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Abstract: Light-induced degradation (LID) phenomenon is commonly found in optoelectronics
devices. Self-healing effect in halide lead perovskite solar cells was investigated since the electrons and
holes in the shallow traps could escape easily at room temperature. However, the degradation in the
semiconductors could not easily recover at room temperature, and many of them needed annealing
at temperatures in the several hundreds, which was not friendly to the integrated optoelectronic
semiconductor devices. To solve this problem, in this work, LID effect of photocurrent in p-type Mg-
doped gallium nitride thin films was investigated, and deep defect and vacancy traps played a vital
role in the LID and healing process. This work provides a contactless way to heal the photocurrent
behavior to its initial level, which is desirable in integrated devices.

Keywords: Mg-doped gallium nitride; light-induced degradation; photocurrent device; contactless healing

1. Introduction

Light-induced degradation (LID) phenomenon has been widely observed in solar cells
in silicon and halide lead perovskites-based devices and light emitting diodes in metal
oxides and metal nitride semiconductor materials, which impedes their application in
high performance electrooptical and electronics devices [1–5]. The self-healing effect in
halide lead perovskite solar cells was investigated, and the defects that assisted shallow
electron traps played a vital role in the thermal healing process [6,7]. Silicon-based pas-
sivated emitter rear contact (PERC) solar cells suffer the LID effect when they are first
illuminated by the sunlight in Czochralski-grown p-type Boron doped silicon substrates,
which mainly originated from the formation of the boron–oxygen complex [8–10]. The loss
of PERC solar cells efficiency with running age was attributed primarily to both light and
elevated temperature induced degradation (LeTID) and LID [11–13]. In recent years, similar
light-induced degradation of photocurrent and refractive index was found in many wide
bandgap semiconductor and single crystal materials [14–18]. However, the degradation
in the semiconductors could not quickly recover at room temperature, and many of them
needed annealing at temperatures higher than 300 ◦C, which was not friendly to the inte-
grated optoelectronic semiconductor devices [19,20]. The mechanism of the degradation
and healing of the photocurrent were not proposed clearly in these semiconductors.

To solve these issues, in this work, ultraviolet light-induced degradation of photocur-
rent in p-type Mg-doped gallium nitride thin films was investigated, grown by using metal
organic chemical vapor deposition (MOCVD). A physical picture based on deep electron
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traps (DET) and deep hole traps (DHT) was proposed, which contributed to the photocur-
rent efficiency degradation. Electrons and holes in these traps could not easily escape at
room temperature in DET and DHT. After the photocurrent response degraded, an infrared
light source at 808 nm was used to expose the surface of the devices, and the photocurrent
and free hole carrier concentration largely recovered to the original condition. This work is
suitable for light-induced degradation of photocurrent devices based on defects assisted
electron and hole carrier traps, including halide leads perovskites, zinc dioxide, and gallium
nitrides semiconductors. We report our work, as follows.

2. Materials and Methods

Mg-doped gallium nitride thin films were grown on c-plane sapphire (001) by using
MOCVD, as seen in Figure 1a. Trimethylgallium (TMG, Strem Chemicals Inc., Newbury-
port, MA, USA, 99.9999%), high purity ammonia (Rising Gas Inc., Chongqing, China,
99.9995%), and bis(ethyl-cyclopentadienyl) magnesium (Cp2Mg, Aladdin®, Los Angeles,
CA, USA, 99.99%) were used as the gas sources of gallium, nitrogen, and magnesium,
respectively. The c-sapphire substrates were inserted into the custom-built crucible’s lots
and were put into the furnace’s hot zone. As listed in Table 1, firstly, a 50 nm thick gallium
nitride buffer layer was grown at 520 ◦C by controlling the flow rate of TMG and ammonia
at 8.3 µmol/min and 0.5 sccm, respectively, under a vacuum pressure of 80 Torr. After
growing the buffer layer, Cp2Mg gas with a flow rate of 0.4 µmol/min was added as a
magnesium source to grow the Mg-doped gallium nitride active layer, and the growth
temperature was raised to 850 ◦C. When the growth procedures were finished, the Mg-
doped GaN thin films were annealed at 750 ◦C using a rapid thermal annealing system in
nitrogen ambient.
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Figure 1. (a) Schematic illustration of the MOCVD system; (b) X-ray diffraction spectrum of the
Mg-doped and undoped GaN thin film; (c) Scanning electron microscopy of the Mg-doped GaN
thin film.
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Table 1. The growth parameters of the Mg doped GaN thin films.

