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Abstract: Fibroblast growth factor 23 (FGF23) plays a key role in the complex network between
the bones and other organs. Initially, it was thought that FGF23 exclusively regulated phosphate
and vitamin D metabolism; however, recent research has demonstrated that an excess of FGF23 has
other effects that may be detrimental in some cases. The understanding of the signaling pathways
through which FGF23 acts in different organs is crucial to develop strategies aiming to prevent the
negative effects associated with high FGF23 levels. FGF23 has been described to have effects on the
heart, promoting left ventricular hypertrophy (LVH); the liver, leading to production of inflammatory
cytokines; the bones, inhibiting mineralization; and the bone marrow, by reducing the production
of erythropoietin (EPO). The identification of FGF23 receptors will play a remarkable role in future
research since its selective blockade might reduce the adverse effects of FGF23. Patients with chronic
kidney disease (CKD) have very high levels of FGF23 and may be the population suffering from the
most adverse FGF23-related effects. The general population, as well as kidney transplant recipients,
may also be affected by high FGF23. Whether the association between FGF23 and clinical events is
causal or casual remains controversial. The hypothesis that FGF23 could be considered a therapeutic
target is gaining relevance and may become a promising field of investigation in the future.

Keywords: calcium; phosphate; chronic kidney disease; dialysis; fibroblast growth factor 23 (FGF23);
fibroblast growth factor receptor (FGFR); Klotho; parathyroid hormone

Key Contribution: FGF23 plays a crucial role in the network connecting the bone signaling with
multiple organs. Recent research has shown that, beyond its physiological functions, high levels
of FGF23 may have detrimental effects such as stimulation of inflammatory cytokines, LVH,
and impairment of neutrophil function. Given that multiple studies have associated high FGF23
levels with adverse clinical outcomes and mortality, it is a priority to understand the mechanisms
leading to excessive production of FGF23. Recent investigations challenge the causal association
between FGF23 and cardiovascular disease and suggest that FGF23 may be a consequence rather
than a cause of cardiovascular disease. Although FGF23 may be considered a biomarker of phosphate
load, it remains controversial whether it can also be considered a biomarker for adverse outcomes,
at least in subjects with no evidence of CKD.

1. Introduction

Cardiovascular disease is the main cause of death in end-stage renal disease patients (ESRD) [1,2].
Mineral and bone disorders, vascular calcifications, and the vascular dysfunction associated with
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chronic kidney disease (CKD-MBD) are determinant in the outcomes of these patients [3–5]. CKD-MBD
syndrome, which includes bone metabolic disease, alterations in mineral metabolism, and vascular
calcifications, has been associated with poor quality of life, a higher rate of hospitalizations, and risk of
fractures and death among patients with ESRD [6]. The decline in renal function produces alterations in
serum phosphate, calcium, and PTH, and the development of vascular calcifications and left ventricle
hypertrophy (LVH) [7–10]. It is estimated that about 10% of the worldwide population have some
degree of renal dysfunction. The early recognition of kidney disease has become of high concern due
to social and economic reasons [11–13]. Interventions to correct traditional risk factors of mortality
have not reduced the mortality rate in ESRD patients, which continues to be very high. Therefore,
it has been hypothesized that there are non-traditional risk factors that must be identified and targeted
to improve patient outcomes [14–16].

The discovery of FGF23 has revolutionized our understanding of secondary
hyperparathyroidism [17] and CKD-MBD in general. There is a close association between
FGF23 and many unwanted outcomes such as a high incidence of infections, hospitalizations,
myocardial infarction, heart failure, and death in CKD patients; therefore, it is a priority not only to
understand the mechanisms whereby FGF23 signals are transduced but also the variables associated
with the increase in FGF23 so therapeutic strategies can be activated [18–21].

Overall, FGF23 plays a key role in the complex interrelationship between the bones and other
organs. Today, the bones are recognized as an endocrine organ because they secrete hormones that
allow crosstalk with other organs [22]. FGF23 is a hormone produced and secreted by different
tissues, although the main source are the osteocytes and mature osteoblasts [23–25]. FGF23 increases
urinary excretion of phosphate and reduces renal production of 1,25 dihydroxy-vitamin D
(1,25(OH)2D3) [26–28]. FGF23 also decreases PTH secretion [29,30]. However, in recent years, FGF23
excess has been shown to produce detrimental effects in other organs such as the heart, bone structure,
and endothelium (Figure 1) [3,31,32]. The fact that FGF23 may cause undesirable effects raises the
question of whether it may not only be a biomarker of altered mineral metabolism and cardiovascular
disease, but a therapeutic target [30]. This review summarizes our current understanding of FGF23,
its regulation, and recognized effects on different organs.

