cells, CD14 + Monocytes, CD4 + T cells, and CD8 + T
cells, and NK cells, respectively, as in a PBMC dataset. Figure 2B is
colored by the 10 clusters (cluster 1 to cluster 10), where clusters
1 and 2 belong to cell type 1, clusters 3 and 4 belong to cell type 2,
clusters 5, 6, and 7 belong to cell type 3, clusters 8 and 9 belong to
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Fig. 2. UMAP visualization of an example simulated data (mimic latent space of RNA data) under our simulation setting. 2A: cells are colored by
simulated true cell types (mimic input from ADT data). 2B: cells are colored by the simulated true cluster assignments.

cell type 4, and cluster 10 belongs to cell type 5. This simulation
setting largely reflects the real-world scenario that CD4 + T cells
and CD8 + T cells are often clustered together with scRNA-seq
data.

We applied K-means and multivariate GMM to the simulated
data (without information from ADT data), set the number of clus-
ters as the true value as in the simulation design, and summarized
their results for reference. We alter the total number of cells, de-
noted by N, as well as the proportion of cells randomly assigned
with the uncertain label, pU . In Fig. 3A and B, we show the boxplot
of adjusted random index (ARI) (36) from SECANT under different
pU settings with varying N and K. We observe that the clustering
performance of SECANT increases with a larger sample size, but
decreases with a larger number of clusters. Indeed, as a model-
based approach, a larger sample size will lead to better param-
eter estimation, which will increase the clustering performance.
However, with a fixed total number of cells (N = 1000), a larger
number of clusters leads to a smaller cluster-specific sample size,
which diminishes the performance of a model-based approach.
We also observe that the clustering performance decreases with
larger pU , which is as expected since we get less information from
ADT confident cell type with increased pU . In Fig. 3C, we assess
the effect of feature dimension on clustering performance of SE-
CANT when N = 1000, and observe that SECANT performs best
when D = 10. Although data with higher dimensionality contain
more information, which explains why D = 10 leads to a better
result than D = 5, for a model-based approach, the parameters
to be estimated also increase, which requires a larger sample size
for a good estimation result. To further explore on this, in Fig. 3D,
we increase the sample size to N = 2000, and observe that the
performance of D = 10 and D = 20 are very similar, both out-
perform D = 5 notably. Based on this result, we generally rec-
ommend setting D = 10, which is also the default setting in scVI
for dimension reduction. In practice, users may increase the value
of D with larger sample size (Fig. S4). In addition, compared with
the performance of multivariate GMM and K-means, SECANT per-
forms the best among the three across all scenarios, even when
60% of cells are labeled as “uncertain” in the input ADT cell type
label. The result of adjusted mutual information (AMI) (37) shows
consistent pattern as ARI (Fig. S5).

Performance of joint analysis of SECANT with CITE-seq and
scRNA-seq data
To assess the performance of SECANT for joint analysis of CITE-
seq and scRNA-seq data, in each simulation we generated a pair
of datasets with the same distribution parameters (i.e. cluster-
specific mean, covariance matrix, and cluster weight), and the
aforementioned data generation method is used. Therefore, both
datasets are composed of ADT label and RNA data after dimen-
sion reduction. We set D = 10, K = 10, with varying N and pU .
Next, we masked the ADT label from one dataset, which is pre-
tended as scRNA-seq data. Under this setting, we can evaluate if
the additional “unlabeled” scRNA-seq data could help increase the
clustering performance, and also assess the prediction accuracy
of ADT confident cell type label for the dataset whose ADT labels
are masked. Here, we claim the predicted confident cell type for a
cell is accurate if it is the same as the simulated true confident cell
type, and compute the proportion of accurate predictions among
all cells. In Fig. S6A and B, we compare the clustering performance
of SECANT with CITE-seq data only and with paired CITE-seq and
scRNA-seq data. In addition to the similar patterns in Fig. 3A, we
conclude that the inclusion of additional scRNA-seq data into our
model can help increase the clustering performance with regard
to ARI and AMI, especially when sample size is relatively small.

In practice, it could happen when the paired CITE-seq and
scRNA-seq data have different cluster weights. For example, one
PBMC data have relatively more CD4 + T cells while the other data
have relatively more CD8 + T cells. To evaluate the performance
of SECANT under such circumstance, we designed several addi-
tional simulation scenarios (in addition to Scenario 1) as follows:

� Scenario 1: scRNA-seq data have the same set of cluster
weights as CITE-seq data.

� Scenario 2: The cluster weights of scRNA-seq data are evenly
distributed (different from cluster weights of CITE-seq data).

� Scenario 3: The cluster weights of scRNA-seq data are evenly
distributed conditional on missing two small-size clusters as
in CITE-seq data.

� Scenario 4: The cluster weights of scRNA-seq data are evenly
distributed conditional on missing two big-size clusters as in
CITE-seq data.
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Fig. 3. The distribution of ARI of clustering result from SECANT (with different pU setting), K-means, and GMM compared with the true cluster label
generated in simulation study. 3A: varying by sample size N. 3B: varying by the number of simulated clusters K. 3C: varying by feature dimension D
when N = 1000. 3D: varying by feature dimension D when N = 2000.

