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Abstract: Quaternary ammonium compounds (QACs) belong to a well-known class of cationic
biocides with a broad spectrum of antimicrobial activity. They are used as essential components in
surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, antiseptics, and
disinfectants. Simple but varied in their structure, QACs are divided into several subclasses: Mono-,
bis-, multi-, and poly-derivatives. Since the beginning of the 20th century, a significant amount of
work has been dedicated to the advancement of this class of biocides. Thus, more than 700 articles on
QACs were published only in 2020, according to the modern literature. The structural variability and
diverse biological activity of ionic liquids (ILs) make them highly prospective for developing new
types of biocides. QACs and ILs bear a common key element in the molecular structure–quaternary
positively charged nitrogen atoms within a cyclic or acyclic structural framework. The state-of-the-art
research level and paramount demand in modern society recall the rapid development of a new
generation of tunable antimicrobials. This review focuses on the main QACs exhibiting antimicrobial
and antifungal properties, commercial products based on QACs, and the latest discoveries in QACs
and ILs connected with biocide development.

Keywords: quaternary ammonium compound; ionic liquid; antibacterial; antimicrobial; biocide

1. Introduction

For many years, quaternary ammonium compounds (QACs) have been included
in most antiseptics and disinfectants and used in various areas, from household and
agriculture to medicine and industry [1].

The COVID-19 pandemic that broke out in 2020 led to a significant increase in the
widespread use of sanitizers, including QACs. Recent studies have shown that more than
90% of the dust samples analyzed during the pandemic contained QACs, and their average
concentration doubled compared to the pre-COVID period [2]. It is to be expected that with
the further progression of the pandemic, this number will increase, although the virucidal
effect of QACs on SARS-CoV-2 requires further research [3].

The constant presence of subinhibitory concentrations of QACs on various working
surfaces, together with the frequent use of QACs, increases the risk of the development
of a resistant bacterial environment, which will lead to a plummet of the effectiveness of
popular antiseptics and disinfectants. The solution to this problem can be found in the
synthesis of new QACs, which exhibit superior antibacterial, antifungal, and antiviral
properties.

The structure of QACs consists of a positively charged nitrogen atom with four or
three substituents and one double bond. The core QAC structure can contain one (mono-
QAC), two (bis-QAC), or more (multi-QAC, poly-QAC) charged nitrogen atoms, including
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those in heterocyclic compounds (piperidine, pyridine, imidazole, etc.). One or more of
the substituents are usually long aliphatic chains containing at least ten carbon atoms.
In the case of bis-QACs, multi-QACs, and poly-QACs, the structure that connects the
charged nitrogen atoms (the head or nucleus fragment) is called a spacer or linker, and
the alkyl chains extending from the heads (if they are present in the molecule) are called
tails (Figure 1). QACs are generally water-soluble and stable. The counterion in these
compounds usually does not affect the biological activity but often impacts the solubility
of the biocide. The majority of the registered QACs contain chloride or bromide as anions.
Due to their amphiphilic nature, QACs are able to form micelles. The critical concentration
of micelle formation (CCM) is one of the important characteristics of these substances.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 77 
 

The structure of QACs consists of a positively charged nitrogen atom with four or 
three substituents and one double bond. The core QAC structure can contain one (mono-
QAC), two (bis-QAC), or more (multi-QAC, poly-QAC) charged nitrogen atoms, includ-
ing those in heterocyclic compounds (piperidine, pyridine, imidazole, etc.). One or more 
of the substituents are usually long aliphatic chains containing at least ten carbon atoms. 
In the case of bis-QACs, multi-QACs, and poly-QACs, the structure that connects the 
charged nitrogen atoms (the head or nucleus fragment) is called a spacer or linker, and 
the alkyl chains extending from the heads (if they are present in the molecule) are called 
tails (Figure 1). QACs are generally water-soluble and stable. The counterion in these com-
pounds usually does not affect the biological activity but often impacts the solubility of 
the biocide. The majority of the registered QACs contain chloride or bromide as anions. 
Due to their amphiphilic nature, QACs are able to form micelles. The critical concentration 
of micelle formation (CCM) is one of the important characteristics of these substances. 

 
Figure 1. General structures and types of QACs. 

The first studies of QACs as antibacterial agents were carried out at the beginning of 
the 20th century. Hexamethylenetetramine derivatives exhibited an in vitro bactericidal 
effect [4–6]. With the discovery of benzalkonium chloride (BAC) in 1935 [7], QACs found 
application in medical practice. Subsequently, the study of this class of compounds has 
led to the discovery of many valuable properties of QACs, due to which they are now 
used as surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, 
and, of course, antiseptics and disinfectants with a wide spectrum of action [8]. 

Therefore, QACs belong to the group of biocides–chemical compounds designed to 
neutralize, suppress, or prevent the action of harmful organisms by chemical or biological 
means [9]. As an example, in 2019, QACs accounted for ca. 11% of the whole biocide mar-
ket in the United States, which equals ca. $192 million (Figure 2) [10]. 

Figure 1. General structures and types of QACs.

The first studies of QACs as antibacterial agents were carried out at the beginning of
the 20th century. Hexamethylenetetramine derivatives exhibited an in vitro bactericidal
effect [4–6]. With the discovery of benzalkonium chloride (BAC) in 1935 [7], QACs found
application in medical practice. Subsequently, the study of this class of compounds has led
to the discovery of many valuable properties of QACs, due to which they are now used as
surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, and, of
course, antiseptics and disinfectants with a wide spectrum of action [8].

Therefore, QACs belong to the group of biocides–chemical compounds designed to
neutralize, suppress, or prevent the action of harmful organisms by chemical or biological
means [9]. As an example, in 2019, QACs accounted for ca. 11% of the whole biocide
market in the United States, which equals ca. $192 million (Figure 2) [10].

The U.S. biocide market has grown by ca. 12% since 2016. The global trade of biocides,
including QACs, is expected to grow by 3.9% annually and to reach $10.5 billion in 2027,
thus evidencing the relevance and popularity of the topic. In other countries, similar trends
can be expected due to the unquestionable significance of QACs.

Biocides are used in a wide variety of fields. Approximately 50% of biocide applica-
tions in the global market are in the water purification and paint industry (Figure 3) [10].
However, they also play an important role in the medical field [11].
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This review focuses on the main QACs exhibiting the characteristics of biocides, the
latest discoveries and issues of this field, and is separated into two parts. The first part
presents the main commercial QACs currently used as active substances in antiseptics and
disinfectants. The second part describes the scientific research of this class of compounds.
Due to the ever-increasing demand for new bactericides and fungicides, the search for
compounds active against newly arisen resistant strains of pathogenic bacteria and fungi
is one of the most important areas of modern pharmaceutics. Of special concern is the
emergence of multidrug-resistant strains (so-called “superbugs”). Therefore, we also dis-
cuss the possibilities of applying ionic liquids (ILs) as antimicrobial compounds. ILs, some
of which can be classified as QACs, comprise a class of substances with vast molecular
diversity. These compounds have been shown to possess a wide range of biological activi-
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ties, including impressive antimicrobial properties [12,13]. A summary of the bactericidal
and fungicidal activities of common ILs, bis-charged ILs, and poly-ILs is provided in the
corresponding subsections.

2. Antimicrobial Properties of QACs and ILs
2.1. Commercial QACs

A significant step in the development of biologically active QACs was the discovery
of benzalkonium chloride 1 (BAC) by Domagk in 1935. BAC is a mixture of mono-QACs
with benzyl, methyl, and alkyl substituents with different chain lengths from C8 to C18
(Figure 4). This drug is the first active QAC compound approved by the US Environmental
Protection Agency in 1947, and it has been widely used to date [14]. More details about the
most important discoveries of that time in the QAC field can be found in the review by
Rahn and Van Eseltine [15].
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The biological activity of benzalkonium salts depends on the length of the alkyl side
chains. It is known that the C12-C14 compounds exhibit stronger bactericidal effects [16].
Due to its broad antibacterial activity and low toxicity, a mixture of benzalkonium deriva-
tives is used in washing disinfectants for hands and face, mouthwashes, creams, and other
cleansing and disinfecting products. BAC exhibits bactericidal activity against Staphylococ-
cus, Streptococcus, Gram-negative bacteria (E. coli, Pseudomonas aeruginosa, Proteus, Klebsiella,
etc.), anaerobic bacteria, fungi, and molds. It is also efficient against bacterial strains
resistant to antibiotics and chemotherapeutic drugs; it inhibits Staphylococcus plasma
coagulase and hyaluronidase. BAC prevents secondary wound infection with hospital
strains [17]. In addition, a 0.2% aqueous solution of BAC was shown to inactivate the
SARS-CoV-2 virus within 15 s [18].

Further study of this class of compounds led to the discovery of several currently
widely known QACs with similar structures: alkyltrimethylammonium bromides. The
most famous of them are cetyltrimethylammonium bromide (CTAB) 2 and dialkyldimethy-
lammonium chloride, the main representative of the latter being dimethyldidecylammo-
nium chloride (DDAC) 3. The addition of the second long aliphatic chain increased the
biological activity of the substance against S. aureus up to 8 times but, at the same time,
increased its toxicity against red blood cells [8].
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Miramistin 4 is a nonheterocyclic alkyl QAC and one of the most popular antibacterial
agents in antiseptics used in Russia [19]. Miramistin demonstrates a moderate antiseptic
effect against pathogenic fungi and viruses. Its aqueous solutions are used in the treatment of
pyo-inflammatory diseases in surgery, obstetrics, gynecology, dermatology, urology, dentistry,
and ophthalmology [20,21]. Miramistin-containing drugs have a pronounced bactericidal ef-
fect on Gram-positive (Staphylococcus spp., Streptococcus spp., Streptococcus pneumoniae, etc.),
Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella spp., etc.), aero-
bic, and anaerobic bacteria, both in the form of monocultures and microbial associations,
including hospital strains polyresistant to antibiotics. Moreover, miramistin demonstrates
antiviral activities (hepatitis, HIV), prevents wound and burn contamination, and facilitates
the recovery of damaged tissues [22].