2. Secondary Hyperparathyroidism

Comprehensive reviews of SHP have been previously published [7,33,34] and are outside of the
scope of this review. Briefly, in the old trade-off hypothesis, PTH and vitamin D were considered the
hallmarks of secondary hyperparathyroidism. The progressive decrease in renal function resulted
in phosphate accumulation and reduction of calcitriol production by the failing kidneys. Phosphate
retention, low calcitriol levels, and the tendency to hypocalcemia stimulated PTH secretion, which
promoted calcitriol production and inhibited calcium excretion through the kidneys, and also increased
calcium and phosphate efflux from the bones [33,35,36]. Although this mechanism helps to maintain
serum calcium levels, it is not sufficient to prevent phosphate accumulation. Serum phosphate was
shown to stimulate PTH secretion and parathyroid cell proliferation in both animal models and
humans [37,38]. The accumulation of phosphate contributes to hypocalcemia by producing skeletal
resistance to the calcemic action of PTH [39]. The discovery of the FGF23/Klotho complex [40,41]
helped to clarify the pathophysiology of secondary hyperparathyroidism. FGF23, together with
the PTH-vitamin D axis, configures one of the most advanced endocrine networks that manage
communication between the bone and other organs [7]. In the early stages of CKD, FGF23 increases to
maintain serum phosphate within normal levels even when PTH is still normal [42]. Once CKD
progresses, these compensatory mechanisms fail, and secondary hyperparathyroidism becomes
evident. Finally, in advanced CKD, hyperphosphatemia and hypocalcemia is present because the
marked reduction of glomerular filtration makes FGF23 and PTH non-operative [29,43].
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3. FGF23 Origin and Structure

The fibroblast growth factors (FGFs) belong to a family of proteins involved in embryonic
development and metabolic functions [44,45]. All of them derive from the common ancestral gene,
Fgf13-like, and are comprised of 22 structurally and evolutionarily similar members from Ffg1 to Fgf23
that conserve a ~120-residue structural domain [46]. Remarkably, Fgf15 and Fgf19 are ortholog proteins
in vertebrates, so they are absent in humans and mice, respectively [44,47].

Phylogenetically, the FGFs family may be divided into seven different gene subfamilies that are
grouped into three different subgroups according to their functions: the intracrine, the paracrine or
canonical and the endocrine Fgf genes. The intracrine group includes proteins Fgf11 to Fgf14, which
act intracellularly through a pathway independent of the FGF receptor (FGFR) [45]. The canonical
subgroup acts in an autocrine and paracrine manner through the binding and activation of the
tyrosine kinase FGFR, which includes heparin/heparan sulfate as a cofactor. This group includes five
subfamilies: Fgf 1/2/5, Fgf 3/4/6, Fgf 7/10/22, Fgf 8/17/18, and Fgf 9/17/20 [46]. Finally, the endocrine group,
comprised of Fgf 19/21/23, acts systemically in a hormonal manner through both an FGFR-dependent
and FGFR-independent pathway [44]. In contrast to the canonical group, the endocrine family uses a
COOH-terminal domain to activate FGFR, whereby they are not captured by the extracellular matrix
so they can act as circulating factors [44].

The Fgf23 gene is located on human chromosome 12p3.3, and is comprised of three separate
exons and two introns that codify a 32 kDa glycoprotein with 251 amino acids. This full-length
protein is recognized as a biologically active hormone, although some studies have suggested that
c-terminal fragments may also have biological activity [48,49]. The COOH-terminal domain (c-terminal;
12 kDa) acts as a cofactor by inhibiting iFGF23 binding to the FGFR/Klotho complex [44,50]. Once the
mature protein is released into the circulation, it can be measured as two different isoforms, iFGF23
(25−FGF23−251) and the c-terminal FGF23 (25−FGF23−179) [46]. Commercially available assays quantify
circulating FGF23 levels based on the different epitopes expressed. Assays detecting iFGF23 recognize
two epitopes beyond the proteolytic site. By contrast, assays detecting cFGF23 fragments recognize
both iFGF23 and cFGF23 fragments because of the two epitopes captured distal to the cleavage site [50].
The simultaneous determination of both molecules allows for assessing the production and cleavage
of the molecule [50].