The specific values of cluster weights under each scenario are
summarized in Table S1. For each scenario, we computed the
mean and standard deviation (SD) of the bias of our estimated
cluster weight, compared with the prespecified values, and the
results are summarized in Table S2. In general, the absolute val-
ues of bias as well as SD decrease as sample size increases, and
we conclude our method estimates the cluster weight very well
across all scenarios even with a low sample size of 500.

We further assess the accuracy of predicting ADT confident
cell types for scRNA-seq data under each of the four scenarios
described above with varying N and pU (Fig. 4A to D). To be specific,
if the predicted confidence cell type is uncertain, we classify this
outcome as inaccurate. Although it is observed that the mean
predication accuracy decreases with increasing pU , the prediction
accuracy actually remains very high if the uncertain rate of input
label is less than 40%. The performance breaks down drastically
when pU is greater than 50%, which is as expected since more than
half of the input label provides no information. Similar results are
found in robust mixture discriminant analysis (RMDA) (38). Also,
it is interesting to observe that the prediction accuracy increases
with larger sample size when pU is smaller than 50%, but such a
trend is reversed when pU is greater than 50%. We further eval-
uated the cause of the observed low prediction accuracy when
pU is greater than 50%, and found that most cells are predicted
as “uncertain” by SECANT when pU is high (Fig. S7). Overall, we
demonstrate the validity and the outstanding performance of SE-
CANT for jointly analyzing CITE-seq data and scRNA-seq data for

clustering and ADT confident cell type prediction through
simulation studies.

Detecting cell clusters when there is no prior biology knowl-
edge from surface protein data
In practice, there could exist some cell clusters that we fail to iden-
tify their confident cell type label with ADT data due to the lack of
biology knowledge or unavailable on-shelf markers (e.g. the resid-
ual cells from cell gating). Different from other cell clusters which
only have a subset of cells labeled as uncertain cell types, cells
in such clusters are entirely labeled as uncertain cell type. Since
SECANT is biology-driven, it could lose power when there lacks
prior biology knowledge. To mimic this real-world situation, we
first simulated data with five confident cell types and 10 under-
lying clusters similar to the setting in previous “Clustering perfor-
mance of SECANT with CITE-seq data” section. Then, in addition to
the random noise, we changed the confident cell type label of en-
tire cells in a specific cluster into “uncertain” to pretend that we
do not have prior knowledge to identify those cells. We further de-
signed two scenarios: (1) a large-size cluster has been “converted”
(cluster 6 in Fig. 2B, 15.3%); and (2) a small-size cluster has been
“converted” (cluster 2 in Fig. 2B, 2.9%), which are shown in Fig. S8A
and C. For scenario (1), SECANT can successfully identify those
converted cells as a unique cell cluster (Table S3A; Fig. S8B) and
achieves high clustering performance (ARI = 0.944; AMI = 0.934).
For scenario (2), SECANT fails to identify those converted cells as a
unique cell cluster but merge them with a small number of other
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Fig. 4. Prediction accuracy of ADT confident cell types for simulated scRNA-seq data (on latent space) with various pU and N settings. A to D
correspond to simulation scenario 1 to 4 as described in the section “Performance of joint analysis of SECANT with CITE-seq and scRNA-seq data,”
with different simulated cluster weights.

cells (Table S3B; Fig. S8D), although the overall clustering perfor-
mance is still outstanding (ARI = 0.933; AMI = 0.917) since the
majority of cells are still clustered appropriately. In summary, as
a model-based and biology-driven approach, our method is power-
ful to detect cell clusters either with large size or with prior knowl-
edge, but not sensitive to identify small clusters especially with
limited biology knowledge.

Real data applications
ADT-guided cell clustering with CITE-seq dataset
To illustrate the usefulness of ADT-guided cell clustering proposed
in SECANT, we applied SECANT to three CITE-seq datasets from
different human tissues, including human PBMC, bone marrow,
and upper lobe lung. For PBMC and bone marrow data, we clas-
sified ADT confident cell types through manual gating (Fig. S1),
and identified five and six major cell types, respectively (Figs. 5A
and 6A). For upper lobe lung data, we failed to manually gate con-
fident cell types due to lack of existing pipeline, so we applied
GMM as an alternative approach and identify three major cell
types. We applied scVI to RNA count matrix in each CITE-seq data
for dimension reduction, and a 10D latent space was extracted as
the input of SECANT.

The public PBMC CITE-seq dataset, denoted by 10x10k_PBMC
(7,865 cells), is from a healthy donor and provided by 10x Ge-
nomics. Cells are gated into five confident cell types with ADT
data, including B cells, CD14 + Monocytes, CD4 + T cells, CD8 + T
cells, and NK cells (Fig. 5A). Through a relatively conservative