Along with the majority of nonheterocyclic QACs on the antiseptic and disinfectant
market, there are also examples of heterocyclic QACs, especially pyridine-based QACs
(Figure 5).
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Figure 5. Commercial QACs based on pyridine.

The simplest of them is mono-QAC cetylpyridinium chloride 5 (CPC). First described
shortly after BAC in 1939 [23], CPC has been extensively used in many mouthwashes
and products for oral care [24]. In addition, CPC works as a preservative agent due to its
outstanding inhibition properties of bacterial growth.

The second antiseptic of the subgroup is octenidine dihydrochloride 6 (OCT). Its
dimeric structure is more complex than that of the other typical substances of this class.
Here, two pyridinic nitrogen atoms linked via an alkyl bridge have alkylamine substituents
in the para-position. OCT exists in pyridinic and imino forms. Due to its molecular
structure, it demonstrates a broad spectrum of antibacterial activity, affecting S. aureus,
S. epidermidis, P. mirabilis, K. pneumoniae, E. coli, P. aeruginosa, etc. [25]. Two cation-active
centers divided by the long aliphatic carbon chain facilitate molecule binding to negatively
charged surfaces of microbial cells. Strong interactions between octenidine and lipids (in
particular, cardiolipins) in the bacterial cell membrane have been detected [26]. OCT has
an intense residual effect on the skin, which is observed even 24 h after the last application.
Due to its antimicrobial properties and skin compatibility, OCT can be used for various local
applications where fast action and long-term effects are required, e.g., for disinfecting the
skin of patients or treating acute and chronic wounds spontaneously colonized or locally
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infected by pathogenic bacteria. OCT can also be used for treating surgical equipment,
injection sites of central catheters, infected root canals of teeth, candidiasis, acne, and nail
infections [26–29].

A number of other biocides that play an important role in the modern market of
antiseptics and disinfectants should also be mentioned. The antiseptics chlorhexidine
bigluconate 7 (CHG), alexidine 9, and polyhexamethylene biguanide 8 (PHMB) (Figure 6)
are guanidine derivatives from the cationic biocide family, as well as the abovementioned
QACs [30].
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CHG is a symmetrical bis-biguanide connected by an alkyl chain; it carries two
positive charges at physiological pH. Developed in the early 1950s during the screening for
antimalarial drugs, CHG has since recommended itself as a broad-spectrum antibacterial
drug. CHG is one of the first antiseptics used on the skin and for decontamination of
wounds. It is typically applied in the form of bigluconate, gluconate, dichloride, and
acetate salts. Antiseptic drugs, which contain chlorhexidine bigluconate as an active
substance, have a fairly wide spectrum of action. They are active against Gram-positive
bacteria but not Gram-negative bacteria and mycobacteria or fungi. CHG is widely used in
surgery and hand washing in the treatment of wound sepsis. It is also used in various oral
hygiene products, as an anti-plaque agent, and in periodontal treatments. Similar activities
were exhibited by aleksidine (Figure 6) [31–34].

PHMB is an alkyl biguanide polymer that can be used in a soluble form as chloride.
It is an effective alternative to traditional antiseptics due to its low toxicity and superior
antibacterial and antifungal activity [35]. It is used for treating swimming pools and fabrics,
in cleaning products, and as a disinfectant for contact lenses and mouthwashes [36].

2.2. The Latest Scientific Discoveries in the QAC Field

The simplicity of synthesis, vast structural diversity, and high biological activity drive
numerous scientific studies on QACs. Over the past 85 years, after the emergence of
the class of cationic biocides, the number of publications on the topic has been arising
significantly (Figure 7). According to SciFinder, more than 700 articles on QAC properties
were published in 2020.

The scientific society proposes various synthetic procedures and applications for
QACs, analyzes their structural fragments, and establishes the relations between the
efficiency and molecular structure [37,38]. The last approach, known since the 19th cen-
tury [39], is widely used in quantitative studies on various activities of chemical substances
(QSAR, quantitative structure–activity relationship) [40].
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Figure 7. Number of publications involving QACs from 1935 to 2020 (SciFinder, January 2021).

Judging from the basic structure (Figure 1), one can change several parts in a given
QAC to determine their impact on its activity:

Head. The number of charged nitrogen atoms (mono-, bis-, multi-QAC), as well as
the head structure (non-heterocyclic, heterocyclic, aromatic), can be changed.

Spacer. The structure (aliphatic, aromatic, saturated, unsaturated, mixed, etc.) can
be changed.

Tail. The structure (saturated, unsaturated, branched, unbranched) and the length of
the aliphatic chain can be changed.

Substituents. A desired group can be introduced into any of the abovementioned
fragments of the QAC molecule.

Hereafter, we will focus on representative examples of synthetic biocidal QACs ob-
tained by various scientific groups in recent years. The effect of the structural fragments of
the biocides on their biological activity will also be considered. The material is presented
sequentially, depending on the QAC charge (mono-QAC, bis-QAC, poly-QAC). Additional
information on studies on antimicrobial activity, surfactant properties, usage, and synthesis
can be found in recent reviews on the topic [8,41–51].

2.2.1. Single-Charged QACs (Mono-QACs)

Thorsteinsson and colleagues developed “softer” analogues of the existing QAC
biocides [52]. While “hard drugs” (CPC, BAC) are specified as drugs that are not subject to
in vivo changes, “soft drugs” are metabolized to nontoxic compounds (Figure 8) [43].
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Due to the introduction of amide and ether groups, the synthesized QAC molecules
10-13 are deactivated and decomposed into amides, fatty acids, and alcohols. Compounds
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without alkyl chains or with short chains (C2, C3) were found to be inactive. Substances
with C12–C18 alkyl tails exhibited antibacterial activity comparable to a known analog
(BAC 1) against E. coli, S. aureus, and P. aeruginosa. Additionally, some compounds from
series 11 showed activity against herpes simplex virus (HSV-1).

Miklas and colleagues carried out the synthesis and studied the biological properties
of QACs based on camphorsulfonic acid (CSA) 14-16 (Figure 9) [53,54].
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Upon changing the QAC core from ammonium to a less saturated heterocyclic struc-
ture (imidazole), the antimicrobial activity of the compounds gradually decreased. Salts
with alkyl tails exhibited better activity than their ester and amide counterparts. The
optimal chain length was found to be C12-C14.

In a recent work, Ali and colleagues developed new pyridine-based QACs from Schiff
bases of nicotine hydrazines (Figure 10) [55].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 77 
 

 
Figure 8. “Soft” mono-QACs. 

Due to the introduction of amide and ether groups, the synthesized QAC molecules 
10-13 are deactivated and decomposed into amides, fatty acids, and alcohols. Compounds 
without alkyl chains or with short chains (С2, C3) were found to be inactive. Substances 
with С12–С18 alkyl tails exhibited antibacterial activity comparable to a known analog 
(BAC 1) against E. coli, S. aureus, and P. aeruginosa. Additionally, some compounds from 
series 11 showed activity against herpes simplex virus (HSV-1). 

Miklas and colleagues carried out the synthesis and studied the biological properties 
of QACs based on camphorsulfonic acid (CSA) 14-16 (Figure 9) [53,54]. 

 
Figure 9. CSA-based mono-QACs. 

Upon changing the QAC core from ammonium to a less saturated heterocyclic struc-
ture (imidazole), the antimicrobial activity of the compounds gradually decreased. Salts 
with alkyl tails exhibited better activity than their ester and amide counterparts. The op-
timal chain length was found to be С12-С14. 

In a recent work, Ali and colleagues developed new pyridine-based QACs from 
Schiff bases of nicotine hydrazines (Figure 10) [55]. 

 

Figure 10. Mono-QACs containing hydrazide bridges.

These substances had good water solubility, most likely due to the presence of hy-
drazide groups. Despite the shorter alkyl chains (compared to typical QACs), a series of
substances 17 showed high activity against colonies and biofilms of E. coli and S. aureus.
According to this study, the presence of donor groups in the phenyl ring of the R substituent
increased the bactericidal activity.

In the works of Liu and colleagues, the effect of combining two biocidal fragments
(N-chloramines and alkyl QACs) in one molecule 18-19 on bactericidal properties was
studied (Figure 11) [56–58].

Chloramines act on bacterial cells through the oxidative transfer of chlorine to biologi-
cal receptors which leads to cell lysis. The attachment of the QAC molecule with a positive
charge allowed anchoring of the N-chloramine moiety on the surface of the bacterial cell,
thus enhancing the effect [56]. The introduction of a long alkyl chain into the compound
leads to the rupture of the bacterial membrane, penetration of the biocide into the cell,
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and a subsequent enhancement of the bactericidal effect [57,58]. At the same time, Li and
colleagues combined a pyridinic QAC with N-chloramine 20 (Figure 11). The antibacterial
activity of this compound was similar to that presented by Liu [59].