4. Mechanisms of Action of FGF23

The main functions of FGF23 are to decrease the serum levels of 1,25(OH)2D3 through the
inhibition of 1α-hydroxylase and increase 24-hydroxylase activity [51]. Moreover, it enhances
phosphaturia by inhibiting phosphate proximal tubular resorption through sodium phosphate
cotransporters NaPi2a and NaPi2b [52]. Similarly, PTH also regulates renal urinary phosphate
excretion by promoting the internalization of NaPi2 cotransporters from the brush border membrane
in renal proximal tubules [53]. In early stages of CKD, the increase in PTH is caused in part by
a deficiency of 1,25(OH)2D3. The elevation of FGF23 reduces 1,25(OH)2D3 levels by decreasing
renal production and also increasing catabolism. This may explain why in early CKD the elevation
in serum PTH is observed once FGF23 is already increased [53]. FGF23 tissue-specific functions
are dependent on the presence of FGF receptor (FGFR) and in some cases its cofactor αKlotho [41].
Four different FGFRs have been recognized, FGFR 1 to 4. Based on the distribution of these different
receptors, FGF23 targets the kidneys, the parathyroid gland, the liver, the heart, the bone, the immune
system, and possibly others [45,46]. Klotho gene encodes a 1014 amino acids type I transmembrane
protein with β-glucuronidase activity composed of two extracellular domains, termed KL1 and
KL2 [41], and is predominantly expressed on the kidney and the choroid plexus, although it has also
been described in the parathyroid gland, the pituitary gland, placenta, skeletal muscle, pancreas,
and testis, among others [54–56]. αKlotho was considered mandatory for FGF23 signaling recognition;
however, the discovery of Klotho-independent pathways for FGF23 transduction has changed after
the identification of FGFRs that do not always require αKlotho as a cofactor [57]. αKlotho and FGFRs
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are also abundantly expressed in the parathyroid glands [58]. Under physiological conditions FGF23
inhibits PTH secretion and production [58,59]; however, in uremia, FGF23 fails to inhibit PTH release
because of downregulation of the parathyroid FGFR1/Klotho complex [60]. Hence, in ESRD patients on
dialysis, FGF23 levels predict refractory SHP [61].

The molecule αKlotho is essential not only because its loss of function is associated with premature
aging and target-organ resistance to FGF23 actions, but also because, in ESRD, Klotho depletion
is considered an early biomarker of disease progression, development of vascular calcifications,
and LVH [62,63]. The full-length αKlotho extracellular domain can be cleaved and secreted into the
circulation as a soluble isoform, namely soluble Klotho (sKlotho), which not only enhances FGFR binding
capability to FGF23 by 20-fold [64] but also acts as a scaffold to allow closer proximity between FGFR
and FGF23, increasing the stability of the complex [65]. Some authors have suggested that the serum
and urine levels of sKlotho may serve as a surrogate marker of renal αKlotho expression [66]. Although
strong evidence is still lacking, sKlotho could be considered an endocrine mediator targeting different
organs without αKlotho expression [57]. Interestingly, in the mouse, sKlotho protects the heart from
uremic cardiomyopathy [67] and stress-induced hypertrophy and remodeling; this is achieved by
sKlotho-induced inhibition of the transient receptor potential cation channel, subfamily C, member
6 (TRPC6) [68]. A number of reports show that Klotho deficiency correlates with the development of
coronary artery disease, atherosclerosis, myocardial infarction, and left ventricular hypertrophy [31,69].
Therefore, Klotho may be involved in the regulation of signaling pathways and cell metabolism, being
a key factor in cardiac and vascular protection. Furthermore, sKlotho is likely to be protective in rodent
models of acute kidney injury (AKI), reducing renal fibrosis and CKD progression [66].

5. Regulation of FGF23 Production

Since the discovery of FGF23, many studies have been conducted aiming to evaluate the factors
regulating FGF23 production and cleavage.

5.1. Vitamin D

The administration of vitamin D increases FGF23 in both humans and rodents [70,71].
Furthermore, 1,25(OH)2D3 (calcitriol) increases intestinal absorption of phosphate and calcium, both of
which also favors FGF23 production. Vitamin D by acting on its specific receptor (VDR) stimulates the
promoter region in the FGF23 gene, an effect that is independent of serum phosphate and calcium [72].
Additionally, locally produced vitamin D in bone cells is likely to regulate FGF23 production [72].