gating, the proportion of cells labeled as uncertain cell type is
16.3%. We failed to identify CD16 + Monocytes with ADT data
due to its low amount. We set the number of clusters to be 11.
The clustering result is shown in Fig. 5B, from which we observe
that none of the clusters is obviously a mixture of multiple ADT
confident cell types. Further, the estimated concordance matrix
from SECANT provides the correspondence between ADT confi-
dent cell types and RNA clusters (Table 1, Fig. S9), which can help
guide the following annotation step. Based on DE genes through
post-hoc analysis and existing literature, we successfully anno-
tated each cluster (Table 1) (39). We also applied Seurat and to-
talVI to this PBMC dataset. Both Seurat and totalVI are data-driven
methods and utilize graphic-based algorithm for cell clustering
with CITE-seq data as the input. We controlled the number of
clusters to be 11 when applying Seurat and totalVI, the same
value we set in SECANT. In general, we observe that most of the
identified clusters are consistent among three methods (Fig. 5C
and D). Although there is no ground truth to compare with, the
pairwise ARI among those three methods are 0.75 (SECANT ver-
sus Seurat), 0.82 (SECANT versus totalVI), and 0.78 (Seurat versus
totalVI), which indicates the concordances among three cluster-
ing results are at similar level. With a more detailed comparison
(Table S4), we find that the major differences of clustering results
between SECANT and the other two methods are the identifica-
tion of marginal zone B cells (cluster 2 in SECANT), dendritic cells
(cluster 3 in SECANT), and Gamma Delta T cells (cluster 7 in SE-
CANT), possibly due to their low amount. In addition, as demon-
strated in Fig. 5 and Table S4, SECANT identifies three subtypes of
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Fig. 5. UMAP visualization of the latent space (dimension reduction with scVI) of RNA data from 10x10k_PBMC. 5A: cells are colored by ADT confident
cell types through manual gating. 5B: cells are colored by SECANT result. 5C: cells are colored by Seurat result. 5D: cells are colored by totalVI result.

Table 1. Estimated concordance matrix and post-hoc subtype identification from SECANT for 10x10k_PBMC dataset.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10 Cluster 11

B cells 0.969 0.474 0 0 0 0 0 0 0 0 0
CD14 + Monocytes 0 0 0.202 0.877 0 0 0 0 0 0 0
CD4 + T cells 0 0 0 0 0.986 0.628 0.910 0 0 0 0
CD8 + T cells 0 0 0 0 0 0 0 0.745 0.934 0.744 0
NK cells 0 0 0 0 0 0 0 0 0 0 0.884
Uncertain 0.031 0.526 0.798 0.123 0.014 0.372 0.090 0.255 0.066 0.256 0.116

Cluster weight 0.064 0.031 0.054 0.219 0.151 0.030 0.154 0.053 0.049 0.079 0.117

SECANT annotation Follicular
B cells

Marginal
zone B
cells

Dendritic
cells

CD14 + Mono-
cytes

Naïve
CD4 + T

cells

Gamma
delta T

cells

Memory
CD4 + T

cells

Memory
CD8 + T

cells

Naïve
CD8 + T

cells

Effector
CD8 + T

cells

NK cells

Selected DE genes IGHM MZB1 CSF1R S100A9 CCR7 GZMK TRAC GZMK SELL CD8B
CD79A TNFRSF CST3 S100A8 SELL KLRB1 IL7R IL7R CCR7 CD8A
MS4A1 17 LYZ CD3D LTB CD8A GZMK
IGHD CD1 CD69 NKG7
CD22 CD27 KLRB1 GZMM

CD8 + T cells, including naïve CD8 + T cells (cluster 9), effector
CD8 + T cells (cluster 10), and memory CD8 + T cells (cluster 8),
but Seurat only identifies two clusters where memory CD8 + T
cells and effector CD8 + T cells are combined in one cluster
(cluster 5).

The human bone marrow CITE-seq dataset (30,672 cells) is pub-
lic in literature and also available in Seurat package (“bmcite”)
(34). Although Seurat identifies 27 cell clusters in this dataset,
many of which are small-size clusters (e.g. less than 1%). Thus,

we set a smaller number of clusters (K = 13) when running SE-
CANT. Through manual gating with ADT data, in addition to the
five confident cell types identified in the aforementioned PBMC
dataset, we also detected CD16 + Monocytes (Fig. 6A). The propor-
tion of cells labeled as uncertain cell type is 19.7%. Compared to
clusters identified with Seurat (Fig. 6B), we fail to classify some
cell types, such as progenitor B cells, progenitor dendritic cells
and hematopoietic stem cells, into one of the confident cell types
according to our cell gating pipeline (Fig. S1). As a result, SECANT
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Fig. 6. UMAP visualization of the latent space of RNA data from human bone marrow dataset. 6A: cells are colored by ADT confident cell types
through manual gating. 6B: cells are colored by annotated clusters provided in Seurat package. 6C: cells are colored by SECANT result. 6D: alluvial plot
showing the correspondence between SECANT clustering result and Seurat annotated result. ∗For better visualization, we grouped small-size clusters
(<1.5%, 14 clusters) in Seurat into one cell type, named “Others,” in alluvial plot.

does not perform well to identify those cell types due to lack of
biological guidance. On the other hand, the clustering result from
SECANT is in general consistent with Seurat result especially for
medium or large-size clusters (Fig. 6C). We provide cluster annota-
tion based on our estimated concordance matrix as well as post-
hoc DE analysis in Table S5A. We further compare the clustering
result from SECANT with Seurat cluster annotation. As expected,
Seurat performs better at detecting small-size clusters, such as
subtypes of different progenitor cells or CD8 + T cells (Fig. 6D, Ta-
ble S5B).