In the works of Wang and Hou, a similar approach to changing the structure of QAC
by adding biologically active fragments to the molecule was used (Figure 12) [60,61].
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Initially, guided by the hypothesis that hydroxy groups should stimulate membrane
penetration and cell destruction, a series of hydroxy-QACs 22 with different alkyl chain
lengths was synthesized. All the resulting compounds exhibited lower antibacterial activity
than CHG; they also demonstrated antifungal activity with an optimal tail length of C12.
It should be noted that the toxicity of the compounds correlated with their activity [60].
Then, a fragment of oxadiazole derivatives 23-24, benzothiazole (X=S) 21, and benzoxazole
(X=O) 21 was introduced into the QAC molecule, which led to an increase in bactericidal
and fungicidal activity and a decrease in toxicity in epithelial cells and erythrocytes [61].

Bogdanov and colleagues explored the microbiological effect of isatin-based QACs
(Figure 13) [62].

As seen from the figure, the structures of these ammonium 25 and pyridine 26-27 salts
contain no long alkyl chains. Therefore, the cytotoxicity of these compounds is significantly
lower than that of typical QACs. However, the antibacterial activity is markedly reduced
in the absence of quaternary nitrogen tails. Thus, none of the compounds from this
series showed a biocidal effect against the Gram-negative bacteria E. coli and P. aeruginosa.
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On the other hand, these salts inhibited the growth of Gram-positive bacteria (S. aureus
and B. cereus) and fungi (C. albicans) at concentrations comparable to modern antibiotics
(chloramphenicol and norfloxacin). Overall, QACs with pyridinium nuclei and donor
substituents in the aromatic part of isatin 27 turned out to be more active than the others.

Rusew and colleagues presented a work, in which long lipophilic tails in QACs were
replaced by more compact aryl-containing substituents (Figure 14) [63].
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Figure 14. Mono-QACs containing aryl substituents.

The results of a broad antibacterial screening appeared to be nontypical for cationic
biocides. Compounds with biphenyl and 1,3-dimethoxyphenyl 29 substituents selectively
inhibited the growth of E. coli (Gram-negative) and S. aureus (Gram-positive) but no other
Gram-positive and Gram-negative bacteria. In a quantitative sense, the inhibiting zones of
these substances were similar to kanamycin.

Kuca and Soukup studied the biological activity of picolinic QAC with methyl sub-
stituents 30 (Figure 15) [64].
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It was found that the position of the substituent did not significantly affect the biocidal
effect of methylpicolinates, possibly due to the small size of the methyl substituent. Overall,
picolinates showed a comparable or even superior bacteriostatic effect compared to BAC
on a wide range of pathogens. The optimal tail length was C14-C16, and higher activity was
observed in Gram-positive bacteria than in Gram-negative bacteria, as with most QACs.

Shtyrlin and his colleagues created a pyridoxine-based QAC library, including bis-
derivatives, which will be discussed in the corresponding part of the review (Figure 16) [65–70].Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 77 
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Pyridoxin functional derivatives 31-36 exhibited a broad spectrum of antibacterial
and antifungal activity; at that time, they were more active against Gram-positive bacteria
than Gram-negative bacteria. It should be mentioned that a combination of the antifungal
drug terbinafine with pyridoxin-based QAC 36 was efficient against mixed colonies of
pathogenic bacteria and fungi. This example proved the advantage of combining two
different biocide fragments in one molecule.

A significant contribution to the development of QACs as a class of cationic biocides
was made by the groups of Wuest and Minbiole (Figure 17) [71–76].
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It was found that close structural analogs of BAC 37 containing amide and ester groups
exhibited comparable activity and lower toxicity than BAC [76]. QAC derivatives of natural
compounds (quinine 38 and nicotine 39) demonstrated a wide spectrum of antibacterial
action, thus justifying the search for other platforms of natural origin to expand the library
of active QAC compounds [74].

An overview of the antibacterial activity of mono-QACs, analyzed in the review, is
shown in Table 1.

2.2.2. Common Ionic Liquids and Ionic Liquids with Active Pharmaceutical Ingredients
(API-ILs)

ILs are organic salts that generally exist in liquid form at a wide range of temperatures.
The most common ILs are composed of a bulky organic cation and a more compact anion
(Figure 18). Due to its broad applications in chemistry, this class of compounds has
been studied thoroughly, and the chemical and physicochemical properties, as well as
biodegradation potential, of various ILs have been determined [12,77].
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Table 1. Antimicrobial activity of mono-QACs *.

Series/
Compound Strain MIC, mg·L−1 MBC, mg·L−1 Method Notes Ref.

10

E. faecalis ATCC 29212 8 16

Microtiter dilution [52]
S. aureus ATCC 25923 2 4

E. coli ATCC 25922 64 64

P. aeruginosa ATCC 27853 250 250

11

E. faecalis ATCC 29212 4 8

Microtiter dilution Active towards herpes simplex
virus

[52]
S. aureus ATCC 25923 2 2

E. coli ATCC 25922 125 250

P. aeruginosa ATCC 27853 250 1000

12

E. faecalis ATCC 29212 1 4

Microtiter dilution [52]
S. aureus ATCC 25923 <0.25 1

E. coli ATCC 25922 250 250

P. aeruginosa ATCC 27853 500 500

13

E. faecalis ATCC 29212 <0.25 8

Microtiter dilution [52]
S. aureus ATCC 25923 <0.25 4

E. coli ATCC 25922 1000 >2000

P. aeruginosa ATCC 27853 1000 >2000

14

S. aureus ATCC 6538 1.05 µM

Broth microdilution [54]E. coli CNCTC 377/79 2.2 µM

C. albicans CCM 8186 1.05 µM

15

S. aureus ATCC 6538 5.2 µM

Broth microdilution [54]E. coli CNCTC 377/79 41.2 µM

C. albicans CCM 8186 164.9 µM
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Table 1. Cont.

Series/
Compound Strain MIC, mg·L−1 MBC, mg·L−1 Method Notes Ref.

16

S. aureus ATCC 6538 5.4 µM

Broth microdilution [53]E. coli CNCTC 377/79 144.1 µM

C. albicans CCM 8186 5.4 µM

17
S. aureus ATCC 6538 75% (percent of inhibition, 250 mg·L−1)

Broth microdilution Active towards bacterial
biofilms

[55]
E. coli CNCTC 377/79 80% (percent of inhibition, 250 mg·L−1)

18

MRSA 70065 3 min (Tk)/141 µM

[58]

E. coli ATCC 25922 3 min (Tk)/141 µM

multidrug-resistant (MDR)
P. aeruginosa 73104 <1 min (Tk)/141 µM

wild-type P. aeruginosan
PA01 3 min (Tk)/141 µM

19

methicillin-resistant S.
aureus (MRSA) 70065

3 min (Tk (time to
kill))/141 µM

[58]
E. coli ATCC 25922 3 min (Tk)/141 µM

multidrug-resistant (MDR)
P. aeruginosa 73104 5 min (Tk)/141 µM

wild-type P. aeruginosan
PA01 5 min (Tk)/141 µM

20
S. aureus 99% (reduction, contact time–5 min,

20 ppm)
AATCC test [59]

E. coli 100% (reduction, contact time–5 min,
20 ppm)
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Table 1. Cont.

Series/
Compound Strain MIC, mg·L−1 MBC, mg·L−1 Method Notes Ref.

21

S. aureus 6.25 6.25

Broth tube dilution [61]

a-H-tococcus 12.5 12.5

b-H-tococcus 1.56 3.125

E. coli 25 25

P. aeruginosa 25 25

P. vulgaris 25 25

C. albicans 6.25 6.25

C. mandshurica 1.56 6.25

P. piricola 3.125 3.125

A. niger 3.125 6.25

22

S. aureus 22.4 mm (IZ, 500 ppm)

Disk diffusion [60]B. subtilis 17 mm (IZ, 500 ppm)

E. coli 24.1 mm (inhibition zone, 500 ppm)

23

S. aureus 6.25 6.25

Broth tube dilution [61]

a-H-tococcus 6.25 6.25

b-H-tococcus 1.56 1.56

E. coli 12.5 12.5

P. aeruginosa 25 25

P. vulgaris 12.5 12.5

C. albicans 6.25 6.25

C. mandshurica 3.125 3.125

P. piricola 1.56 1.56

A. niger 6.25 6.25



Int. J. Mol. Sci. 2021, 22, 6793 16 of 82

Table 1. Cont.

Series/
Compound Strain MIC, mg·L−1 MBC, mg·L−1 Method Notes Ref.

24

S. aureus 12.5 25

Broth tube dilution [61]

a-H-tococcus 12.5 12.5

b-H-tococcus 6.25 6.25

E. coli 25 25

P. aeruginosa 50 50

P. vulgaris 25 25

C. albicans 12.5 12.5

C. mandshurica 12.5 12.5

P. piricola 6.25 6.25

A. niger 12.5 12.5

25

S. aureus ATCC 209p 12.5 µM

Broth microdilution [62]B. cereus ATCC 8035 401 µM

C. albicans 855-653 200 µM

27

S. aureus ATCC 209p 6.9 µM

Broth microdilution [62]B. cereus ATCC 8035 28.0 µM

C. albicans 855-653 222 µM

29 S. aureus 14.3 mm (IZ, 500 ppm) Disk diffusion [63]
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Table 1. Cont.

Series/
Compound Strain MIC, mg·L−1 MBC, mg·L−1 Method Notes Ref.