5.2. Phosphate

Phosphate sensing receptors are yet to be discovered [73], but it is evident that phosphate load,
even without high serum phosphate, stimulates FGF23 production [74,75]. In CKD patients and
patients on dialysis, the high serum phosphate concentration is associated with elevated FGF23
levels [21,76]. We recently demonstrated that phosphate contributed 70% to the high levels of intact
FGF23 in hemodialysis patients [21].

5.3. Calcium and PTH

PTH promotes the transcription of FGF23 in a calcitriol-independent manner [59,77]. Recently,
the demonstration that PTH activates the orphan nuclear receptor Nurr1 [78] has revealed the putative
mechanism by which PTH increases FGF23. In dialysis patients, FGF23 correlates positively with
serum levels of phosphate and PTH, and inversely with the serum calcium concentration [21,79].

It is likely that hypocalcemia reduces circulating FGF23 to prevent a decrease in calcitriol, which
would worsen a situation of calcium deficiency [80]. VDR null mice fed a high-calcium diet had
increased circulating FGF23, which suggests that the regulation of FGF3 by calcium is independent of
VDR [81]. In the general population and CKD patients, consumption of an enriched calcium diet is
associated with increased FGF23 [82]. In dialysis patients, the calcium effect on FGF23 production is
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more prominent if phosphate is within the normal range [21]. A decrease in calcium below 8 mg/dL
diminishes the elevation of FGF23 induced by high phosphate [80,83]. The reduction of PTH after the
administration of calcimimetics is associated with a decrease in FGF23, which is likely related to the
concomitant reduction in both serum calcium and phosphate [84].

5.4. Inflammation and Iron Deficiency

There may be bi-directional crosstalk between inflammation and FGF23 production [85].
Since both inflammation and elevation of FGF23 are associated with mortality, the understanding of
this loop is of high relevance in clinical practice [86–88]. Either acute or chronic inflammation may
promote FGF23 transcription and cleavage [89]. The induction of acute inflammation in wild-type
mice not only reduced the serum iron and increased serum ferritin levels but also resulted in an
increase in bone Fgf23 mRNA expression that was accompanied by a rise in cFGF23, while iFGF23
remained unchanged [89]. By contrast, the induction of chronic inflammation in a murine CKD
model was followed by a concurrent increase in both iFGF23 and cFGF23, although the rise in
c-terminal fragments was greater than that of iFGF23 [89]. Mechanistically, inflammation and iron
deficiency increase the activity of the hypoxia-inducible factor 1-alpha (HIF-1α) signaling, thereby
augmenting Fgf 23 transcription [89]. Therefore, inflammation and iron deficiency promote not only
FGF23 transcription but also cleavage. In healthy women with iron deficiency, the administration of
intravenous iron reduced cFGF23, whereas iFGF23 increases transiently, probably due to the reduction
of FGF23 cleavage [90].

In CKD and dialysis patients, the high serum phosphate correlates with increased levels of FGF23,
which in turn is associated with an elevation of C-reactive protein [21,91]. Inflammation may not only
modulate FGF23 production but also cleavage since the relative effect of inflammation on the elevation
of cFGF23 is 3-fold higher than that of iFGF23 [21]. A mechanism whereby inflammation may increase
FGF23 production is the activation of the nuclear factor kappa-light-chain-enhancer of B-cells (NF-κB)
pathway, which has been related to FGF23 transcription [24]. However, NF-κB may also enhance
FGF23 production through the upregulation of HIF-1α, which is known to increase FGF23.

5.5. Erythropoietin

A few studies have demonstrated an association between FGF23 and erythropoiesis [92–94].
Although elevated FGF23 reduces bone marrow EPO expression, EPO promotes FGF23
transcription [93,94]; the precise mechanism remains uncertain, although it is likely to be independent
of iron and Klotho. The administration of EPO to patients with AKI was followed by an increase in
circulating FGF23 [94]. These results are supported by other additional studies in kidney transplant
recipients and dialysis patients [95].