The human upper lobe lung CITE-seq dataset was publicly
available on Gene Expression Omnibus (GEO) under GSE128169
(sample SC277) (40), which contains unfiltered raw feature bar-
codes. Thus, as a data processing step, we applied DropletUtils to
remove background noise (41, 42). The filtered data contain 5,756
cells. Due to lack of existing pipeline for manual gating, we applied
GMM as an alternative approach to log transformed ADT data (17
surface markers) and set the number of clusters to be 7. Based
on post-hoc DE analysis (Fig. S10), we identified three confident
cell types from six clusters, including epithelium cells, endothe-
lium cells and immune cells, and selected those cells for cluster-
ing analysis (5,451 cells). Since GMM is a model-based approach,
we can estimate the clustering uncertainty for each cell. Thus, we
labeled cells with more than 10% uncertainty about their cluster
assignments as uncertain cell type (13.2%), and the obtained ADT
confident cell types are relatively conservative (Fig. S11A). We set
the number of clusters to be 6, and the clustering result from

SECANT can be visualized through UMAP (Fig. S11B). Based on
post-hoc analysis, we not only confirmed the identity of epithe-
lium cells and endothelium cells, but also detected three spe-
cific types of immune cells, including monocytes, T cells, and
Macrophage, although one of the clusters appear to be a mixture
of multiple cell types and could undergo further subclustering
(Table S6).

To assess the “soft-clustering” property of SECANT, we com-
puted the posterior probability of clustering assignment for each
cell in the aforementioned three CITE-seq datasets, and utilized
UMAP plot for visualization (Fig. S12). In general, we observe that
cells with relatively low confidence concentrate on the bound-
ary of different cell clusters on UMAP plot. Therefore, compared
to “hard-clustering” algorithms, SECANT can provide probabilis-
tic uncertainty measurement for each cell, which can be used to
enhance precision in downstream analysis, or to assess the ro-
bustness of the result in a sensitivity analysis.

Joint analysis of CITE-seq and scRNA-seq data for confident
cell type prediction
In addition to ADT-guided clustering and cluster annotation, SE-
CANT can also jointly analyze CITE-seq and scRNA-seq data to
predict ADT confident cell types for scRNA-seq data. Based on the
result from simulation study, a general assumption is that the two
RNA data, from CITE-seq and scRNA-seq, should have similar cell
type compositions (e.g. from same tissue), although the cluster
weights could differ. In this study, we prepared a pair of public
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Fig. 7. UMAP visualization of the latent space of RNA data from 10x5k_PBMC. 7A: cells are colored by ADT confident cell types through manual gating.
7B: cells are colored by predicted confident cell types from SECANT.

PBMC CITE-seq datasets as well as a pair of in-house PBMC CITE-
seq datasets to illustrate the performance of SECANT for confi-
dent cell type prediction. For each CITE-seq dataset, we first used
manual gating to get confident cell types with ADT data. Then, for
each pair of datasets, we removed the ADT confident cell type la-
bel from one of the datasets and pretended that dataset was gen-
erated from scRNA-seq. Next, we applied SECANT to jointly ana-
lyze each pair of datasets, and predicted the ADT confident cell
type for the dataset without ADT labels, which is then compared
to the true label we previously removed. The major differences
between public and in-house PBMC datasets are (1) there is batch
effect in public datasets but not in in-house datasets; and (2) the
paired in-house PBMC datasets are more homogenous since they
are aliquots of the same sample. Again, we applied scVI to RNA
count matrices in paired datasets for both batch effect correc-
tion and dimension reduction, and a 10D latent space from each
dataset was extracted as the input of SECANT.

The two public PBMC CITE-seq datasets are available on
10x Genomics website, denoted by 10x10k_PBMC (7,865 cells)
and 10x5k_PBMC (5,527 cells). In previous section, we identi-
fied five confident cell types through gating with ADT data for
10x10k_PBMC dataset. Similarly, we identified the same five con-
fident cell types in 10x5k_PBMC datasets (11.5% uncertain labels),
but we temporarily removed these labels to pretend 10x5k_PBMC
is a scRNA-seq dataset. As shown in Fig. S3A and B, although scVI
has largely reduced the batch effect between two datasets, we
still observe a cluster of cells that are dominated by 10x5k, which
could be due to the different cluster weights between two sam-
ples. We set the number of clusters to be 11, and then applied
SECANT for ADT-guided clustering for both datasets and predict-
ing ADT confident cell types for 10x5k_PBMC dataset. The cluster-
ing results are shown in Fig. S13, and the estimated concordance
matrix is summarized in Table S7, from which we observe the es-
timated cluster weights are obviously different for some clusters,
possibly because the two samples are not homogenous. To assess
the performance of ADT confident cell types prediction, we com-
pared the predicted labels with the observed labels, the latter of
which were not used in SECANT. The UMAP visualization of the
result is shown in Fig. 7A and B, and we observe that the major
difference is among cells that are either classified as “uncertain”
or predicted as “uncertain.” In general, the predicted labels are
close to the observed labels. We also computed the confusion ma-
trix between the predicted and the observed cell types (Table 2).

Excluding cells with observed “uncertain” cell type, the overall
prediction accuracy achieves 89.1%. This result is consistent with
our simulation result that different cluster weights do not influ-
ence much on the prediction accuracy.