30

S. aureus C1947 0.49 µM 1.22 µM

Broth microdilution Active towards varicella-zoster
virus

[64]

MRSA C1926 1.47 µM 1.95 µM

Vancomycin-reristant enterococci S2484 1.95 µM 2.93 µM

Y. bercovieri CNCTC6230 1.95 µM 2.45 µM

A. baumannii J3474 2.93 µM 2.93 µM

E. coli A1235 5.86 µM 5.86 µM

K. pneumoniae C1950 7.81 µM 7.81 µM

S. maltophilia J3552 5.86 µM 5.86 µM

Extended-spectrum
β-lactamase-producing K. pneumonie

C1934
7.81 µM 15.63 µM

C. parapsilosis sensu strictoEXF-8411 100 µM

R. mucilaginosa EXF-8417 100 µM

E. dermatitidis EXF-8470 30 µM

A. melanogenum EXF-8432 30 µM

B. dimerum EXF-8427 500 µM

P. chrysogenum EXF-1818 300 µM

A. versicolor EXF-8692 65 µM

32

S. aureus ATCC29213 2

Broth microdilution [66]

S. epidermidis (clinical isolate) 2

M. luteus (clinical isolate) 2

E. coli ATCC25922 >64

S. typhimurium TA100 >64

P. aeruginosa ATCC27853 >64
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Table 1. Cont.

Series/
Compound Strain MIC, mg·L−1 MBC, mg·L−1 Method Notes Ref.

33

S. aureus ATCC29213 4

Broth microdilution [66]

S. epidermidis (clinical isolate) 4

M. luteus (clinical isolate) 2

E. coli ATCC25922 >64

S. typhimurium TA100 4

P. aeruginosa ATCC27853 >64

34

S. aureus ATCC29213 0.5

Broth microdilution [66]

S. epidermidis (clinical isolate) 0.5

M. luteus (clinical isolate) 0.5

E. coli ATCC25922 2

S. typhimurium TA100 0.5

P. aeruginosa ATCC27853 >64

35

S. aureus ATCC29213 0.5

Broth microdilution
Non-genotoxic and

non-mutagenic [70]

S. epidermidis (clinical isolate) 2

M. luteus (clinical isolate) 1

E. coli ATCC25922 8

P. aeruginosa ATCC27853 8

36

S. aureus ATCC 29213 4 8

Broth microdilution Active towards bacterial, fungi
and mixed biofilms

[69]

B. subtilis 168 4 8

S. epidermidis 4 8

E. coli MG1655 16 16

K. pneumoniae >64 >64

P. aeruginosa ATCC 27853 64 64
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Table 1. Cont.

Series/
Compound Strain MIC, mg·L−1 MBC, mg·L−1 Method Notes Ref.

37

S. aureus 2 µM

Broth microdilution [76]

E. faecalis 4 µM

E. coli 16 µM

P. aeruginosa 63 µM

MRSA 300-0114 2 µM

MRSA ATCC 33592 2 µM

38

S. aureus 0.5 µM

Broth microdilution Natural derivatives [74]

MRSA 300-0114 2 µM

MRSA ATCC 33592 4 µM

E. faecalis 1 µM

E. coli 8 µM

P. aeruginosa 8 µM

39

S. aureus 1 µM

Broth microdilution Natural derivatives [74]

MRSA 300-0114 4 µM

MRSA ATCC 33592 2 µM

E. faecalis 1 µM

E. coli 4 µM

P. aeruginosa 63 µM

40

S. aureus 1 µM

Broth microdilution [72]

MRSA 300-0114 4 µM

MRSA ATCC 33592 2 µM

E. faecalis 1 µM

E. coli 4 µM

P. aeruginosa 63 µM



Int. J. Mol. Sci. 2021, 22, 6793 20 of 82

Table 1. Cont.

Series/
Compound Strain MIC, mg·L−1 MBC, mg·L−1 Method Notes Ref.

41

S. aureus SH1000 1 µM

Broth microdilution [75]
E. faecalis OG1RF 16 µM

E. coli MC4100 16 µM

P. aeruginosa PAO1-WT 16 µM

* IZ, inhibition zone; Tk, time to kill; MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MRSA, methicillin-resistant S. aureus; only leader compounds from the series are listed
in the table.
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Initially, ILs were considered green solvents that could replace traditional toxic or-
ganic solvents in various chemical processes [78]. However, when evidence of the high
biological activity of various classes of ILs has emerged, these substances have quickly
become candidates for new drugs and drug-like molecules. In particular, the antimicrobial
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activity of ILs has attracted much attention, and their possible medical and environmental
applications have been proposed [12,13,79,80].

A subclass of ILs with quaternary ammonium cations (which includes several of
the above-discussed QACs) has promptly been established as a promising alternative
to traditional antimicrobial substances [80]. ILs with other cations have also demon-
strated prominent bactericidal and fungicidal activities [12,79]. Some of these ILs (e.g.,
N-hexadecylpyridinium chloride, or cetylpyridinium chloride, CPC, which is also clas-
sified as a QAC) have been extensively used as antiseptics for a long time [81,82]. The
first successful results of studies on the antimicrobial activities of various ILs have led to
the rapid development of API-ILs (active pharmaceutical ingredient–ionic liquid), that is,
known commercial drugs in an ionic liquid form [12,83,84].

An overview of the antimicrobial activities of various members of common IL classes
is provided in Table 2 and Table S1. In most cases, there is a direct relation between
the length of the alkyl side chain in the cation and the IL antimicrobial activity. ILs
with relatively short side chains (ethyl, butyl, hexyl) usually demonstrate weak activ-
ity (see Table S1), whereas those with long side chains (dodecyl, tetradecyl, hexade-
cyl) can be strong inhibitors of some bacterial and fungal species, including biofilm-
forming and drug-resistant species (see, e.g., entries for [CnMim][A], n = 12–16, and
[CnPy], n = 12–16, in Table 2) [81,85–89]. For instance, 1-dodecyl-3-methylimidazolium
bromide ([C12Mim][Br]), N-dodecyl-N-methylpyrrolidinium bromide ([C12C1Pyr][Br]),
and N-dodecyl-N-methylpiperidinium bromide ([C12C1Pip][Br]) demonstrated both high
antimicrobial and low hemolytic activity, thus allowing their successful application in
medicinal practice [90,91]. Cholinium-based ILs with long alkyl chains, in particular,
N-(2-hydroxyethyl)-N,N-dimethyl-N-tetradecylammonium bromide, N-(2-hydroxyethyl)-
N,N-dimethyl-N-hexadecylammonium bromide, and N-(2-hydroxyethyl)-N,N-dimethyl-
N-octadecylammonium bromide, efficiently inhibited the growth of various bacterial
strains, including antibiotic-resistant strains (see entries for [HOC2C1,1,nN][Br], n = 14–18,
in Table 2) [92]. Surface-active cholinium ILs with the dodecylbenzenesulfonate anion
demonstrated significant activity against Gram-negative and Gram-positive bacteria, fungi,
and single-cell algae; these ILs were proposed to be used as coatings for the prevention of
biofilm formation on stone surfaces [93].

It should be noted that the anion can also have a significant impact on the antimi-
crobial activity. Thus, the antibacterial activity of 1-butyl-3-methylimidazolium ILs with
different anions against pathogenic and semipathogenic Gram-negative and Gram-positive
bacteria varied significantly depending on the anionic nature [94]. In particular, 1-butyl-3-
methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4Mim][NTf2]) demonstrated
the highest activity against E. coli (see entries for [C4Mim][A] in Table 2 and Table S1);
however, its anti-adhesive activity was significantly lower than that of several other ILs
tested. A different picture was observed in the case of 1-hexyl-3-methylimidazolium
IL, among which 1-hexyl-3-methylimidazolium nitrate ([C6Mim][NO3]) demonstrated
the highest activity against E. coli and several other microorganisms tested (see entries
for [C6Mim][A] in Table S1) [95]. Interestingly, it was demonstrated that for ILs with
tris(pentafluoroethyl)trifluorophosphate anions, the antimicrobial activity decreased upon
increasing the alkyl side chain length [96].

Of special interest are ILs containing antimicrobial moieties in their anions or cations.
The API-IL concept allows simultaneously solving two common issues of traditional
drugs: low solubility in aqueous media and tendency to form polymorphs [12]. Exam-
ples of bactericidal API-ILs are given in Figure 19, Table 3, and Table S2. Thus, API-ILs
bearing ampicillin as their anion in combination with cetylpyridinium or 1-hexadecyl-2,3-
dimethylimidazolium as their cation demonstrated improved activity against several Gram-
negative and Gram-positive bacterial strains, including ampicillin-resistant E. coli strains,
compared to the ampicillin sodium salt (see the corresponding entries in Table 3) [82,97].
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Table 2. Antimicrobial activity of common ILs *.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

1-Ethyl-3-
methylimidazolium

bromide
[C2Mim][Br]

E. coli ATCC 25922 >5000 µM

Broth microdilution
E. coli TEM CTX M9, CTX M2,

and AmpC MOX2 are
ampicillin-resistant strains.

[82]

E. coli TEM CTX M9 5000 µM

E. coli CTX M2 >5000 µM

E. coli AmpC MOX2 >5000 µM

K. pneumoniae (clinical isolate) >5000 µM

S. aureus ATCC 25293 50 µM

S. epidermidis (clinical isolate) 5000 µM

E. faecalis (clinical isolate) >5000 µM

1-Butyl-3-
methylimidazolium
bis(trifluoromethan-

esulfonyl)imide

[C4Mim][NTf2]

P. aeruginosa PTCC 1310 3120 3120

Agar disk
diffusion/agar well

diffusion
Anti-adhesive activity a [94]

S. aureus PTCC 1112 3120 3120

E. coli PTCC 1338 <40 48

B. cereus PTCC 1015 3120 3120

S. typhimurium (wild type) 390 390

K. pneumonia PTCC 1290 3120 3120

B. subtilis PTCC 1715 3120 3120

1-Octyl-3-
methylimidazolium

bromide
[C8Mim][Br]

M. luteus ATCC 9341 R

Broth microdilution
R, resistant at the highest

concentration
tested (256 µg mL−1).