5.6. Others

5.6.1. Adiponectin

The adipose tissue secretes many factors with endocrine functions. Indeed, adiponectin limits
renal damage and accelerates renal recovery after kidney injury in mice models [96]. Chronic kidney
disease upregulates adiponectin expression [97]. Also, adiponectin increases the renal excretion
of calcium and therefore the risk of osteoporosis [98]. Recently, adiponectin has been coupled
with systemic mineral homeostasis and renal handling of phosphate and calcium. Mechanistically,
high adiponectin reduces kidney secretion of αKlotho and FGF23 production by osteocytes, although it
increases the renal loss of calcium [99]. This mechanism is mediated through the activation of renal
ADIPOR1 and ADIPOR2 receptors [99].
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5.6.2. Insulin

Diabetes is associated with elevated FGF23 [100]. Furthermore, increased cFGF23 has been
associated with insulin resistance, obesity, resistin, and HOMA-IR [101]. However, these associations
may be mediated through inflammation since these patients also showed higher levels of IL-6, CRP,
and IL-10 [101]. Interestingly, a recent study has delineated insulin-dependent signaling for FGF23
synthesis. Insulin and insulin-like growth factor (IGF-1) suppress FGF23 production by activating the
PI3K/PKB/Akt/FOXO 1 signaling [102].

5.6.3. Aldosterone

One remarkable finding in recent years has been the discovery of the crosstalk between FGF23
and aldosterone regulation. By activating the FGFR1/α-Klotho/ERK pathway, FGF23 enhances sodium
reabsorption through sodium/chloride cotransporter in distal tubules with a significant impact on
volume overload and an elevation of blood pressure [103]. In parallel, aldosterone upregulates FGF23
secretion, which in turn increases the expression of angiotensin II in cardiac myocytes [104]. In dialysis
patients, volume overload is associated with elevated FGF23 [105].

5.6.4. Regulation of FGF23 Production by Bone Cell Factors

Production of FGF23 is regulated at the bone level by the gen with homology to endopeptidases
located in the X chromosome (PHEX) and the dentin matrix protein 1 (DMP1). PHEX is a 106 kDa
protein expressed by osteoblast and osteocytes. Inactivating the mutation of PHEX results in excessive
Fgf23 gene transcription. On the contrary, overactivation of PHEX decreases FGF23. It seems that
the cleavage of the intact protein is the main regulating function of PHEX [58,106]. The DMP1 is
a 94 kDa protein expressed in osteoblasts and osteocytes that is critical in bone mineralization [24].
Even though its inhibition resembles PHEX inactivation, its overactivation does not contribute to
FGF23 elevation [46].

6. Effect on Different Organs

Classically, the kidneys and the parathyroid glands are the main targets for FGF23. However,
by acting in a Klotho-independent manner, high FGF23 has been demonstrated to have other effects
that in some cases are detrimental (Figure 1). Hence, one question to be addressed is whether FGF23
should be a therapeutic target. The effects of FGF23 on the kidneys and parathyroid are well described;
the present manuscript will focus on the often detrimental effects of FGF23 in other organs. Table 1
summarizes the classical and non-classical effects of FGF23, the different targeted cell types, and the
FGFR isoform and final organ effect induced.
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6.1. The Heart

Left ventricular hypertrophy (LVH) is frequently observed in patients with advanced CKD [107].
More recently, FGF23 has also been associated with a deleterious effect on the heart [108] through
a Klotho-independent manner since the heart lacks αKlotho expression [31]. Hence, FGF23 targets
the heart directly by acting on FGFR4 with subsequent triggering of the PLCγ/calcineurin/NFAT
signaling pathway, which promotes cardiac hypertrophy, fibrosis, and heart failure [31]. The latter
effect has been shown in in vitro studies and non-CKD mice models [31]. Inhibitors for FGFR4 halt
such a detrimental effect [109]. As described above, the FGF23 increase is accompanied by reductions
in Klotho. Reductions in sKlotho per se are also associated with cardiac injury in animal models [67].
Indeed, the use of recombinant sKlotho in a CKD model of Klotho-deficient mice attenuated cardiac
remodeling regardless of the prevailing FGF23 levels [67,110]. Hence, there is evidence suggesting
that LVH is due to a Klotho deficiency rather than to an FGF23 excess since the normalization of both
phosphate and FGF23 did not prevent the development of LHV in Klotho-replete cultures of cardiac
myocytes [67,110]. Studies inducing isolated sKlotho reductions in the absence of an FGF23 effect
by blocking FGFR4 may serve as models to demonstrate whether sKlotho actions of cardiac injury
development are dependent on FGF23 increase or not.