To further investigate the performance of confident cell type
prediction using SECANT, we generated two in-house CITE-seq
datasets of PBMCs from a healthy donor. The antibody concen-
tration used in each sample is different to mimic different quality
of ADT data, denoted as concen_high and concen_low. Similar to
the joint analysis of aforementioned paired public PBMC datasets,
we first generated ADT confident cell type label (i.e. the same 5
types as in public PBMC data) through manual gating. The propor-
tion of uncertain cell type in concen_high (1,587 cells) is 17.5%,
whereas in concen_low (2,112 cells) the proportion increases to
39.4% due to a lower concentration of antibodies. We temporally
removed the ADT confident cell type labels in the concen_low
dataset and pretended this dataset was generated from scRNA-
seq. Since there is no batch effect between two RNA data (Fig. S14),
we only applied scVI for dimension reduction but not correcting
for batch effect. Due to small sample size, we set the number of
clusters to be 8, and then applied SECANT for ADT-guided clus-
tering for both datasets and predicting ADT confident cell types
for concen_low dataset. The clustering results are shown in Fig.
S15, and the estimated concordance matrix is summarized in Ta-
ble S8, from which we observe the estimated cluster weights are
close between two data for all clusters, because the two samples
are homogenous in nature. Similarly, we find the predicted labels
are quite close to the observed labels (Fig. 8A and B). We also com-
puted the confusion matrix between the predicted and the ob-
served cell types (Table 3). Excluding cells that are classified as
“uncertain”, the overall prediction accuracy achieves 95.2%.

Discussion
In this study, we have developed SECANT, a biology-guided semi-
supervised method for cell clustering, cell type classification,
and annotation for analyzing CITE-seq data alone or jointly with
scRNA-seq data. Different from other existing tools for single-cell
multi-omics, SECANT utilizes a biology-driven approach and con-
siders that cell surface protein data can provide confident cell
type labels, which are assumed to be the gold standard in sin-
gle cell proteomics experiments such as flow cytometry and mass
cytometry, and thus should be used to guide cell clustering with
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Table 2. Confusion matrix of predicted confident cell types versus observed cell types built with ADT data from 10x5k_PBMC dataset.

Observed

Predicted B cells CD14 + Monocytes CD4 + T cells CD8 + T cells NK cells Uncertain

B cells 305 0 0 0 0 26
CD14 + Monocytes 1 1,086 19 0 0 29
CD4 + T cells 0 33 2,350 124 4 116
CD8 + T cells 0 0 65 336 1 109
NK cells 1 0 11 7 280 60
Uncertain 22 187 42 4 12 297

Numbers italicized are excluded when computing accuracy.

Fig. 8. UMAP visualization of the latent space of RNA data from concen_low. 8A: cells are colored by ADT confident cell types through manual gating.
8B: cells are colored by predicted confident cell types from SECANT.

Table 3. Confusion matrix of predicted confident cell types versus observed cell types built with ADT data from concen_low dataset.

Observed

Predicted B cells CD14 + Monocytes CD4 + T cells CD8 + T cells NK cells Uncertain

B cells 70 0 0 0 0 65
CD14 + Monocytes 0 173 10 0 0 139
CD4 + T cells 0 0 735 16 1 256
CD8 + T cells 0 1 11 108 0 60
NK cells 0 0 1 1 132 183
Uncertain 3 14 3 0 0 130

Numbers italicized are excluded when computing accuracy.

RNA data. Our proposed method is developed based on model-
based semi-supervised learning, and we introduce a probabilis-
tic concordance matrix to implement ADT constraints as well as
for cluster annotation. When several related scRNA-seq data are
available, jointly analyzing CITE-seq and scRNA-seq data with SE-
CANT can provide annotation of confident cell types, which are
constructed with ADT data from CITE-seq, for cells from scRNA-
seq, and the ADT-guided clustering performance is expected to
enhance.

Still, several limitations exist for SECANT. First, in this study,
the input of SECANT from ADT data is the confident cell type label
built through manual gating, which undergoes a relatively subjec-
tive process. For example, a less conservative gating approach will
introduce noise to cell label, while a more conservative approach
will lead to the loss of sample size. In practice, as a preliminary
step of SECANT, we suggest that researchers gate cells more con-
servatively, and leave cells on the boundary as “uncertain” cell
type (e.g. Fig. S2). SECANT is designed to fully utilize cells with

uncertain cell type identified with ADT data, thus a conservative
gating approach would not lead to the loss of sample size, but
could sufficiently reduce the labeling noise. In addition, other
methods, e.g. auto gating, can also be used to build confident
cell type label as the input for SECANT. Second, SECANT em-
ploys stochastic gradient descent (SGD) for optimization, which
is a computationally expensive approach. To speed up, we im-
plement our algorithm in PyTorch (a Python library from Face-
book) and utilizes tensor broadcasting. Although PyTorch is well-
known for deep learning, it can be used to optimize a target func-
tion through SGD without building neural networks. Also, it is
extremely convenient with PyTorch to use graphics processing
units (GPUs) for strong acceleration, and we have implemented
our algorithm with GPU setting (e.g. freely available on Google
Colab). We further benchmarked the computational speed and
memory consumption of SECANT in real data applications in Ta-
ble S9 under GPU setting. Third, to estimate the configuration of
the matrix form of the concordance matrix C without any prior
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knowledge, currently we need to run all possible configurations,
and then select the one with the maximum log-likelihood. To
speed up, one can run SECANT in parallel, each thread running
a different configuration. In addition, we are developing an al-
ternative approach for optimization, which utilizes the alternat-
ing direction method of multipliers (ADMM), in a separate study.
The alternative approach is expected to be more efficient than
the current approach. Lastly, SECANT is a model-based approach,
which requires sufficient sample size for proper parameter es-
timation and valid statistical inference. Therefore, SECANT may
not be powerful to detect small cell clusters (e.g. rare cell types)
when the total number of cells in the dataset is relatively small.
However, given the rapid advance in technology, a typical CITE-
seq experiment can now measure the expression profile of more
than 5,000 cells, which can be further increased to over 10,000 if
coupled with sample multiplexing methods such as cell hashing,
which no longer limits the usage of SECANT in real applications.

