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Abstract: To explore the structural, vibrational, and thermodynamic properties of the
chalcopyrite-type compound AgGaS2 under pressure, we applied hydrostatic pressure to the
relaxed compound based on the first principles calculation and quasi-harmonic approximation.
The structural parameters, including lattice constants and bond lengths decrease monotonically
with the increasing pressure. The phonon dispersion curves under various pressures reveal the
structural phase transition of chalcopyrite-type compound AgGaS2 at about 4 GPa. The intrinsic
mechanism of thermal conductivity for the chalcopyrite-type compound AgGaS2 has been shown
with phonon anharmonicity. The frequencies of the optical phonons at the center point Γ of the first
Brillouin zone were calculated with the longitudinal optical–transverse optical (LO–TO) splitting
mode. The dependence of the frequencies of the optical phonons on the pressure provides the
information for the Raman spectroscopic study under high pressure. The pressure dependence
of the Grüneisen parameters indicates that the instability of chalcopyrite-type compound AgGaS2

is associated with the softening of the acoustic phonon modes at around the center point Γ. The
thermal conductivity for chalcopyrite-type compound AgGaS2 could be reduced by applying external
pressure. The various thermodynamic properties, such as the Helmholtz free energy, entropy, and
heat capacity, at different temperatures and pressures were discussed and analyzed based on the
phonon properties.

Keywords: Ag-based chalcopyrite type compound; first principles; lattice dynamics;
thermodynamic properties

1. Introduction

I-III-VI2 ternary chalcopyrite type compounds have attracted attention as extracting candidates
in non-linear optic [1–3], novel spintronic [4], and thermoelectric [5–7] devices, as well as in thin film
solar cells [8–10]. AgGaS2, as a typical member of I-III-VI2 ternary chalcopyrite-type compounds, has
attracted interest from researchers [11–13]. The low thermal conductivity (1.4 W/m K) [14] makes
chalcopyrite type compound AgGaS2 known as a potential thermoelectric material. Understanding
the physical mechanism of the thermal conductivity of AgGaS2 is necessary to discuss how to reduce
the thermal conductivity and promote the application in a thermoelectric device. The investigations of
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lattice dynamic and thermodynamic properties have great practical significance for the engineering
application of materials. Holah et al. presented the lattice dynamic properties of chalcopyrite-type
compound AgGaS2 in an experiment for the first time in 1974 [15]. Neumann et al. measured the
heat capacity and Grüneisen parameters of the chalcopyrite-type compound AgGaS2 [16]. Besides
experimental research, the lattice dynamic and thermodynamic properties of the chalcopyrite-type
compound AgGaS2 have also attracted the attention of theoretical researchers for its potential
application. The phonon dispersion relations were performed by Łażewski et al. using first
principles within local density approximation [17]. Wei et al. investigated the anharmonicity of
the acoustic phonon of AgGaS2 using first principles under the three-phonon Umklapp process [18].
Recently, Kushwaha et al. calculated the lattice dynamic properties of AgGaS2, including Raman and
infrared inactive modes, using rigid-ion model [19]. Nevertheless, most of the lattice dynamic and
thermodynamic investigations of AgGaS2 were carried out at 0 pressure.

It is well known that the electronic and geometrical structures will undergo changes under external
pressure, which induces novel properties and have many wide applications, such as pressure-induced
phase transitions [20,21], derived-spin crossover transitions [22], enhanced superconductivity [23,24],
and improved optical, thermodynamic, and thermoelectric performances [25–27]. The pressure-inducing
scheme is straightforward to improve the non-linear optical properties of AgGaS2 as calculated by
Li et al. [28] It is important to note that the chalcopyrite structure tends to deform under pressure. Several
experimental investigations revealed that the pressure-induced phase transition occurs from space group
symmetry of I42d to Cc at about 4.2 GPa [29,30]. However, no theoretical research has yet been carried
out to access the pressure-induced phase transition based on the crystal lattice dynamics. It is worth
investigating which vibrational modes and regions are related to phase transitions under pressure. On the
other hand, the intrinsic mechanism of the thermal conductivity of AgGaS2 is still not clearly known.
Besides, the pressure dependence of thermodynamic properties is a valuable research to clarify the
influence of pressure on the chalcopyrite-type compound AgGaS2.