Growth
Temperature Flow Rate Vacuum

Pressure
Growth

Time
Annealing

Temperature

First Step 520 ◦C TMG: 8.3 µmol/min
NH3: 0.5 sccm 80 Torr 15 min -

Second Step 850 ◦C
Cp2Mg: 0.4 µmol/min
TMG: 8.3 µmol/min

NH3: 0.5 sccm
80 Torr 120 min -

Third Step - N2: 60 sccm - - 750 ◦C

To confirm the unit structure and surface appearance of the Mg-doped GaN thin
films, X-ray diffraction spectra and the scanning electron microscope photographs were
investigated. After that, the absorption and photoluminescence spectra were measured to
analyze the bandgap and defects of the thin films. To explore the electrical properties of the
samples, photocurrent response variation with time and bias voltage were also measured
under the illumination of ultraviolet light at 365 nm and 275 nm. Photocurrent devices
related parameters such as responsivity, detectivity, and external quantum efficiency were
calculated. To further analyze the degradation and recovering response of the photocurrent
response, the carrier concentration before and after ultraviolet light exposure was measured
by using Hall measurement system. The detailed experimental types of equipment we used
in this work were as follows. The surface morphology of the Mg-doped GaN thin films
was investigated by using the electron scanning microscope (SEM, JEOL JSM-7100F), and
the compositions of magnetism, gallium, and nitrogen were analyzed by using the energy
dispersive spectrometer (Edx, JEOL JSM-7100F). The unit structure of the samples were
analyzed by using an X-ray diffraction measurement system (D/MAX-rB, Rigaku, Japan).
The room temperature ground state absorption spectrum was measured using a UV-Vis
spectrophotometer (SHIMADZU Inc., Kyoto, Japan, UV-2600). The photoluminescence
emission spectrum was excited by using a nanosecond laser centered at 354.7 nm (Shenzhen
RFH Laser Technology Co. Ltd., Shenzhen, China, 355-DFNA 108-3/30), and recorded by a
spectrometer (Ocean Optics Inc., Dunedin, FL, USA, QE65Pro). The carrier concentrations
of the p-type Mg-doped GaN samples were measured using a Hall measurement system
((Joule Yacht Inc., Wuhan, China, HET-RT). Interdigital gold contacts with the interval of
30 µm were deposited on the thin films using UV photolithography (Chinese Academy
of Sciences, URE-2000/35), E-beam evaporation (LJ-UHV Technology Inc., Taiwan, China,
Model LJ-550E), and standard lift-off technology. The photocurrent properties of the
samples were investigated using a two-tips probe station, and the photocurrent response
and dynamics were detected by a high-resolution source meter (Keithley, Tektronix Inc.,
Beaverton, OR, USA, Series 2400) and a picoammeter (Keithley, Tektronix Inc., Beaverton,
OR, USA, Model 6487).

3. Results

As seen in Figure 1b, a typical wurtzite-type hexagonal unit structure was recorded in
the X-ray diffraction spectrum, and the prominent peak centered at 34.5◦ corresponds to
the diffraction peak of (002). When Mg2+ ions were doped into the GaN wurtzite hexagonal
structure, the diffraction peak showed an obvious blue shift, since the ionic radius of Mg2+

ion was a little bit larger than that of Ga3+ ion. As seen in Figure 1c, the surface appearance
of the Mg-doped GaN thin film was measured by using a scanning electron microscope.
Many textures could be observed on the surface, since the introduction of magnesium ions
tended to aggregate and caused unevenness or protrusion.

A typical direct band absorption spectrum was seen in Figure 2a, and the bandgap of
the Mg-doped GaN thin film was determined as 3.41 eV by calculating the intercept of the
bandgap edge with the x-axis of the direct bandgap semiconductor Tauc-plot absorption
curve. The interband photoluminescence emission spectra centered at 371.8 nm were shown
in Figure 2b with a full width at half maximum (FWMH) of 11.6 nm. A broadband defect
photoluminescence emission could be observed from 700 nm to 900 nm, as seen in Figure 2c,
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which corresponds to the radiative transition from deep donors to deep vacancies related
centers (both VGa and VN-MgGa) [21,22]. The spectral ups and downs are due to the fact
that the defective energy level luminescence was too weak to fully deduct ambient noise
when collecting the spectrum, but it did not influence the defect luminescence emission
center and range. To further study the photoluminescence property of Mg-doped GaN thin
films, temperature-dependent photoluminescence spectra were measured with increased
temperature, as seen in Figure 2d. The emission peaks showed a wide range redshift from
371.5 nm to 411.9 nm, with broadened FWMH from 11.6 nm to 27.8 nm at 500 K. It provides
a convenient way to modulate the wavelength of the luminescence over a wide range.
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Figure 2. (a) Absorption spectrum of the Mg-doped GaN thin film; (b) Photoluminescence spectra
of the Mg-doped GaN thin film excited by the 355 nm nanosecond laser; (c) Defect luminescence of
the Mg-doped GaN thin film; (d) Temperature-dependent photoluminescence of the Mg-doped GaN
thin film.