It is also important to consider that FGF23 may also increase blood pressure [103],
inflammation [89], and CKD progression [111], all of which are associated with the development
of LVH. However, it is likely that FGF23 is such a potent cardiac remodeling molecule that its effect on
cardiac cells is independent of other pro-hypertrophic factors [57]. Interestingly, the cardiac expression
of FGF23 and FGFR4 is elevated in human cardiomyocytes from deceased dialysis patients [112].
In these patients, cardiac FGF23 correlate with cardiac myocytes’ cross-sectional area and with brain
natriuretic peptide (BNP). Although αKlotho is absent in cardiac myocytes, sKlotho has been detected
in lysates from human myocardial tissue [112]. However, sKlotho was lower in patients with LVH
and its levels correlated negatively with ESRD duration and the type of renal replacement therapy.
Interestingly, recent observations have shown that the length of the exposure to an increment in FGF23
is more critical for cardiac remodeling than the magnitude of FGF23 elevation [108,113].

Regarding FGF23-associated myocardial fibrosis, early studies showed that FGF23 promotes
the expression of TGF-β in cardiac fibroblasts, which induce cardiac fibrosis through the β-catenin
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pathway [114]. FGF23 also stimulates the proliferation of mice cardiac fibroblasts and collagen I and
II synthesis, at least after myocardial infarction [115]. In myocardial tissue from dialysis patients,
cardiac fibrosis correlates positively with the dialysis vintage and negatively with the highly prevalent
deficiency of sKlotho in cardiac cells [116]. Such an effect may be prevented by the injection of
recombinant sKlotho [67] as it inhibits the transient receptor potential cation channel, subfamily C,
member 6 (TRPC6) in the mouse heart [68]. Hence, the existence of multiple pathways by which FGF23
acts over the cardiac cells warrants further research to evaluate whether neutralizing the FGFR4 has
any beneficial effect on LVH [57].

Finally, according to some reports, all effects of FGF23 on the heart may not be that harmful;
FGF23 may increase intracellular calcium in cardiac myocytes, promoting contractility, although this
may contribute to a higher risk of arrhythmia [117,118].

6.2. Liver

The liver is one of the organs with the highest expression of FGFR4 [55,119]. Similarly to the heart,
FGF23 targets the liver through the activation of the FGFR4/PLCγ/calcineurin/NFAT pathway [85].
Following the activation of this signaling pathway, FGF23 stimulates the production of inflammatory
cytokines such as C-reactive protein (CRP), IL-6, IL-12, and TNFα [85]. The Kupffer cells, which
produce inflammatory cytokines, respond to FGF23 stimulation [120]. Interestingly, FGF23 is likely
to promote hepatocyte proliferation [57] and does not seem to produce hepatic tissue injury since
there is no increase in liver enzymes [57]. However, a recent study reported that FGF23 and reduced
circulating calcifediol were independently associated with non-alcoholic fatty liver disease, perhaps
because of its association with insulin resistance and diabetes [121].

Patients with end-stage renal disease (ESRD) have inflammation due to several reasons,
including the dialysis procedure [122]. High levels of FGF23 stimulate cytokine production, which
mediates systemic inflammation [85]. Altogether, FGF23, ESRD, and the cytokines being secreted
are independently associated with cardiovascular disease. As in the heart, FGFR4 could be
pharmacologically targeted by the use of FGFR4 inhibitors [109]. Further studies are required to
define appropriate strategies to reduce FGF23-mediated cytokine production.
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Table 1. Non-classical effects of FGF23 on different organs.

Effect Organ Target Cell Type FGFR Isoform Organ Effect

FGF23

Classical
(FGFR1/Klotho)

Kidneys [25,123]
Renal Tubular Epithelial Cells FGFR1 ↑ Phosphate Excretion

↓ Calcitriol production

Renal Fibroblasts FGFR4 ↑ TFGβ/Fibrosis

Parathyroid Glands [58,59,77] Parathyroid Chief Cells FGFR1 ↓ PTH Excretion

Non-classical
(FGFR2-4)