[81,87]

S. epidermidis ATCC155-1 930 µM

S. aureus ATCC 25178 R

S. aureus 209 KCTC1916 64

S. aureus R209 KCTC1928 250

E. coli ATCC 27325 R

E. coli KCTC1924 64

K. pneumonia ATCC 9721 R

P. aeruginosa ATCC 9721 R

C. albicans ATCC10231 R

C. albicans KCTC19401 250

B. subtilis ATCC663 R

B. subtilis KCTC1914 500

S. typhimurium KCTC1926 500

C. regularis 500
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

1-Octyl-3-
methylimidazolium

nitrate
[C8Mim][NO3]

S. aureus 97 97

Agar disk
diffusion/agar well

diffusion
Anti-adhesive activity a [95]

K. pneumoniae 780 780

S. typhimurium 780 780

P. aeruginosa 1560 1560

E. coli 39 39

B. tequilensis 19 19

B. subtilis 19 19

1-Decyl-3-
methylimidazolium

chloride
[C10Mim][Cl]

S. aureus ATCC 29213 40 µM (MBEC 2415 µM) 643 µM

Broth microdilution,
MBEC assay

Deletions ∆rfaC, ∆rfaL, and
∆rfaG affect the cell surface

hydrophobicity and
membrane permeability.

[81,85,86]

E-MRSA 15 40 µM (MBEC 1207 µM) 321 µM

MRSA (clinical strain 201) 160 µM (MBEC 4829 µM) 643 µM

S. aureus 209 KCTC1916 16

S. aureus R209 KCTC1928 32

S. epidermidis ATCC 12228 40 µM 644 µM

S. epidermidis ATCC 35984 40 µM (MBEC 4829 µM) 160 µM

E. coli NCTC 8196 321 µM (MBEC 9659 µM) 1287 µM

E. coli KCTC1924 8

E. coli BW25113 (wild-type) 188.9

E. coli JW3596 (∆rfaC) 100

E. coli JW3597 (∆rfaL) 155

E. coli JW3606 (∆rfaG) 67.5

P. aeruginosa PA01 >1287 µM (MBEC 2415
µM) >1287 µM

K. aerogenes NCTC 7427 643 µM (MBEC 19318 µM) 1287 µM

B. cenocepacia J2315 1287 µM (MBEC 19318
µM) 1287 µM

P. mirabilis NCTC 12442 1287 µM (MBEC 9659 µM) 1287 µM

C. tropicalis NCTC 7393 321 µM (MBEC 19318 µM) 321 µM

B. subtilis KCTC1914 125

S. typhimurium KCTC1926 125

C. albicans KCTC19401 250

C. regularis 250
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

1-Decyl-3-
methylimidazolium

bromide
[C10Mim][Br]

M. luteus ATCC 9341 R

Broth microdilution
R, resistant at the highest

concentration
tested (256 µg mL−1).

[87]

S. epidermidis ATCC155-1 844 µM

S. aureus ATCC 25178 106 µM

E. coli ATCC 27325 R

K. pneumonia ATCC 9721 R

P. aeruginosa ATCC 9721 R

C. albicans ATCC10231 R

B. subtilis ATCC6633 422 µM

1-Dodecyl-3-
methylimidazolium

chloride
[C12Mim][Cl]

S. aureus ATCC 29213 18 µM (MBEC 272 µM) 36 µM

Broth microdilution,
MBEC assay

Deletions ∆rfaC, ∆rfaL, and
∆rfaG affect the cell surface

hydrophobicity and
membrane permeability.

[85,86]

E-MRSA 15 18 µM (MBEC 272 µM) 73 µM

MRSA (clinical strain 201) 36 µM (MBEC 545 µM) 290 µM

S. epidermidis ATCC 12228 36 µM 145 µM

S. epidermidis ATCC 35984 36 µM (MBEC 272 µM) 73 µM

E. coli NCTC 8196 73 µM (MBEC 1089 µM) 73 µM

E. coli BW25113 (wild-type) 47.3

E. coli JW3596 (∆rfaC) 10.1

E. coli JW3597 (∆rfaL) 45.4

E. coli JW3606 (∆rfaG) 11.4

P. aeruginosa PA01 580 µM (MBEC 1089 µM) 1161 µM

K. aerogenes NCTC 7427 73 µM (MBEC 2179 µM) 145 µM

B. cenocepacia J2315 290 µM (MBEC 2179 µM) 580 µM

P. mirabilis NCTC 12442 580 µM (MBEC 4357 µM) 1161 µM

C. tropicalis NCTC 7393 73 µM (MBEC 8714 µM) 73 µM
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

1-Dodecyl-3-
methylimidazolium

bromide
[C12Mim][Br]

M. luteus ATCC 9341 R

Broth microdilution
R, resistant at the highest

concentration
tested (256 µg mL−1).

[81,87,90,91]

S. epidermidis ATCC155-1 193 µM

S. epidermidis ATCC 35984 2.5

S. aureus ATCC 25178 97 µM

S. aureus ATCC 6538 2.5 40

S. aureus 209 KCTC1916 4

S. aureus R209 KCTC1928 8

E. coli ATCC 27325 386 µM

E. coli ATCC 25922 20 10

E. coli KCTC1924 8

K. pneumonia ATCC 9721 773 µM

K. pneumonia ATCC BAA-1705 80

P. aeruginosa ATCC 9721 R

P. aeruginosa ATCC 27853 160 20

C. albicans ATCC10231 R

B. subtilis ATCC6633 48 µM

B. subtilis KCTC1914 8

S. typhimurium KCTC1926 32

A. baumannii AB01 80

E. faecalis ATCC 29212 5 40

C. albicans KCTC19401 32

C. regularis 16

1-Dodecyl-3-
methylimidazolium

iodide

[C12Mim][I] S. aureus V329 0.31 µM 5 µM
Broth microdilution

Potent anti-biofilm activity
(higher against S. aureus) [98]

P. aeruginosa PAO1 125 µM 250 µM
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

1-Tetradecyl-3-
methylimidazolim

chloride
[C14Mim][Cl]

S. aureus ATCC 29213 16 µM (MBEC 124 µM) 66 µM

Broth microdilution,
MBEC assay

Deletions ∆rfaC, ∆rfaL, and
∆rfaG affect the cell surface

hydrophobicity and
membrane permeability.

[81,85,86]

E-MRSA 15 16 µM (MBEC 248 µM) 66 µM

MRSA (clinical strain 201) 16 µM (MBEC 124 µM) 66 µM

S. aureus 209 KCTC1916 4

S. aureus R209 KCTC1928 4

S. epidermidis ATCC 12228 7.75 µM 33 µM

S. epidermidis ATCC 35984 7.75 µM (MBEC 124 µM) 33 µM

E. coli NCTC 8196 33 µM (MBEC 124 µM) 33 µM

E. coli KCTC1924 4

E. coli BW25113 (wild-type) 14.9

E. coli JW3596 (∆rfaC) 2.2

E. coli JW3597 (∆rfaL) 15.5

E. coli JW3606 (∆rfaG) 3.3

P. aeruginosa PA01 264 µM (MBEC 496 µM) 264 µM

K. aerogenes NCTC 7427 33 µM (MBEC 248 µM) 66 µM

B. cenocepacia J2315 132 µM (MBEC 496 µM) 264 µM

P. mirabilis NCTC 12442 264 µM (MBEC 1984 µM) 530 µM

C. tropicalis NCTC 7393 66 µM (MBEC 248 µM) 132 µM

B. subtilis KCTC1914 4

S. typhimurium KCTC1926 8

C. albicans KCTC19401 8

C. regularis 8
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

1-Tetradecyl-3-
methylimidazolim

bromide
[C14Mim][Br]

M. luteus ATCC 9341 178 µM

Broth microdilution [81,87]

S. epidermidis ATCC155-1 6 µM

S. aureus ATCC 25178 45 µM

S. aureus 209 KCTC1916 4

S. aureus R209 KCTC1928 4

E. coli ATCC 27325 356 µM

E. coli KCTC1924 4

K. pneumonia ATCC 9721 356 µM

P. aeruginosa ATCC 9721 356 µM

C. albicans ATCC10231 178 µM

B. subtilis ATCC6633 6 µM

B. subtilis KCTC1914 4

S. typhimurium KCTC1926 8

C. albicans KCTC19401 8

C. regularis 16

1-Hexadecyl-3-
methylimidazolim

chloride
[C16Mim][Cl]

E. coli BW25113 (wild-type) 7.7

Broth microdilution

The clinical isolates 72A, 72P,
and 94P are resistant to

fluconazole, amphotericin B,
voriconazole and

anidulafungin.
Deletions ∆rfaC, ∆rfaL, and
∆rfaG affect the cell surface

hydrophobicity and
membrane permeability.