To further study the electrical properties of the Mg-doped GaN thin films, as seen
in the inset of Figure 3a, interdigital metal contact was deposited on the thin films with
Au (100 nm) by using the E-beam evaporation system. As shown in the black curve of
Figure 3a, a typical Schottky type I-V characteristic curve was measured with a threshold
of approximately 2 V by using the probe station, which also implied an excellent p-type
conductivity of the sample. Under the illumination of the ultraviolet (UV) light at 365 nm,
as seen in Figure 3b, high responsivity up to 4.7 A/W was calculated based on the equation
of Rλ = Iλ−Id

Pλ S at the pumping intensity of 0.89 mW/cm2 and decreased as the pumping
intensity increased, where Iλ is the photocurrent, Id is the dark current, Pλ is the pumping
intensity, and S is the effective illuminative area on the device. The photocurrent also
increased with the power of UV light. As shown in Figure 3c, an external quantum
efficiency (EQE) of 1600% at the UV intensity of 0.89 mW/cm2 with an applied voltage of
5V was obtained by using the equation of EQE = hcRλ

eλ , where h is plank constant, c is the
speed of light in the vacuum, and λ is the wavelength of the pumping light. The EQE of the
photocurrent devices still kept 200% or more at higher UV light intensity, and it changed
with the applied voltage on the devices, as exhibited in Figure 3d.
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Figure 3. (a) Typical Schottky type I–V characteristic curve with and without UV light illumination of
Mg–doped GaN thin film with Au interdigital contact on the top (the inset is the schematic diagram of
the interdigital metal contact structure); (b) Responsivity and photocurrent intensity of the Mg–doped
GaN device versus UV light power; (c) External quantum efficiency of the Mg–doped GaN device
versus UV light power; (d) External quantum efficiency of the Mg–doped GaN device versus applied
bias voltage.

As seen in Figure 4a, light-induced degradation (LID) of the photocurrent response
was observed when the device was exposed to UV light for a long time. After exposure
to the UV light for 5 min, nearly 8% degradation of the photocurrent was measured, and
it could reach 15% after 15 min exposure, as shown in Figure 4b. The dynamic curve of
the photocurrent change after exposure to the UV light at 275 nm was also recorded by
using the picoammeter, as seen in Figure 4c. The photocurrent decreased gradually with
time along with the UV light exposure, and it reached the lowest value after half an hour of
exposure. After turning off the UV light, the photocurrent dynamics were still recorded
every 30 s. It was worth noting that the photocurrent could recover to some extent slowly
in the dark circumstance itself, but it could not recover to its original value after several
days, as seen in Figure 4d. When an infrared light at 808 nm was exposed on the device
at this time, the photocurrent response could recover to its original value within several
minutes, as seen in Figure 4e. However, it had nearly no photocurrent response when the
device was exposed to the infrared light at this wavelength.