The purpose of our work is to investigate the dynamic stability, the vibrational and
thermodynamic properties of the chalcopyrite-type compound AgGaS2 under different hydrostatic
pressures by using first-principles. The dynamic stability was verified by analyzing the corresponding
phonon spectrum under various pressures. The vibrational properties, including the effect
of longitudinal optical–transverse optical (LO–TO) splitting, were investigated using the finite
displacement method. The Grüneisen parameters and thermodynamic properties were obtained
by using a quasi-harmonic approximation method.

2. Computational Scheme

The structural optimization and self-consistent calculations were performed using Vienna
Ab-initio Simulation Package (VASP) code [31] within the framework of density functional theory
(DFT). The Perdew–Bruke–Ernzerhof (PBE) functional for the generalized gradient approximation
(GGA) was used to describe the exchange correlation potential. The projector augmented wave
pseudopotentials with a 400 eV cut-off energy were employed to describe the interaction between the
electrons and ions. The valence states of the atoms of Ag, Ga, and S were chosen as 4d105s1, 4s24p1,
and 3s2sp4, respectively. The structure relaxation was performed until all forces acting on each atom
were smaller than 10−5 eV/Å and the total energy change between 2 self-consistent steps was smaller
than 10−8 eV. The first Brillouin zone of a unit cell was sampled by a 3 × 5 × 4 k-mesh scheme with Γ
central for structural optimization.

We used the finite-displacement method within the framework of the force constants as
implemented in PHONONPY code to determine the vibrational properties [32]. The necessary force
constants of the supercell were computed in real space by using the finite displacement method with
the help of the VASP code. The 2 × 2 × 2 supercell of the unit cell and a 3 × 3 × 3 k-mesh were
used to calculate the force constants, which were confirmed to provide converged results. Based on
our knowledge of group theory, we also analyzed the vibration modes of the center point Γ. The
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Grüneisen parameters and thermodynamic properties, such as the Helmholtz-free energy, entropy,
and heat capacity, were calculated from the phonon density of states (DOS) as a function of the
frequencies. The relevant calculation scheme was carried out in the framework of the quasi-harmonic
approximation (QHA), in which the phonon frequencies are volume-dependent.

3. Results and Discussions

3.1. Structural Optimization

The chalcopyrite-type compound AgGaS2 belongs to the I42d space group, with the Ag, Ga,
and S atoms occupying the Wyckoff sites of 4a, 4b, and 8d, represented as purple, green, and yellow
balls in Figure 1a, respectively. Based on the theoretically predicted structure of the chalcopyrite-type
compound AgGaS2 [33], the parameter constants and atomic coordinates under different pressures
were fully carried out until the total energy and force acting on atom reach convergence.
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Figure 1. (a) Crystal structure, (b) calculated lattice constants, and (c) bond lengths of Ga-S and Ag-S
for the chalcopyrite-type compound AgGaS2 as a function of the hydrostatic pressure.

The optimized lattice constants for chalcopyrite type compound AgGaS2 under 0 pressure are
a = b = 5.77 Å, and c = 10.31 Å, and these are in very good agreement with the experimental data [34].
The difference of the lattice constants between this work and other theoretical computations is almost
less than 3% [35,36]. The respective bond lengths of Ag-S and Ga-S for chalcopyrite type compound
AgGaS2 under 0 pressure are 2.561 and 2.315 Å, which is close to the previous prediction [37]. Figure 1b
shows the dependence of the lattice constants on the pressure up to 4 GPa. We found that the lattice
constants gradually decrease with the pressure increase. The variation of the lattice constants (a and c)
presents anisotropic property when external pressure is applied. To display the anisotropic character
more clearly, the reduced lattice constants are plotted together as the insert in Figure 1b, where a0 and
c0 are the lattice constants at 0 pressure. The c/c0 drops faster than the a/a0 with pressure, which
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demonstrates that chalcopyrite-type compound AgGaS2 is easily compressed along the c direction; the
previous experimental studies showed exactly the same conclusion [38,39]. The bond length is one
of the important structural parameters. To further clarify the effect of the pressure on the structure,
the hydrostatic pressure dependence on the bond length is shown in Figure 1c. It is worth noting
that the bond lengths of Ag-S and Ga-S for chalcopyrite-type compound AgGaS2 decrease gradually
with the increasing hydrostatic pressure in the range of the pressure studied. Moreover, the bond
length of Ag-S is more sensitive than that of Ga-S with the increasing hydrostatic pressure, which
is consistent with experimental prediction by single-crystal X-ray diffraction [30]. As proved later,
the broken tetrahedron structure induces structural phase transition. The AgS4 tetrahedron undergoes
a slightly larger geometrical deformation and could be broken more easily than the GaS4 tetrahedron
under pressure.