In summary, we propose a novel statistical method, SECANT,
which utilizes model-based semi-supervised learning for surface
protein guided cell clustering, classification and annotation with
CITE-seq data or joint analysis with CITE-seq and scRNA-seq data.
Our model framework can be extended to accommodate single
cell data from other two data sources (e.g. the recently developed
ASAP-seq (12)), or to analyze data from other fields. Additionally,
our well-designed in-house CITE-seq datasets will be valuable for
researchers to develop novel methods. We believe SECANT would
quickly gain popularity among medical researchers, particularly
in immunology filed.

Methods
Statistical models
We first denote Li the confident cell type label for cell i ob-
tained from ADT data. We assume there are in total M confi-
dent cell types identified with ADT data, and the support of L is
{1, 2, . . . , M, M + 1}, where L = 1, 2, . . . , M corresponds to each
of the confident cell types, and L = M + 1 refers to the additional
“uncertain” group. We then denote Zi the cell cluster label for cell i
estimated from RNA data. Assuming the total number of clusters
is K, the support of Z is {1, 2, . . . , K}. The core assumption of our
approach is that cells should not fall into the same cluster identi-
fied with RNA data if they are classified as different confident cell
types (not including the “uncertain” group) with ADT data. For ex-
ample, if one cell is identified as a CD4 + T cell and another as
a CD8 + T cell confidently from ADT data, then we should avoid
these two cells being clustered together with RNA data. As an ex-
ception, this constraint does not apply to cells falling into the “un-
certain” group, which makes our assumption biologically plausi-
ble. This constraint can be described mathematically as follows:

For cell i and cell j, where i �= j, if Li �= M + 1, L j �= M + 1,

and Li �= L j, then Zi �= Zj, (1)

Equivalently, we can state our constraint [1] in a statistical way
by introducing a concordance matrix C(M+1)×K, as shown in Ta-
ble 4. We denote pmk in the matrix the conditional probability
P(Li = m|Zi = k) for cell i. Under constraint [1] and general assump-
tions, we have the following constraints on the first M rows of C,
denoted by C∗

M×K, where each row corresponds to a confident cell
type:

1) Each column of C∗ contains exactly one nonzero parameter.
2) Each row of C∗ contains at least one nonzero parameter.

The last row of C, referring to the “uncertain” group, can then
be decided with parameters implemented in C∗. In general, there
are multiple configurations of the matrix form of C that fulfill
the constraints described above, and there are K parameters to
be estimated for each configuration. We will discuss more about
the concordance matrix C in the next section. After introducing
the concordance matrix C, we can then write out the likelihood
function.

Scenario 1: CITE-seq data only
We denote Y the latent space of RNA data, and each element Yi j

represents the value for feature j in cell i, where i runs from 1 to
the total number of cells N and j runs from 1 to the number of
dimensions in latent space D. We further assume the total num-
ber of clusters identified from RNA data is K. The likelihood can
be written as

P (Y, L) =
N∏

i=1
{

K∑
k=1

P(Li|Zi = k)P(Zi = k|Yi )}
N∏

i = 1

{
K∏

k = 1
f (Yi|θk )1(Zi=k)

}
,

(2)

where P(Zi = k|Yi ) = τk f (Yi |θk )∑K
k = 1 τk f (Yi |θk )

refers to the posterior proba-

bility of cell i belonging to cluster k, τk = P(Zi = k) refers to the
proportion of cluster k, and f (Yi|θk ) refers to the cluster-specific
distribution of RNA data on latent space. In this study, we as-

sume f (Yi|θk ) = exp(− 1
2 (Yi−μk )T �−1

k (Yi−μk ))√
(2π )D |�k |

, the probability density func-

tion (pdf) of multivariate Gaussian distribution with θk = {μk, �k},
where μk stands for a D-dimensional cluster-specific mean vector
and �k stands for a D by D cluster-specific covariance matrix. In
addition, P(Li|Zi = k) are elements of the aforementioned concor-
dance matrix C.