[86,88]

E. coli JW3596 (∆rfaC) 3.5

E. coli JW3597 (∆rfaL) 8.2

E. coli JW3606 (∆rfaG) 3

C. tropicalis 17A 0.014 (MBEC 0.028)

C. tropicalis 57A 0.014 (MBEC 0.056)

C. tropicalis 72A 0.014 (MBEC 0.056)

C. tropicalis 72P 0.014 (MBEC 0.056)

C. tropicalis 94P 0.014 (MBEC 0.225)

C. tropicalis 102A 0.014 (MBEC 0.056)
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

1-Hexadecyl-3-
methylimidazolim

bromide
[C16Mim][Br]

S. aureus 209 KCTC1916 8

Broth microdilution [81,97]

S. aureus R209 KCTC1928 4

S. aureus ATCC 6538 15 µM

E. coli KCTC1924 8

E. coli O157:H7 ATCC 43895 10 µM

B. subtilis KCTC1914 4

S. typhimurium KCTC1926 4

E. faecium ATCC 49474 1 µM

K. pneumonia ATCC 4352 15 µM

C. albicans KCTC19401 8

C. regularis 8

1-Hexyl-2,3-
dimethylimidazolium

bromide
[C6MMim][Br]

S. aureus ATCC 6538 23 µM

Broth microdilution [97]E. coli O157:H7 ATCC 43895 12 µM

E. faecium ATCC 49474 9 µM

K. pneumonia ATCC 4352 15 µM

N-Dodecy-
lpyridinium

bromide
[C12Py][Br]

M. luteus ATCC 9341 R

Broth microdilution
R, resistant at the highest

concentration
tested (256 µg mL−1).

[87]

S. epidermidis ATCC155-1 49 µM

S. aureus ATCC 25178 195 µM

E. coli ATCC 27325 97 µM

K. pneumonia ATCC 9721 780 µM

P. aeruginosa ATCC 9721 780 µM

C. albicans ATCC10231 R

B. subtilis ATCC6633 24 µM

N-Tetradecy-
lpyridinium

bromide
[C14Py][Br]

M. luteus ATCC 9341 90 µM

Broth microdilution [87]

S. epidermidis ATCC155-1 6 µM

S. aureus ATCC 25178 22 µM

E. coli ATCC 27325 45 µM

K. pneumonia ATCC 9721 359 µM

P. aeruginosa ATCC 9721 359 µM

C. albicans ATCC10231 359 µM

B. subtilis ATCC6633 6 µM
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

N-Hexadecy-
lpyridinium

chloride
[C16Py][Cl]

E. coli ATCC 25922 500 µM

Broth microdilution
E. coli TEM CTX M9, CTX M2,

and AmpC MOX2 are
ampicillin-resistant strains.

[81,82]

E. coli TEM CTX M9 500 µM

E. coli CTX M2 >5000 µM

E. coli AmpC MOX2 >5000 µM

K. pneumoniae (clinical isolate) 2500 µM

S. aureus ATCC 25293 500 µM

S. aureus 209 KCTC1916 8

S. aureus R209 KCTC1928 8

S. epidermidis (clinical isolate) 2500 µM

E. faecalis (clinical isolate) 500 µM

B. subtilis KCTC1914 8

N-Hexadecy-
lpyridinium

bromide
[C16Py][Br]

S. aureus ATCC 6538 15 µM

Broth microdilution [97]E. coli O157:H7 ATCC 43895 13 µM

E. faecium ATCC 49474 2 µM

K. pneumonia ATCC 4352 13 µM

N-Dodecyl-N-
methylpyrrolidinium

bromide
[C12C1Pyr][Br]

S. epidermidis ATCC 35984 10

Broth microdilution [89–91]

S. aureus 15 µM

S. aureus ATCC 6538 10 80

E. coli 20 µM

E. coli ATCC 25922 80 20

P. aeruginosa ATCC 27853 320 80

K. pneumonia ATCC BAA-1705 160

A. baumannii AB01 80

E. faecalis ATCC 29212 20 40

N-Dodecyl-N-
hydroxyethy-

lpyrrolidinium
chloride

[C12HOC2Pyr][Cl]

E. coli KCTC1924 8

Broth microdilution [81]
S. typhimurium KCTC1926 16

B. subtilis KCTC1914 4

C. regularis 8
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

N-Dodecyl-N-
methylpiperidinium

bromide
[C12C1Pip][Br]

S. epidermidis ATCC 35984 5

Broth microdilution [90,91]

S. aureus ATCC 6538 5 80

E. coli ATCC 25922 40 20

P. aeruginosa ATCC 27853 320 80

K. pneumonia ATCC BAA-1705 160

A. baumannii AB01 320

E. faecalis ATCC 29212 10 40

N-Dodecyl-N-
methylmorpholinium

bromide
[C12C1Mor][Br]

S. epidermidis ATCC 35984 20

Broth microdilution [90]
S. aureus ATCC 6538 20

E. coli ATCC 25922 156.2

P. aeruginosa ATCC 27853 312.5

E. faecalis ATCC 29212 40

Dioctyldimethylamm-
onium

chloride
[C8,8,1,1N][Cl]

E. coli BW25113 (wild-type) 104.2

Broth microdilution

Deletions ∆rfaC, ∆rfaL, and
∆rfaG affect the cell surface

hydrophobicity and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 20.8

E. coli JW3597 (∆rfaL) 91.7

E. coli JW3606 (∆rfaG) 22.9

Trioctylmethylamm-
onium chloride

[C8,8,8,1N][Cl]

E. coli BW25113 (wild-type) 6.8

Broth microdilution

Deletions ∆rfaC, ∆rfaL, and
∆rfaG affect the cell surface

hydrophobicity and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 1.7

E. coli JW3597 (∆rfaL) 6.9

E. coli JW3606 (∆rfaG) 2.5

Trimethyldecylamm-
onium chloride

[C1,1,1,10N][Cl]

E. coli BW25113 (wild-type) 119.4

Broth microdilution

Deletions ∆rfaC, ∆rfaL, and
∆rfaG affect the cell surface

hydrophobicity and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 83

E. coli JW3597 (∆rfaL) 130

E. coli JW3606 (∆rfaG) 80

Trimethylhexadecylamm-
onium chloride

[C1,1,1,16N][Cl]

E. coli BW25113 (wild-type) 13.1

Broth microdilution

Deletions ∆rfaC, ∆rfaL, and
∆rfaG affect the cell surface

hydrophobicity and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 2.8

E. coli JW3597 (∆rfaL) 13

E. coli JW3606 (∆rfaG) 3.3
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

Trimethylhexadecy-
lammonium bromide
(cetyltrimethylammo-

nium bromide)

[C1,1,1,16N][Br] (CTAB)
S. aureus V329 0.31 µM 5 µM

Broth microdilution Potent anti-biofilm activity
against S. aureus [98]

P. aeruginosa PAO1 125 µM 250 µM

Dimethyldodecyl(2-
hydroxyethyl)ammon-

ium bromide
[HOC2C1,1,12N][Br]

B. subtilis ATCC 6633 15.62

Broth microdilution [92]

M. smegmatis ATCC 607 15.62

K. pneumonia ATCC 9997 N.T.

E. faecalis ATCC 29212 N.T.

VRE ATCC 51299 62.5

S. aureus 31.25

MRSA CIP 106760 62.5

E. coli ATCC 25922 62.5

P. aeruginosa ATCC 27853 250

C. albicans ATCC 10231 62.5

S. cerevisiae ATCC 2601 7.81

Dimethyltetradecyl(2-
hydroxyethyl)ammon-

ium bromide
[HOC2C1,1,14N][Br]

B. subtilis ATCC 6633 0.98

Broth microdilution [92]

M. smegmatis ATCC 607 1.95

K. pneumonia ATCC 9997 7.82

E. faecalis ATCC 29212 1.95

VRE ATCC 51299 1.95

S. aureus 7.81

MRSA CIP 106760 15.62

E. coli ATCC 25922 15.62

P. aeruginosa ATCC 27853 125

C. albicans ATCC 10231 31.25

S. cerevisiae ATCC 2601 1.95
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

Dimethylhexadecyl(2-
hydroxyethyl)ammonium

bromide
[HOC2C1,1,16N][Br]

B. subtilis ATCC 6633 <0.49

Broth microdilution [92]

M. smegmatis ATCC 607 3.91

K. pneumonia ATCC 9997 0.98

E. faecalis ATCC 29212 0.98

VRE ATCC 51299 0.98

S. aureus 1.95

MRSA CIP 106760 3.91

E. coli ATCC 25922 7.81

P. aeruginosa ATCC 27853 250

C. albicans ATCC 10231 3.91

S. cerevisiae ATCC 2601 1.95

Dimethyloctadecyl(2-
hydroxyethyl)ammonium

bromide
[HOC2C1,1,18N][Br]

B. subtilis ATCC 6633 1.95

Broth microdilution [92]

M. smegmatis ATCC 607 3.91

K. pneumonia ATCC 9997 1.95

E. faecalis ATCC 29212 1.95

VRE ATCC 51299 0.98

S. aureus 1.95

MRSA CIP 106760 0.98

E. coli ATCC 25922 31.25

P. aeruginosa ATCC 27853 125

C. albicans ATCC 10231 <0.48

S. cerevisiae ATCC 2601 <0.48
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

Di(2-hydroxyethyl)-
tetradecylamm-onium

bromide
[(HOC2)2C14NH][Br]

B. subtilis ATCC 6633 7.81

Broth microdilution [92]

M. smegmatis ATCC 607 15.62

K. pneumonia ATCC 9997 7.81

E. faecalis ATCC 29212 15.62

VRE ATCC 51299 7.81

S. aureus 15.62

MRSA CIP 106760 15.62

E. coli ATCC 25922 31.25

P. aeruginosa ATCC 27853 N.T.

C. albicans ATCC 10231 15.62

S. cerevisiae ATCC 2601 N.T.

Di(2-hydroxyethyl)-
decylmethylamm-onium

bromide
[(HOC2)2C10,1N][Br]

B. subtilis ATCC 6633 250

Broth microdilution [92]

M. smegmatis ATCC 607 62.5

K. pneumonia ATCC 9997 N.A.

E. faecalis ATCC 29212 N.A.

VRE ATCC 51299 N.A.