3.2. Vibrational Properties

The phonon characteristics directly reflect dynamic stability and play a vital role in the
physical properties of materials. We now turn to the vibrational properties of chalcopyrite-type
compound AgGaS2. Figure 2 exhibits the computational phonon spectrums along the high symmetry
line Z(1/2,1/2,−1/2)→Γ(0,0,0)→X(0,0,1/2)→P(1/4,1/4,1/4)→Γ(0,0,0) in the first Brillouin zone at
different pressures.
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pressures: (a) 0 Gpa; (b) 2 Gpa; (c) 4 Gpa; (d) 5 Gpa.

Figure 2 shows there are no imaginary frequencies in the whole Brillouin zone below 4 GPa,
which indicates that AgGaS2 with the I42d structure is dynamically stable below 4 GPa. The phonon
spectrum under 5 Gpa shows an obvious imaginary frequency near the center point Γ. The appearance
of the imaginary frequency is a sure sign of a dynamic instability at the related pressure; the appearance
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of an imaginary frequency is related to the phase transition. The imaginary frequency comes from
the E vibrational mode as confirmed from analysis of the vibrational mode. The single-crystal X-ray
diffraction shows that the chalcopyrite type compound AgGaS2 in a tetragonal phase with space group
of I42d can change to a monoclinic phase with a space group of Cc at 4.2 GPa [30]. The purpose of
this work is to reveal the pressure effect on the vibrational and thermodynamic properties of AgGaS2

in the tetragonal phase. The vibrational properties less than 4 GPa of chalcopyrite type compound
AgGaS2 are discussed below.

Because there are 8 atoms in the unit cell of chalcopyrite type compound AgGaS2, the phonon
spectrum includes 24 branches (3 acoustic and 21 optical branches). The phonon spectrum is divided
into 3 energy intervals; the 3 acoustic branches are linear in wave vector q for a small q. The contribution
of optical branches to thermal conductivity is not considered with their small group velocities, seeing
from the flat distribution in Figure 2. The optical branches overlap with the acoustic branches in low
frequency, which benefits to the low conductivity of AgGaS2 as confirmed in other chalcopyrite type
compound CuInTe2 [40]. The flat phonon branches along the X–P direction indicate the intracellular
interactions are stronger than those between the cells in this direction. We note that all modes along the
X–P direction are double-degenerated. As shown in Figure 2, the frequency of the phonon increases
with the increase of pressure. The fundamental cause of this phenomenon is that the bond lengths
of Ag-S and Ga-S become shorter with the increase of pressure. The shortening bond lengths lead to
larger force constants, which benefits higher vibration frequencies. We investigated the vibrational
property further to explore the contribution of the atoms to the phonon spectrum; the total and partial
phonon densities of chalcopyrite type compound AgGaS2 at 0 GPa are plotted in Figure 3.
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Figure 3. Total and partial phonon densities of the states (DOS) of AgGaS2 at 0 GPa.

The partial phonon DOS in Figure 3 shows that the vibration of the Ag atom governs the acoustic
branches. The vibration of the S atom contributes to the optical branches in the high energy region
for the light mass. The main contributor to the optical branches in the frequency range from 2.2 THz
to 5.5 THz is the Ga atom. Therefore, it is a scheme to reduce the thermal conductivity by inducing
impurity scattering at Ag atom position.