The deep defect centers caused by both VGa and VN-MgGa vacancies played a vital
role in the LID and healing processes of the photocurrent property above. As illustrated
in Figure 5a, electrons on the valence band (VB) were excited into the conduction band
(CB) when the UV light near the bandgap illuminated the surface of the photocurrent
device. Then, the photocarriers could be detected by applying a bias voltage on the device.
During this process, these photocarriers (both electrons and holes) could be captured by
the abundant traps, including shallow traps and deep traps, at a certain probability. Recent
research found that these photocarriers captured by shallow traps could escape from there
by themselves at room temperature, and the degradation of photocurrent response could
be healed by themselves [23,24]. However, the captured photocarriers in deep electron
traps (DETs) and deep hole traps (DHTs) could not escape from the level of the trap at
room temperature for a very long time. At this time, a part of the UV light source would
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be used to excite these trapped carriers from DET and DHT, followed by the degradation
of the photocurrent response. As predicted by the defect photoluminescence spectra in
Figure 2c, the energy level from DET and DHT to the valence band and conduction band
could be estimated as 1.37–1.77 eV. As drawn in Figure 5b, when the infrared light at
808 nm was also exposed on the device, most of the captured carriers would be excited out
of the traps because the photon energy matched the energy level well. The degradation
behavior of the photocurrent recovered nearly to its original value rapidly, as shown in
the dynamics of Figure 4e. The self-recovery of the photocurrent degradation in Figure 4d
did not originate from the carriers released from the DET and DHT because these carriers
cannot escape easily from there. Similar to the self-recovery of photocurrent degradation
in halide lead perovskite, the self-recovery of the photocurrent was attributed to the self-
release of the carriers at the shallow traps (ST). However, the number of these trapped
carriers is very small, and the photocurrent performance that can be recovered over a
long period of time is very limited at room temperature. Both VGa and VN-MgGa defects
exist in the Mg-doped GaN thin films, and Mg2+ ions doping concentration affected
the number of the defects, which would also change the photocurrent degradation and
recovery processes. To further investigate the LID and healing process, Hall coefficient and
carrier concentration of the Mg-doped GaN thin film were measured by using the Hall
measurement system with a magnetic field intensity of 600 mT. As listed in Table 2, a typical
p-type conductivity thin film was obtained with a positive Hall coefficient of 9.33 cm3/C
and a positive carrier concentration of 6.69 × 1017 /cm3. After exposing to the UV light for
5 min, the Hall coefficient increased to 14.17 cm3/C, and the hole concentration decreased
to 4.40 × 1017 /cm3 since more photocarriers and free holes were captured by the DET and
DHT. After that, the Hall coefficient and hole concentration recovered to 9.74 cm3/C and
6.37 × 1017 /cm3 under exposure to infrared light at 808 nm for 5 min.
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Figure 4. (a) Light-induced photocurrent degradation of the I–V response under different UV light
exposure time (the inset is the enlarged photocurrent data in 4–5 V); (b) Light-induced photocurrent
degradation rate versus applied bias voltage after 5- and 15-min irradiation; (c) Dynamics of the
photocurrent intensity along with UV light exposure; (d) Dynamics of the self-recovered photocurrent
intensity after UV light was turned off; (e) Dynamics of the recovered photocurrent intensity along
with IR light exposure.
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Figure 5. (a) Schematic illustration of the physical picture of deep electron traps and deep hole traps
assisted light-induced degradation after UV light exposure; (b) Schematic illustration of the physical
picture of the healing of light-induced degradation after infrared light exposure.

Table 2. Hall coefficient and carrier concentration of the Mg-doped GaN thin film before and after
UV or infrared light exposure.

Light Illumination Magnetic
Intensity

Hall
Coefficient

Carrier
Concentration

Before UV Illumination 600 mT 9.33 cm3/C 6.69 × 1017 cm−3

After UV Illumination for 5 min 600 mT 14.17 cm3/C 4.40 × 1017 cm−3

After Infrared light Illumination
for 5 min 600 mT 9.74 cm3/C 6.38 × 1017 cm−3

Based on the experimental results and analysis above, DET and DHT contributed
to the LID process in Mg-doped GaN thin films, which could be healed by exposure to
the infrared light near the energy difference of the DET to the conduction band or DHT
to the valence band. Apart from exposure to infrared light, the LID of the sample could
also be healed by annealing the device under N2 atmosphere above 300 ◦C for more than
30 min. However, the testing device needs to be moved into the rapid thermal annealing
system, and more defects might be introduced in the annealing process. The physical
picture proposed in this work can be used in the application of light-induced degradation
of photocurrent devices based on defects assisted electron and hole carrier traps, including
in halide leads perovskites, zinc dioxide, and gallium nitrides semiconductors. Healing the
LID to its initial state in a contactless way is desirable in integrated optoelectronic devices.

4. Conclusions

To sum up, high-performance photocurrent devices with EQE of 1600% and respon-
sivity of 4.7 A/W were investigated in Mg-doped GaN thin films, with a bandgap of
3.26 eV grown by using the MOCVD system. LID process of the photocurrent response
was investigated when exposed to the UV light for a long time, which could be healed
by illuminating to infrared light at 808 nm. Compared to the healing process by anneal-
ing at high temperature, recovery after exposure to the infrared light is contactless and
will not introduce extra defects. This work provides a clear analysis of the light-induced
degradation and the contactless healing of photocurrent devices based on defects assisted
electron and hole carrier traps, including halide leads perovskites, zinc dioxide, and gallium
nitrides semiconductors.
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