S. aureus N.A.

MRSA CIP 106760 N.A.

E. coli ATCC 25922 N.A.

P. aeruginosa ATCC 27853 N.A.

C. albicans ATCC 10231 N.T.

S. cerevisiae ATCC 2601 N.T.
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

Di(2-hydroxyethyl)-
dodecylmethylamm-

onium bromide
[(HOC2)2C12,1N][Br]

B. subtilis ATCC 6633 31.25

Broth microdilution [92]

M. smegmatis ATCC 607 <7.82

K. pneumonia ATCC 9997 62.5

E. faecalis ATCC 29212 62.25

VRE ATCC 51299 62.5

S. aureus 31.25

MRSA CIP 106760 62.5

E. coli ATCC 25922 125

P. aeruginosa ATCC 27853 250

C. albicans ATCC 10231 250

S. cerevisiae ATCC 2601 31.25

Di(2-hydroxyethyl)-
tetradecylmethylamm-

onium bromide
[(HOC2)2C14,1N][Br]

B. subtilis ATCC 6633 1.95

Broth microdilution [92]

M. smegmatis ATCC 607 1.95

K. pneumonia ATCC 9997 7.82

E. faecalis ATCC 29212 N.T.

VRE ATCC 51299 N.T.

S. aureus 3.91

MRSA CIP 106760 1.95

E. coli ATCC 25922 15.62

P. aeruginosa ATCC 27853 62.5

C. albicans ATCC 10231 31.25

S. cerevisiae ATCC 2601 1.95

Trioctylmethylphos-
phonium chloride [C8,8,8,1P][Cl]

E. coli BW25113 (wild-type) 6.8

Broth microdilution

Deletions ∆rfaC, ∆rfaL, and
∆rfaG affect the cell surface

hydrophobicity and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 2.2

E. coli JW3597 (∆rfaL) 5.6

E. coli JW3606 (∆rfaG) 2.8
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

Trihexyltetradecylphos-
phonium chloride [C6,6,6,14P][Cl]

L. monocytogenes ATCC13932 5.7

Broth microdilution [96]

B. cereus ATCC 11778 9.77

S. aureus ATCC 6538 8.14

E. faecalis ATCC 19433 11.39

L. sakei ATCC 15521 8.14

L. lactis ATCC 19435 8.14

S. typhimurium ATCC 14028 625

E. coli ATCC 25922 5000

C. freundii ATCC 27853 5000

Gentamycin

S. typhimurium ATCC 14028 0.25

Broth microdilution [81]
E. coli ATCC 25922 0.25

C. freundii ATCC 27853 1

B. subtilis KCTC1914 1

S. typhimurium KCTC1926 0.5

Kanamycin

S. aureus 209 KCTC1916 2

Broth microdilution [81]

S. aureus R209 KCTC1928 1

E. coli KCTC1924 16

B. subtilis KCTC1914 2

S. typhimurium KCTC1926 1

Fuconazole

C. tropicalis 17A 0.125 (MBEC 4)

Broth microdilution

The clinical isolates 72A, 72P,
and 94P are resistant to

fluconazole, amphotericin B,
voriconazole and anidulafungin.

[88]

C. tropicalis 57A 0.125 (MBEC 64)

C. tropicalis 72A 128 (MBEC 8)

C. tropicalis 72P 128 (MBEC 128)

C. tropicalis 94P 64 (MBEC 32)

C. tropicalis 102A 0.125 (MBEC 128)

Colistin

E. coli ATCC 25922 2

Broth microdilution [91]
P. aeruginosa ATCC 27853 1

K. pneumonia ATCC BAA-1705 2

A. baumannii AB01 4
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Table 2. Cont.

IL Acronym Species MIC, µg mL−1 MBC, µg mL−1 Method Notes Ref.

Vancomycin

B. subtilis ATCC 6633 <0.48

Broth microdilution [92]

K. pneumonia ATCC 9997 15.62

E. faecalis ATCC 29212 1.95

VRE ATCC 51299 3.91

S. aureus 7.82

MRSA CIP 106760 3.91

Rifampicin
M. smegmatis ATCC 607 <0.48

Broth microdilution [92]E. coli ATCC 25922 0.98

Norfloxacin P. aeruginosa ATCC 27853 <0.48 Broth microdilution [92]

Amphotericin B
C. albicans ATCC 10231 <0.48

Broth microdilution [92]S. cerevisiae ATCC 2601 <0.48

* IZ, inhibition zone; MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MBEC, minimum biofilm eradication concentration; MRSA, methicillin-resistant S. aureus; N.A., not
active; N.T., not tested; VRE, vancomycin-resistant E. faecalis. a Anti-adhesive activity varies depending on the species.
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Table 3. Antimicrobial activity of API-ILs *.

IL Acronym Species IZ, mm MIC µg mL−1 MBC, µg mL−1 Method Notes Ref.

1-Ethyl-3-
methylimidazolium

nalidixate
[C2Mim][Nal]

E. coli BW25113 (wild-type) 11

Disk diffusion test,
10 µg per disk

Deletions ∆rfaC, ∆rfaL,
and ∆rfaG affect the cell
surface hydrophobicity

and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 20

E. coli JW3597 (∆rfaL) 11

E. coli JW3606 (∆rfaG) 18

1-Hexadecyl-3-
methylimidazolium

ampicillinate
[C16Mim][Amp]

S. aureus ATCC 6538 30 µM

Broth microdilution [97]
E. coli O157:H7 ATCC 43895 9 µM

E. faecium ATCC 49474 13 µM

K. pneumonia ATCC 4352 15 µM

1-Hexadecyl-2,3-
dimethylimidazolium

ampicillinate
[C16MMim][Amp]

S. aureus ATCC 6538 14 µM

Broth microdilution [97]
E. coli O157:H7 ATCC 43895 9 µM

E. faecium ATCC 49474 0.4 µM

K. pneumonia ATCC 4352 15 µM

1-Hexadecylpyridi-
nium ampicillinate [C16Py][Amp]

S. aureus ATCC 6538 8 µM

Broth microdilution
E. coli TEM CTX M9, CTX

M2, and AmpC MOX2
are ampicillin-resistant

strains.

[82,97]

S. aureus ATCC 25293 5 µM

S. epidermidis (clinical isolate) 5 µM

E. coli O157:H7 ATCC 43895 6 µM

E. coli ATCC 25922 500 µM

E. coli TEM CTX M9 5 µM

E. coli CTX M2 50 µM

E. coli AmpC MOX2 >5000 µM

E. faecium ATCC 49474 0.4 µM

E. faecalis (clinical isolate) 5 µM

K. pneumonia ATCC 4352 9 µM

K. pneumoniae (clinical isolate) 50 µM

N-Ethyl-N-
methylpiperidinium

nalidixate
[C2C1Pip][Nal]

E. coli BW25113 (wild-type) 12.9

Disk diffusion test,
10 µg per disk

Deletions ∆rfaC, ∆rfaL,
and ∆rfaG affect the cell
surface hydrophobicity

and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 22.9

E. coli JW3597 (∆rfaL) 12.8

E. coli JW3606 (∆rfaG) 21
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Table 3. Cont.

IL Acronym Species IZ, mm MIC µg mL−1 MBC, µg mL−1 Method Notes Ref.

Trimethylhexadecylamm-
onium nalidixate

[C1,1,1,16N][Nal]

E. coli BW25113 (wild-type) 12.6

Disk diffusion test,
10 µg per disk

Deletions ∆rfaC, ∆rfaL,
and ∆rfaG affect the cell
surface hydrophobicity

and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 22.7

E. coli JW3597 (∆rfaL) 12.2

E. coli JW3606 (∆rfaG) 20.2

Dioctyldimethylamm-
onium nalidixate

[C8,8,1,1N][Nal]

E. coli BW25113 (wild-type) 13.3

Disk diffusion test,
10 µg per disk

Deletions ∆rfaC, ∆rfaL,
and ∆rfaG affect the cell
surface hydrophobicity

and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 23.3

E. coli JW3597 (∆rfaL) 13.6

E. coli JW3606 (∆rfaG) 20.3

Trioctylmethylamm-
onium nalidixate

[C8,8,8,1N][Nal]

E. coli BW25113 (wild-type) 11.3

Disk diffusion test,
10 µg per disk

Deletions ∆rfaC, ∆rfaL,
and ∆rfaG affect the cell
surface hydrophobicity

and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 22.2

E. coli JW3597 (∆rfaL) 11

E. coli JW3606 (∆rfaG) 18.7

Tetramethylamm-
onium nalidixate

[C1,1,1,1N][Nal]

E. coli BW25113 (wild-type) 13.3

Disk diffusion test,
10 µg per disk

Deletions ∆rfaC, ∆rfaL,
and ∆rfaG affect the cell
surface hydrophobicity

and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 22.9

E. coli JW3597 (∆rfaL) 13.4

E. coli JW3606 (∆rfaG) 20.6

Tetrabutylamm-
onium nalidixate

[C4,4,4,4N][Nal]

E. coli BW25113 (wild-type) 13.3

Disk diffusion test,
10 µg per disk

Deletions ∆rfaC, ∆rfaL,
and ∆rfaG affect the cell
surface hydrophobicity

and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 22.7

E. coli JW3597 (∆rfaL) 13.6

E. coli JW3606 (∆rfaG) 21.3

Didecyldimethylamm-
onium saccharinate

[C10,10,1,1N][Sac]

S. aureus ATCC 6538 4 ppm 62.5 ppm

Tube dilution [99]

MRSA ATCC 43300 4 ppm 31.2 ppm

E. faecium ATCC 49474 8 ppm 16 ppm

E. coli ATCC25922 16 ppm 16 ppm

M. luteus ATCC 9341 4 ppm 31.2 ppm

S. epidermidis ATCC 12228 4 ppm 16 ppm

K. pneumonia ATCC 4352 4 ppm 16 ppm

C. albicans ATCC 10231 16 ppm 16 ppm

R. rubra PhB 16 ppm 31.2 ppm

S. mutans PCM 31 ppm 62.5 ppm
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Table 3. Cont.

IL Acronym Species IZ, mm MIC µg mL−1 MBC, µg mL−1 Method Notes Ref.