Twenty-four dispersion curves mean there are 24 normal vibrational modes at the center of the
Brillouin zone (Γ point), which can be explicated by group theory. The I42d space group belongs to the
D2d point group. Based on the group theory, the D2d point group has 4 one-fold-degenerate (A1, A2, B1,
B2) and 1 two-fold-degenerate (E) irreducible representations. The Ag and Ga atoms are located at the
S4 symmetric crystal positions, and the vibration modes can be described as simple motion parallel to
the 3 crystal axes. The irreducible representation of the lattice vibrations for the Ag and Ga atoms are
represented as:

ΓAg = ΓGa = B1 + B2 + 2E. (1)
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The sulfur atom is located on the C2 symmetric position, whose vibration modes can be expressed
as the following irreducible representation:

Γs = A1 + 2A2 + 1B1 + 2B2 + 3E. (2)

The A1 and A2 vibrational modes only involve the displacement of the sulfur atom. The B1,
B2, and E vibrational modes include the displacement of all atoms. The corresponding irreducible
representation of the acoustic and optical vibrational modes at center point Γ can be represented as:

Γaco = B2 + E. (3)

Γopt = A1 + 2A2 + 3B1 + 3B2 + 6E. (4)

The 3 acoustic vibrational modes are neither infrared nor Raman active. For 21 optical vibrational
modes, A1, B1, B2, and E are Raman active; furthermore, E and B2 are also infrared active. The A2

vibrational mode is called silent vibrational mode, since it is neither infrared nor Raman active. There
are 13 Raman active vibrational modes, 9 infrared active vibrational modes and 2 silent vibrational
modes at center point Γ. We took into account the long-range polarization interactions, so the
infrared polar modes B2 and E were split into the longitudinal-optical (LO) and transverse-optical (TO)
components. The LO–TO splitting depends on the values of the macroscopic dielectric constant and
Born effective charges. As the polarization field increases the restoring force of the atomic displacement,
the frequency of the LO mode increases. The splitting of the B2 vibration mode is parallel to the c axis,
while the splitting of the E vibration mode is perpendicular to the c axis. The calculated frequencies of
the optical phonons, including LO–TO splitting from the B2 and E modes at the center point Γ under
different hydrostatic pressures, are listed in Table 1. The frequencies for the LO and TO components
are separated with a slash in Table 1. The first column represents the irreducible representations of
vibrational modes, abbreviated as “Irreps”.

Table 1. Calculated frequencies of the optical phonons (THz) at center point Γ of the Brillouin zone.

Irreps 0 GPa 1 GPa 2 GPa 3 GPa 4 GPa

Reference [19] Reference [41]
A1 8.16 8.88 8.85 8.36 8.51 8.83 9.00
A2 9.87 10.17 10.07 10.26 10.44 10.60
B1 7.06 6.84 7.23 7.39 7.55 7.69

9.29 10.11 10.20 9.51 9.71 9.91 10.09
5.42 5.76 5.70 5.47 5.52 5.57 5.61
1.67 1.59 1.62 1.71 1.75 1.78 1.81

B2 (LO/TO) 10.03/10.00 12.06/11.07 11.94/10.92 10.27/10.23 10.50/10.45 10.74/10.66 10.94/10.85
6.37/5.96 7.17/6.42 7.14/6.36 6.57/6.11 6.75/6.24 6.94/6.38 7.11/6.50
1.80/1.80 1.95/1.92 1.92 1.81/1.81 1.84/1.84 1.86/1.86 1.88/1.88

E (LO/TO) 10.96/10.61 12.06/11.22 11.88/11.04 11.17/10.83 11.37/11.04 11.57/11.25 11.74/11.43
9.29/8.91 10.56/9.78 10.47/9.75 9.51/9.12 9.71/9.30 9.91/9.50 10.08/9.66
6.64/6.53 7.02/6.75 6.96/6.78 6.76/6.57 6.91/6.89 7.10/7.00 7.27/7.12
4.56/4.50 4.89/4.47 4.80/4.71 4.62/4.57 4.69/4.65 4.76/4.72 4.83/4.79
2.80/2.77 2.77/2.77 2.85 2.84/2.80 2.87/2.86 2.90/2.89 2.91/2.91
1.07/1.07 1.07/0.99 1.02 0.98/0.98 0.89/0.89 0.79/0.79 0.67/0.67