Heart [31,109,112,114,124]
Cardiac Myocytes FGFR4 Hypertrophy/LVH

Cardiac Fibroblasts ?* Cardiac Fibrosis/HF

Liver [85] Hepatocytes FGFR4 ↑ IL-6/CRP Secretion

Immune System [120,125,126]
Neutrophils FGFR2 ↓ β-2 Integrin Activation

Macrophages FGFR1 ↑ TNFα Production

Skeleton [32,127,128] Osteocytes/Osteoblasts FGFR1/?* ↓ TNAP Transcription

Bone Marrow [92,129] Early Erythroid Progenitors/BFU-E Colonies ?* ↓ Red Cells

FGF23 targets different cell types across different organs. Although the main mechanistic effects are Klotho-dependent, off-target effects are in some cases Klotho-independent based on the
involvement of FGFR isoforms leading to tissue-specific effects. ↓ Decrease; ↑ Increase; ?* Presumably Klotho-independent. BFU-E colonies, colony forming for erythroid progenitors.
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6.3. Immune System

Infections are more frequent in patients with kidney failure than in the general population [130].
Recently, FGF23 has been associated with a higher proportion of infections in ESRD patients [18,125].
FGF23 inhibits the activation, binding, and migration of neutrophils by preventing β2-integrin
activation [125]. This effect is likely to be Klotho-independent and is mediated by FGFR2, although
FGFR1 and FGFR4 are also expressed in neutrophils [131]. Also, it has been shown that FGF23 reduces
the expression of CD11b integrin, thus reducing neutrophils chemotaxis [109,132]. Importantly,
the effect of recombinant FGF23 on neutrophils in rodent models is dose-dependent and is mainly
observed with high concentrations of FGF23, as high as those observed in dialysis patients [18,125].
Furthermore, FGF23 also upregulates TNFα production and downregulates calcitriol production by
monocytes [120,133].

6.4. Skeleton

FGF23 may affect bone mineralization in both a Klotho-dependent and independent manner.
In a Klotho-independent manner, FGF23 inhibits tissue-nonspecific alkaline phosphatase (TNAP)
transcription in osteoblasts, which is crucial in bone mineralization [32]. However, other studies
have shown that in an FGFR1/Klotho-complex-dependent manner, FGF23 suppresses TNAP in mouse
osteoblast-like cells [127]. Further studies should clarify the factors that make one mechanism overcome
the other. Interestingly, Klotho deletion in osteocytes increases bone formation and bone mass [128].

6.5. Bone Marrow and Anemia

Although CKD-related anemia may be multifactorial, FGF23 has been associated with reduced
erythrocyte production and differentiation [92]. FGF23 decreases erythropoiesis and erythropoietin
(EPO) production [92,129]. This effect can be neutralized by blocking FGF23 signaling with FGF23
blocking peptides [92]. In CKD patients, circulating levels of FGF23 are associated with a decrease
in hemoglobin levels [134]. The previously described effect of FGF23 on erythropoiesis may be
Klotho-independent since there is no evidence of αKlotho expression in bone marrow cells [55].

6.6. Other Organs

Other effects of FGF23 have been described in organs such as the brain, lungs, skeletal muscle,
and endothelium, but the mechanisms involved have not been elucidated.

Different types of brain cells possess complex FGFR1-αKlotho, but their function remains
uncertain [57]. An increase in FGF23 levels is associated with reduced neuronal ramifications and
enhanced synaptic density; this is mediated by the activation of PLCγ signaling and takes place in the
absence of αKlotho. This effect may be transduced in memory deficits [135]. However, it seems that a
high phosphate intake may reverse this effect, challenging the hypothesis of a potentially detrimental
role of FGF23 on memory cells [136].

Patients on dialysis often complain of muscle weakness. Indeed, sarcolemma shortening is
observed in ESRD patients [57,137]. In animal models, FGF23 is associated with a reduction of muscle
strength [138], an effect that should be mediated by FGFR4 since, like the heart muscle, skeletal muscle
lacks the expression of Klotho. Reports on the effects of FGF23 on skeletal muscle are not uniform since
other studies indicate that high FGF23 may favor exercise performance [139].

Although the lung tissue expresses FGFR1, FGFR2, FGFR3, and FGFR4, to our knowledge there
is no strong evidence indicating that FGF23 have some specific effects on the lungs. It is likely that
FGF23 increases IL-8 secretion by epithelial cells, although there is no evidence of a harmful effect [140].
Some evidence points to a lack of Klotho as a risk factor for the development of lung emphysema [141],
but the evidence is scarce and needs further investigation.

sKlotho expression protects the endothelium from uremic-induced aging [142]. However, results
obtained from studies evaluating the effect of FGF23/Klotho on the endothelium are conflicting.
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Whereas some studies have associated FGF23 with endothelial dysfunction [143], the data in CKD
patients are controversial [144,145]. Perhaps studies aiming to analyze the potential effect of FGF23 on
vascular smooth muscle cells would help to define the direct effect of FGF23 on the vascular wall.