Scenario 2: CITE-seq data and scRNA-seq data
We denote Y (1) the latent space of RNA data (of size N1 by D) from
CITE-seq, and each element Y (1)

i j represents the value for feature
j in cell i, where i runs from 1 to N1, and j runs from 1 to D. We
then denote Y (2) the latent space of RNA data (of size N2 by D) from
scRNA-seq, and each element Y (2)

i j represents the value for feature
j in cell i, where i runs from N1 + 1 to N1 + N2, and j runs from 1
to D. We assume Y (1) and Y (2) have batch effect corrected, and the
features are exactly matched. Similarly, we also denote Z(1)

i and

Z(2)
i the cell cluster label for cell i estimated from CITE-seq and

scRNA-seq data, respectively. We further assume the common to-
tal number of clusters identified from RNA data is K. Similar to
Scenario 1, the likelihood can be written as

P
(
Y (1),Y (2), L

)
= P

(
L|Y (1)

)
P

(
Y (1)

)
P

(
Y (2)

)

=
N1∏
i=1

{
K∑

k=1

P
(
L(1)|Z(1)

i = k
)

P
(
Z(1)

i = k|Y (1)
i

)}
N1∏
i=1

×
{

K∏
k=1

f (Y (1)
i |θk )

1
(
Z(1)

i =k
)} N1+N2∏

i=N1+1

{
K∏

k=1

f (Y (2)
i |θk )

1
(
Z(2)

i =k
)}

, (3)

where P(Z(1)
i = k|Y (1)

i ) = τ
(1)
k f (Y (1)

i |θk )∑K
k = 1 τ

(1)
k f (Y (1)

i |θk )
refers to the posterior prob-

ability of cell i belonging to cluster k, and τ
(1)
k = P(Z(1)

i = k) refers
to the proportion of cluster k in RNA data from CITE-seq. Simi-
larly, τ

(2)
k = P(Z(2)

i = k) refers to the proportion of cluster k in RNA

data from scRNA-seq. f (Y (1)
i |θk ) and f (Y (2)

i |θk ) refer to the cluster-
specific distribution of RNA data from CITE-seq and scRNA-seq
on latent space, respectively. Similar to Scenario 1, we assume
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Table 4. An example of concordance matrix with M confident cell types identified with ADT data and K clusters identified with RNA data
under ADT guidance.

Clusters from RNA data

Cluster 1 Cluster 2 . . . Cluster k Cluster k + 1 . . . Cluster K

Confident cell
types from ADT
data

Cell type 1 p11 0 0 0 0
Cell type 2 0 p22 0 0 0

. . .
Cell type m 0 0 pmk pm, k+1 0

. . .
Cell type M 0 0 0 0 pMK

Uncertain ∗ 1–p11 1–p22 1–pmk 1–pm, k+1 1–pMK

Each entry in the matrix represents the conditional probability of a cell belong to a certain cell type given its cluster category.

f (Y (1)
i |θk ) and f (Y (2)

i |θk ) are the pdf of multivariate Gaussian distri-
bution with θk = {μk, �k}. For model flexibility, data-specific clus-
ter proportions, τ

(1)
k and τ

(2)
k , are allowed to differ. Note that the

two data sources (after batch effect correction) share the com-
mon cluster-specific parameters. Again, P(Li|Zi = k) are elements
of the concordance matrix C. For prediction of confident cell types
for scRNA-seq data, we can compute the posterior probability of

cell i belonging to confident cell type m, P(L(2)
i = m|Y (2)

i ) =
K∑

k=1
P(Li =

m|Z(2)
i = k)P(Z(2)

i = k|Y (2)
i ), where P(Z(2)

i = k|Y (2)
i ) = τ

(2)
k f (Y (2)

i |θk )∑K
k = 1 τ

(2)
k f (Y (2)

i |θk )

refers to the posterior probability of cell i belonging to cluster k
for scRNA-seq data.

Modeling and space reduction of concordance
matrix C
The concordance matrix C has two major functions: (1) to asso-
ciate ADT data and RNA data by considering the ADT confident
cell type label as guidance for cell clustering with RNA data; and
(2) to provide the confident cell type annotation for each cluster.
In general, a concordance matrix with M confident cell types and

K clusters, as shown in Table 4 has (
K − 1
M − 1

) different configurations

of matrix form that fulfill the aforementioned constraints. Here,

the notation (
n
k

) = n!
k!(n−k)! = n(n−1)···(n−k+1)

k(k−1)···1 refers to the number of k-

combinations of a set S with n elements. The number (
K − 1
M − 1

) is

derived from an analogy of listing all possible configurations for
arranging K balls into M different boxes providing that each box
has at least one ball. For example, when K = 11 and M = 5, the to-
tal number of different configurations is 210. In practice, one can
either specify one or several plausible configurations with prior
knowledge or to run our algorithm with all possible configurations
in parallel, and then select the best configuration with the largest

log-likelihood. Although the number (
K − 1
M − 1

) can be large, a great

number of matrix forms are actually not practical, (e.g. when one
confident cell type is assumed to have six subtypes while the other
five confident cell types each has only one subtype). As a result,
the number can be largely reduced by restricting the maximum
number of clusters a confident cell type corresponds to, denoted
by KMax

Sub . For example, when we set KMax
Sub = 3, the total number of

matrix forms is reduced to 45 from 210 for the situation when K
= 11 and M = 5. KMax

Sub can be selected based on prior biological
knowledge, or information from a UMAP plot (e.g. Fig. 5A).

Optimization method
We use SGD method to directly optimize the log-likelihood (by
minimizing the negative log-likelihood) of complete data, where
the likelihood function for each scenario (1. CITE-seq data only; 2.
CITE-seq data and scRNA-seq data) is defined above. The parame-
ters to be estimated through SGD include cluster-specific param-
eters {μk, �k} from the clustering part, and the nonzero p′

mks in
the concordance matrix C. As described in previous section, each
configuration of the matrix form of C is also a parameter in the
likelihood function, which can be maximized through parallel
computing (each thread with a different configuration).