As noted by Ohrendorf [42], the quality of a single crystal, including its impurity and lattice
defects, leads to a difference of the vibrational wavenumbers in the different measurements in some
cases. Based on reliable experimental data, Harran et al. estimated the values of the vibrational
frequencies of AgGaS2 [42]. Recently, Kushwaha et al. [19], employed the rigid-ion model with the
help of the reliable phonon mode from the literature [42] as input data, calculated the vibration modes
of AgGaS2. The vibrational frequencies from the rigid-ion model are in good agreement with the
experimental data, as shown in Table 1. The calculated results from the DFT frame are about 9% lower
than the experimental results, which is a well-known underestimation of the phonon frequency by
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using the PBE functional [43–45]. To study the behavior of the phonon structure in greater detail,
we analyzed the pressure dependence of the phonon frequency at center point Γ. We were surprised to
find that the frequencies of all modes expect the lowest E mode increase with the increasing pressure;
the tendency was discovered in the pressure dependence of phonon frequency of ZnGeP2 with the
chalcopyrite structure by Raman scattering measurement [46]. The significant downtrend for the
frequency of the lowest E mode with the increase in pressure means the soft E mode may influence
the structural stability; this same phenomenon was found in the pressure-induced phase transition of
SnSe crystal [47].

The phonon spectrum figures out the harmonicity of interatomic force constant. The thermal
conductivity, however, is determined in the term of phonon anharmonicity, characterized by the
Grüneisen parameter. The Grüneisen parameter can be described with the relative change of a phonon
frequency due to the change of the cell volume. The value of the Grüneisen parameter represents the
thermal expansion behavior of the materials, too. The mode of the Grüneisen parameter at the wave
vector q and band index j is given in the following equation:

γqj = −
dlnωqj

dlnV
= − V

ωqj

∂ωqj

∂V
, (5)

where ωqj is the frequency of the jth phonon mode at wave vector q, and V is the volume. To obtain
the shift of the phonon frequency caused by the volume change, it is necessary to consider 3 phonon
calculations under 3 different volumes. The 3 volumes are the equilibrium volume, a volume slightly
smaller than the equilibrium volume, and a volume slightly larger than the equilibrium volume. In
our work, we compressed and expanded the equilibrium volume of AgGaS2 by 0.3%. The calculated
mode Grüneisen parameters of the 3 acoustic branches under 0 pressure along the high symmetry
points are shown in Figure 4, in which the black and red symbols denote the transverse acoustic (TA)
mode, and the longitudinal acoustic (LA) mode is represented with the blue symbol.
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Figure 4. Mode Grüneisen parameter of acoustic phonons for AgGaS2 along high symmetry points at
0 GPa.

As shown in Figure 4, most of the mode Grüneisen parameters are negative, which is generally
consistent with previous first-principles calculational results [18]. The negative Grüneisen parameters
imply a negative coefficient of the thermal expansion, coming from the tetrahedral structures of Ag-S
and Ga-S in the crystal structure, as proved in other tetrahedral materials [48]. We found that the
Grüneisen parameters of the TA mode are degenerated along the Γ–Z direction. The significant absolute
values of Grüneisen parameters uncover the strong phonon anharmonicity, and result in rather low
thermal conductivity. The distribution of the mode Grüneisen parameters throughout the first Brillouin
zone not only reflects the phonon anharmonicity, but also shows the existence of soft modes for the
acoustic phonons. The Grüneisen parameter of the lowest E mode is −5.73, which agrees well with
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recent calculational work [18], suggesting the lowest E mode can lead to a structural instability at a low
energy. In addition, the averaged Grüneisen parameter (γ) can be approximated with the root mean
square average of the generalized mode Grüneisen parameter per mode, represented as γ =

√
γ2 [49].