7. Clinical Impact of FGF23

Chronic kidney disease is the main cause of a secondary increase in FGF23 level [27]. Starting
in the early stages of CKD, an increase in FGF23 enhances the urinary excretion of phosphate, which
compensates for the reduced filtration of phosphate [42]. Of note, the kidneys metabolize FGF23 since
the values obtained in the renal vein are less than in the renal artery [25]. Together with phosphate,
FGF23 is independently associated with the progression of kidney disease [111,123]. Hence, FGF23 is
not only the consequence of CKD but also a cause of CKD progression. In dialysis patients, FGF23
levels may reach extremely high levels. Following kidney transplantation, FGF23 decreases rapidly,
together with a recovery of Klotho [146]. Nonetheless, FGF23 is associated with a high mortality rate in
this population; however, there are many residual confounders, not easy to dissect out, that are also
associated with adverse outcomes [147].

Regardless of the population evaluated, high FGF23 levels are associated with adverse clinical
effects such as cardiovascular disease and mortality [148,149]. The strongest evidence comes from
patients in dialysis, in whom, independent of the confounders included in the Cox proportional
analysis, FGF23 remains associated with a high mortality rate [84,88,150]. These results are not
surprising given the association of FGF23 with the development of LVH [31], coronary artery
disease and myocardial infarction [151], stroke [152], impairment of the immune response [125]
and infection-associated death [18]. Thus, FGF23 should be considered as a relevant uremic toxin [153].
Longitudinal analysis of FGF23 over time has shown that those patients with upward trends in
circulating FGF23 have the highest risk of poor outcomes [154]. The harmful effects of high FGF23
levels on different organs such as the heart, bones, liver, and immune system lead us to question
whether FGF23 is a potential therapeutic target.

A recently published study suggests that FGF23 elevation in the absence of CKD is not causative
of cardiovascular disease [145]. Indeed, some authors suggest that FGF23 may be a consequence
rather a cause of cardiovascular disease [155], since patients from the general population may show
a comparable risk of death to that of dialysis patients [20], suggesting casualty rather than causality.
In this line, demonstrating that a decrease in adverse outcomes follows ensures the reduction in FGF23
would be crucial.

8. Targeting FGF23

Given the broad list of effects associated with the high levels of FGF23, it would be reasonable
to think of FGF23 as a clinical target. If FGF23 is increased, a reduction in phosphate would be the
first step to decrease FGF23 [156]. In dialysis patients, dietary interventions should be the first-line
treatment for hyperphosphatemia; however, very restricting diets in this population may translate into
malnutrition. Thus, phosphate binders are necessary for phosphate control. The use of calcium-free
phosphate binders helps to reduce FGF23 levels [21,157,158], whereas calcium-containing binders
are likely to increase FGF23, another reason to limit the use of calcium-containing compounds [159].
Interestingly, post hoc analysis of the EVOLVE study demonstrates that cinacalcet reduces not only
PTH but also FGF23 and cardiovascular events [84].

Burosumab, a new monoclonal antibody that targets FGF23, has shown benefits in patients with
X-linked hypophosphatemia [160]. It remains unclear whether the complete blocking of FGF23 would
be detrimental in CKD not on dialysis. Experimental studies have shown that the neutralization
of FGF23 causes elevation of phosphate and vitamin D, resulting in vascular calcification [161].
Presumably, in dialysis patients, neutralization of FGF23 should not be detrimental. The option
of selective blocking of FGFR receptor deserves investigation.
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To date, there is no evidence of improved outcomes in patients following FGF23 reduction.
Longitudinal studies evaluating the change in FGF23 levels are warranted to evaluate whether the
reduction in FGF23 is associated with a decrease in those adverse effects being attributed to FGF23.

In summary, much has been learned about the regulation and effects of FGF23. Presently,
the adverse effects attributed to FGF23 are many. It is important to learn how many of these effects are
so undesirable as to warrant a strategy directed at actively reducing the actions of FGF23 by either
neutralization of the molecule or blockade of the receptors.
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