Initialization of SECANT and selection of the
number of clusters
For the initialization of clustering-related parameters {τk, μk, �k},
we exclude cells with uncertain ADT label and run separate mul-
tivariate GMM with cells from each ADT confident cell type. The
number of mixtures for each multivariate GMM is determined
based on the concordance matrix C. For probability parameters
in C, by default we set pmk = 0.5 as the initial value. In general,
SECANT is robust to different initializations (Table S10). For the
number of clusters to be specified in SECANT, we suggest users
choose this value based on prior biological knowledge, especially
when the tissue type is well-studied (e.g. PBMC) or the study is
confirmatory. On the other hand, since SECANT is a likelihood-
based method, people can utilize the gradient of Bayesian infor-
mation criterion (BIC) scores curve to help decide the number of
clusters as a data-driven approach.

Determining the best configuration of
concordance matrix in this study
To determine the best configuration of concordance matrix in
both simulation study and real data applications, we first search
the entire configuration space in each scenario (in parallel) and
run each configuration with 10 different initializations, and then
determine the best configuration based on largest log-likelihood.
Under each setting, we summarize the boxplot of log-likelihood
from 10 initializations across all configurations (Figs. S16 to S22).
In most settings, all the top 10 log-likelihoods are from the correct
configuration, which infers running SECANT with one initializa-
tion is sufficient. The only exceptions occur in simulation study,
when sample size decreases or the number of parameters to es-
timate increases (e.g. increasing number of clusters or feature di-
mension), which can be remedied by an increasing sample size
(e.g. from N = 1000 to N = 2000).
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In practice, there are many situations where people can di-
rectly specify the configuration without searching for the entire
space. For instance, if the study is confirmatory (the cell type com-
positions are prespecified) or the tissue type is well-studied (e.g.
PBMC). On the other hand, for complex tissues like bone mar-
row, one may consider running SECANT with multiple initializa-
tions (e.g. five) for each configuration if the number of cells is low,
and then select the one with the largest log-likelihood among all
combinations. However, to avoid a large number of configurations
to search, which will largely increase computational burden, we
generally suggest that users specify the total number of clusters
less than 15.

Evaluation metrics for clustering performance
We assessed the performance of ADT-guided clustering of SE-
CANT by computing ARI (36) and AMI (37) with the simulated
clustering truth. Both ARI and AMI are commonly used metrics
for the concordance of two clustering results. Comparing to the
truth, an ARI or AMI of value 1 indicates the clustering result is
identical to the truth, while value 0 indicates the clustering re-
sult is a random assignment. A previous study suggests using ARI
for balanced clustering situation, while using AMI for unbalanced
clustering situation (43).

In-house CITE-seq datasets
We generated two in-house CITE-seq datasets of PBMCs from a
healthy donor. Cells from both datasets are from the same aliquot
of the sample, and thus are homogenous in nature. Cells were
stained with the newly released TotalSeq-A panel (Human Uni-
versal Cocktail, V1.0) with a total of 154 unique cell surface anti-
gens from BioLegend and are prepared using the 10x Genomics
platform with Gel Bead Kit V2. Different antibody concentrations
were used in each sample. In addition, we used cell hashing for
sample multiplexing to eliminate batch effect between RNA data
from each dataset. The prepared assay is subsequently sequenced
on an Illumina HiSeq with a depth of 50 K reads per cell.

Competing methods for comparisons
Seurat’s weighted-nearest neighbor (WNN) is a novel analytical
framework to integrate single-cell multi-omics data to jointly de-
fine cellular state (22). Seurat (WNN) utilizes an unsupervised
approach (specifically through constructing k-nearest neighbor
graphs for each modality and performing within and cross-
modality predictions) to estimate cell-specific modality “weights,”
which reflects the relative importance of each data modality for
each cell in downstream analyses. For Seurat (WNN), the raw
RNA and ADT count data matrices were used as input. In gen-
eral, data preprocessing followed general suggestion in the Seurat
tutorial (https://satijalab.org/seurat/articles/weighted_nearest_n
eighbor_analysis.html). The number of important principal com-
ponents (PCs) after dimension reduction was determined based
on Elbow plot. The resolution parameter in clustering algorithm
was adjusted according to the prespecified number of clusters. All
the other parameters (such as the number of multimodal neigh-
bors to compute) were set to default settings.

totalVI is a deep generative model that can jointly analyze
paired protein and RNA data in CITE-seq (20). Essentially, it uti-
lizes a probabilistic latent variable model to learn a joint prob-
abilistic representation of the observed paired data, which ac-
counts for the technical biases and noise from each data modal-
ity. For totalVI, the raw RNA and ADT count data matrices were
used as input. The dataset was first filtered and the top 4,000

highly variable genes were selected, as suggested in the totalVI tu-
torial (https://docs.scvi-tools.org/en/0.6.5/tutorials/totalvi.html).
The resolution parameter in clustering algorithm was adjusted
according to the prespecified number of clusters. All the other pa-
rameters (such as hyperparameters, learning rate, and number of
epochs) were set to default settings.
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