The calculated averaged Grüneisen parameters for all branches along the high-symmetry path at
different hydrostatic pressures are shown in Table 2.

Table 2. The average of the Grüneisen parameters along the high-symmetry path for AgGaS2.

High-Symmetry Path 0 GPa 1 GPa 2 GPa 3 GPa 4 GPa

Z-Γ 1.65 1.76 1.85 2.21 6.33
Γ-X 1.39 1.61 1.73 2.98 7.86
X-P 1.19 1.18 1.15 1.18 1.79
P-Γ 1.73 1.78 1.80 1.83 5.67

The average of the Grüneisen parameters along the path through the center point Γ is larger
than that along the X–P path, which reflects the stronger phonon anharmonicity near center point Γ.
The increase of the hydrostatic pressure has little effect on the average of the Grüneisen parameters
along the X–P path below 4 GPa. The average Grüneisen parameters along the other 3 paths (Z–Γ,
Γ–X, N–Γ) accelerate monotonously with pressure, particularly above 3 GPa. The enhancement of
phonon anharmonicity makes pressure as a direct and effective way reduce thermal conductivity of
chalcopyrite type compound AgGaS2 and promotes its application in the field of thermoelectricity.
The large average Grüneisen parameters (6.33, 7.86 and 5.67 along the Z-Γ, Γ-X, and P-Γ paths,
respectively) at 4 GPa indicate the structural instability may be discovered within this area.

3.3. Thermodynamic Properties

Thermodynamic properties are the fundamental basis for the technical application of materials.
As a further application, we calculated the thermodynamic properties based on the quasi-harmonic
approximation using the phonon frequencies on a sampling mesh in the reciprocal space. Using the
quasi-harmonic approximation, the energy at the wave vector q and band index j can be given as:

Eqj = }ωqj

1
2
+

1

exp
( }ωqj

kBT

)−1

, (6)

where, ωqj is the frequency of the jth phonon mode at wave vector q; }, kB, and T are the reduced Plank
constant, Boltzmann constant and absolute temperature, respectively. Based on the thermodynamic
relations, the constant volume heat capacity CV,qj of the jth phonon mode at wave vector q can be
represented as:

CV,qj =

(
∂Eqj

∂T

)
V

. (7)

The total constant volume heat capacity CV , contributed from all phonon vibration modes in the
whole Brillouin zone is given as:

CV = ∑
qj

CV,qj = ∑
qj

kB

(}ωqj

kBT

)2 exp
(
}ωqj/kBT

)[
exp

(
}ωqj/kBT

)−1
]2 . (8)

According to thermodynamics, the Helmholtz free energy F(V,T) of a solid material can be written
as the following formula:

F(V, T) = E0(V) + Feh(V, T) + Fph(V, T), (9)
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where E0(V) is the static energy at a constant volume V and T = 0, which can be obtained from the
first-principle calculation. Feh(V, T) and Fph(V, T) denote the thermal free energy contribution from
the electron and phonon, respectively. Compared with the thermal free energy contribution from
the phonon thermal excitation, the contribution from the electron excitation can be ignored; we only
considered the phonon contribution in our work. Within the quasi-harmonic approximation, Fph(V, T)
is described as the contribution sum from all the phonon branches and wave vectors in the whole
Brillouin zone:

Fph(V, T) =
1
2 ∑

qj
}ωqj + kBT ∑

qj
ln
[
1− exp

(
−}ωqj/kBT

)]
. (10)

The entropy S is defined as the first derivative of the Helmholtz free energy versus temperature:

S =
∂F
∂T

=
1

2T ∑
qj
}ωqjcoth

(
}ωqj/2kBT

)
− kB ∑

qj
ln
[
2sinh

(
}ωqj/2kBT

)]
. (11)

The Cv calculated with the quasi-harmonic approximation is compared with the previous
first-principle computation and experimental constant pressure heat capacity Cp in Figure 5.

Materials 2018, 11, x FOR PEER REVIEW  9 of 13 

 

𝑆 =
𝜕𝐹

𝜕𝑇
=

𝟏

𝟐𝑻
∑ ℏ𝜔𝒒𝑗 coth(ℏ𝜔𝒒𝑗/2𝑘𝐵𝑇) − 𝑘𝐵 ∑ ln [2sinh (ℏ𝜔𝒒𝑗/2𝑘𝐵𝑇)]𝒒j𝒒j .  (11) 

The Cv calculated with the quasi-harmonic approximation is compared with the previous first-

principle computation and experimental constant pressure heat capacity Cp in Figure 5. 

 

Figure 5. Comparison of theoretical and measured heat capacity of AgGaS2 as a function of 

temperature. The theoretical Cv data are collected from the ab initio calculation (filled circle) [50]. The 

measured Cp (open circle and open square) values are taken from literature [16,51]. 

The calculational results are in line with previous first-principles theoretical report [50]. The 

calculated Cv agrees well with the measured Cp in the temperature range below 40 K [51]. As the data 

of the measured Cp are scarce in the temperature range from 40 to 200 K, it is difficult to compare the 

calculated data with measured data. We found that the discrepancy between the calculated Cv and 

measured Cp continuously increased with the increase of the temperature for the temperature range 

above 400 K [16], and this indicates the essential difference between Cv and Cp. The consistency of the 

calculated Cv and measured Cp at a low temperature implies the contribution from the phonon 

anharmonicity to the heat capacity is insignificant and can be neglected. The Cv strongly depends on 

temperature when temperature is below 200 K. We found that the heat capacity Cv dramatically 

increased cubically as a function of temperature at a low temperature (below 200 K). When the 

temperature is higher than 200 K, the heat capacity rapidly slows with the temperature. The heat 

capacity almost reaches a constant and follows the Dulong–Petit law at a high temperature (above 

700 K), when the anharmonic effect is significant. 

The calculated thermodynamic properties, including the Helmholtz free energy F, entropy S, 

and heat capacity Cv, for AgGaS2 at 0 pressure as a function of the temperature, are presented in 

Figure 6. Figure 6 shows that the Helmholtz free energy decreases monotonously with the increasing 

temperature. The entropy and heat capacity increase with the increasing temperature from 0 J/K·mol. 

As the temperature increases, the entropy increases smoothly, while the tendency of the heat capacity 

can be divided into 2 sections as mentioned above. The effect of a high temperature on the Helmholtz 

free energy F and entropy S is more important than that of low temperature. The profiles of the 

thermodynamic curves are coincident with the early calculated results using the quasi-harmonic 

Debye model [52]; the discrepancies between them may be caused by the different treatment methods 

for the phonon data. As the thermodynamic parameters were directly from the phonon data 

calculated by first principles, this model is more accurate than that from the Debye model. 

Figure 5. Comparison of theoretical and measured heat capacity of AgGaS2 as a function of temperature.
The theoretical Cv data are collected from the ab initio calculation (filled circle) [50]. The measured Cp

(open circle and open square) values are taken from literature [16,51].

The calculational results are in line with previous first-principles theoretical report [50].
The calculated Cv agrees well with the measured Cp in the temperature range below 40 K [51].
As the data of the measured Cp are scarce in the temperature range from 40 to 200 K, it is difficult
to compare the calculated data with measured data. We found that the discrepancy between the
calculated Cv and measured Cp continuously increased with the increase of the temperature for the
temperature range above 400 K [16], and this indicates the essential difference between Cv and Cp.
The consistency of the calculated Cv and measured Cp at a low temperature implies the contribution
from the phonon anharmonicity to the heat capacity is insignificant and can be neglected. The Cv

strongly depends on temperature when temperature is below 200 K. We found that the heat capacity
Cv dramatically increased cubically as a function of temperature at a low temperature (below 200 K).
When the temperature is higher than 200 K, the heat capacity rapidly slows with the temperature.
The heat capacity almost reaches a constant and follows the Dulong–Petit law at a high temperature
(above 700 K), when the anharmonic effect is significant.

The calculated thermodynamic properties, including the Helmholtz free energy F, entropy S,
and heat capacity Cv, for AgGaS2 at 0 pressure as a function of the temperature, are presented in
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Figure 6. Figure 6 shows that the Helmholtz free energy decreases monotonously with the increasing
temperature. The entropy and heat capacity increase with the increasing temperature from 0 J/K·mol.
As the temperature increases, the entropy increases smoothly, while the tendency of the heat capacity
can be divided into 2 sections as mentioned above. The effect of a high temperature on the Helmholtz
free energy F and entropy S is more important than that of low temperature. The profiles of the
thermodynamic curves are coincident with the early calculated results using the quasi-harmonic
Debye model [52]; the discrepancies between them may be caused by the different treatment methods
for the phonon data. As the thermodynamic parameters were directly from the phonon data calculated
by first principles, this model is more accurate than that from the Debye model.Materials 2018, 11, x FOR PEER REVIEW  10 of 13 
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To further clarify the pressure dependence of thermodynamic properties, the calculated Helmholtz
free energy F, entropy S, and heat capacity Cv of AgGaS2 at different temperatures (from 200 K to
1000 K, with intervals of 200 K) and different pressures (from 0 GPa to 4 GPa with intervals of 1 GPa)
are listed in Table 3.

Table 3. Helmholtz free energy F (kJ/mol), entropy S (J/K·mol), and heat capacity Cv (J/K·mol) of
AgGaS2 at temperature T (K) and pressure P (GPa).

T P 0 GPa 1 GPa 2 GPa 3 GPa 4 GPa

200
F 2.60 2.92 3.24 3.55 3.78
S 105.39 104.57 103.68 102.92 102.44

Cv 83.51 82.94 82.39 81.84 81.35

400
F −25.33 −24.81 −24.28 −23.79 −23.44
S 167.98 166.91 165.78 164.77 164.07

Cv 95.05 94.86 97.43 94.47 94.30

600
F −63.08 −62.35 −61.58 −60.88 −60.38
S 207.10 205.98 204.79 203.72 202.98

Cv 97.61 97.52 97.43 97.34 97.25

800
F −107.46 −106.49 −105.49 104.57 −103.92
S 235.33 234.18 232.98 231.89 231.13

Cv 98.54 98.49 98.44 98.38 98.34

1000
F −156.81 −155.61 −154.36 −153.23 −152.43
S 257.37 256.22 255.00 253.90 253.13

Cv 98.98 98.95 98.91 98.88 98.85

Table 3 shows that the entropy and heat capacity linearly decrease approximately with the increase
of the pressure at a constant temperature. The Helmholtz free energy has an opposite trend with
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the pressure change. The data in Table 3 also indicates that the impact of the temperature on the
thermodynamic properties is more significant than that of the pressure. For example, the calculated S
at 200 K are 105.39 and 102.44 J/K·mol under 0 and 4 GPa, respectively.

4. Conclusions

The structural, vibrational and thermodynamic properties of the chalcopyrite-type compound
AgGaS2 under different hydrostatic pressures were investigated by using the first-principles calculation
and quasi-harmonic approximation. The calculated lattice constants before applying pressure are
consistent with the previous experimental and theoretical reports. The lattice constants and bond
lengths were observed to decrease with increasing pressure, which leads to a higher phonon frequency
of the optical branches. By using the phonon dispersion curve analysis at different pressures, we found
that the chalcopyrite-type compound AgGaS2 is dynamically unstable above 4 GPa. The Grüneisen
parameters at different pressures were obtained, and these indicate that AgGaS2 has negative coefficient
of thermal expansion. The analysis of the vibrational modes and Grüneisen parameters reveals that
structural instability is associated with the softening of the E vibrational mode at around the center
point Γ. Increasing external pressure is a direct and effective method to reduce the thermal conductivity
for chalcopyrite-type compound AgGaS2. The thermodynamic properties for AgGaS2, such as the
Helmholtz free energy, entropy, and heat capacity, were analyzed at different temperatures and
pressures. The results shown in this work provide guidelines for future single-crystal synthesis, the
Raman spectroscopic study, and thermoelectric application of AgGaS2 under pressure.
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