Didecyldimethylamm-
onium acesulfamate

[C10,10,1,1N][Ace]

S. aureus ATCC 6538 8 ppm 16 ppm

Tube dilution [99]

MRSA ATCC 43300 4 ppm 31.2 ppm

E. faecium ATCC 49474 8 ppm 31.2 ppm

E. coli ATCC25922 16 ppm 62.5 ppm

M. luteus ATCC 9341 8 ppm 62.5 ppm

S. epidermidis ATCC 12228 4 ppm 31.2 ppm

K. pneumonia ATCC 4352 4 ppm 31.2 ppm

C. albicans ATCC 10231 16 ppm 31.2 ppm

R. rubra PhB 16 ppm 62.5 ppm

S. mutans PCM 16 ppm 125 ppm

Tetrabutylphosphonium
nalidixate

[C4,4,4,4P][Nal]

E. coli BW25113 (wild-type) 13.3

Disk diffusion test,
10 µg per disk

Deletions ∆rfaC, ∆rfaL,
and ∆rfaG affect the cell
surface hydrophobicity

and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 22.6

E. coli JW3597 (∆rfaL) 12.9

E. coli JW3606 (∆rfaG) 20.4

Trihexyltetradecylphos-
phonium

ampicillinate
[C6,6,6,14P][Amp]

E. coli ATCC 25922 2500 µM

Broth microdilution
E. coli TEM CTX M9, CTX
M2, and AmpC MOX2 are
ampicillin-resistant strains.

[82]

E. coli TEM CTX M9 500 µM

E. coli CTX M2 500 µM

E. coli AmpC MOX2 >5000 µM

K. pneumoniae (clinical isolate) 5000 µM

S. aureus ATCC 25293 50 µM

S. epidermidis (clinical isolate) 50 µM

E. faecalis (clinical isolate) 50 µM

Benzalkonium
saccharinate

[BA][Sac]

S. aureus ATCC 6538 4 ppm 31.2 ppm

Tube dilution [99]

MRSA ATCC 43300 4 ppm 31.2 ppm

E. faecium ATCC 49474 8 ppm 16 ppm

E. coli ATCC25922 16 ppm 62.5 ppm

M. luteus ATCC 9341 8 ppm 62.5 ppm

S. epidermidis ATCC 12228 4 ppm 31.2 ppm

K. pneumonia ATCC 4352 4 ppm 62.5 ppm

C. albicans ATCC 10231 16 ppm 31.2 ppm

R. rubra PhB 16 ppm 62.5 ppm

S. mutans PCM 0.1 ppm 0.5 ppm
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Table 3. Cont.

IL Acronym Species IZ, mm MIC µg mL−1 MBC, µg mL−1 Method Notes Ref.

Benzalkonium
acesulfamate

[BA][Ace]

S. aureus ATCC 6538 4 ppm 31.2 ppm

Tube dilution [99]

MRSA ATCC 43300 4 ppm 31.2 ppm

E. faecium ATCC 49474 8 ppm 31.2 ppm

E. coli ATCC25922 31 ppm 125 ppm

M. luteus ATCC 9341 8 ppm 62.5 ppm

S. epidermidis ATCC 12228 4 ppm 62.5 ppm

K. pneumonia ATCC 4352 8 ppm 31.2 ppm

C. albicans ATCC 10231 16 ppm 31.2 ppm

R. rubra PhB 16 ppm 62.5 ppm

S. mutans PCM 1 ppm 16 ppm

Nalidixic acid

E. coli BW25113 (wild-type) 11

Disk diffusion test,
10 µg per disk

Deletions ∆rfaC, ∆rfaL,
and ∆rfaG affect the cell
surface hydrophobicity

and membrane
permeability.

[86]
E. coli JW3596 (∆rfaC) 20

E. coli JW3597 (∆rfaL) 11

E. coli JW3606 (∆rfaG) 18

Ampicillin sodium
salt

S. aureus ATCC 6538 27 µM

Broth microdilution
E. coli TEM CTX M9, CTX

M2, and AmpC MOX2
are ampicillin-resistant

strains.

[82,97]

S. aureus ATCC 25293 5 µM

S. epidermidis (clinical isolate) 50 µM

E. coli O157:H7 ATCC 43895 12 µM

E. coli ATCC 25922 50 µM

E. coli TEM CTX M9 >5000 µM

E. coli CTX M2 >5000 µM

E. coli AmpC MOX2 >5000 µM

E. faecium ATCC 49474 17 µM

E. faecalis (clinical isolate) 50 µM

K. pneumonia ATCC 4352 20 µM

K. pneumoniae (clinical isolate) 2500 µM
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Table 3. Cont.

IL Acronym Species IZ, mm MIC µg mL−1 MBC, µg mL−1 Method Notes Ref.

Benzalkonium
chloride

S. aureus ATCC 6538 2 ppm 62.5 ppm

Tube dilution, broth
microdilution

[81,99]

MRSA ATCC 43300 2 ppm 31.2 ppm

S. aureus 209 KCTC1916 8

S. aureus R209 KCTC1928 8

E. faecium ATCC 49474 4 ppm 31.2 ppm

E. coli ATCC25922 8 ppm 62.5 ppm

M. luteus ATCC 9341 4 ppm 31.2 ppm

S. epidermidis ATCC 12228 2 ppm 16 ppm

K. pneumonia ATCC 4352 4 ppm 31.2 ppm

B. subtilis KCTC1914 8

C. albicans ATCC 10231 8 ppm 16 ppm

R. rubra PhB 8 ppm 31.2 ppm

S. mutans PCM 2 ppm 16 ppm

Didecyldimethylamm-
onium chloride

S. aureus ATCC 6538 2 ppm 31.2 ppm

Tube dilution [99]

MRSA ATCC 43300 2 ppm 31.2 ppm

E. faecium ATCC 49474 4 ppm 31.2 ppm

E. coli ATCC25922 8 ppm 31.2 ppm

M. luteus ATCC 9341 2 ppm 31.2 ppm

S. epidermidis ATCC 12228 2 ppm 31.2 ppm

K. pneumonia ATCC 4352 4 ppm 16 ppm

C. albicans ATCC 10231 8 ppm 16 ppm

R. rubra PhB 4 ppm 31.2 ppm

S. mutans PCM 2 ppm 16 ppm

* IZ, inhibition zone; MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MRSA, methicillin-resistant S. aureus.
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2.2.3. Double-Charged QACs (Bis-QACs)

Bis-QAC (or so-called “twin surfactants”) is a subclass of synthetic amphiphiles that
contain two cationic nitrogen atoms, a spacer linking them, and two lipophilic alkyl
substituents [100]. These are common characteristics of typical bis-QAC, the exact structure
of which can vary greatly. The intense development of bis-QACs began later than that
of mono-QACs in the 1980s with the discovery of octenidine (see the Commercial QACs
section). Nonetheless, there are many publications on the synthesis and biocide properties
of bis-QACs.

A significant number of alkyl bis-QACs were synthesized to test the effect of the total
charge of the molecule on the activity (Figure 20).
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Bis-QACs with ester spacer 46 showed better activity than their mono analogues,
both against Gram-positive and Gram-negative bacteria and fungi [101]. It is worth
noting that the activity against E. coli was nonlinear and plummeted upon increasing the
alkyl chain length from C12 to C14. This relationship, which is known for the biocidal
action of amphiphils on Gram-negative bacteria, is called the “cut-off” effect. It was
described by Devinsky and colleagues as a consequence of membrane penetration [102].
The addition of a second charged nitrogen atom increased the activity 3-fold in S. aureus
and 4-fold in E. coli in the work of Hodye (substance 47). The activity also correlated with
the distance between the heads, with the optimal spacer length being C6 [103]. Wuest
and Minbiole and colleagues studied the biocidal action of QACs based on polyamines
43-44 [71,104]. Tetramethylethylenediamine derivatives (TMEDAs) 42 turned out to be an
extremely promising class of biocides because of their simple synthesis, cheap starting
materials, and high activity [75]. In all the above-mentioned studies, the biological effect
on pathogenic bacteria increased 3–4 times, especially for Gram-negative strains, compared
to mono-QACs.

Changing the spacer in the bis-QAC structure is one of the key factors in the design of
target molecules. Thus, the aforementioned alkyl bis-QACs can contain aromatic spacers
(Figure 21).
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A study by LaDow and colleagues showed that bis-QACs 48-52 inhibited the growth
of Gram-positive bacteria at approximately the same concentration as their mono analogs.
However, bis-QACs had a much stronger effect on Gram-negative bacteria, which was
confirmed by other studies [105]. In continuation of their work on the study of pyridoxine
QAC derivatives, Shtyrlun and colleagues noted a clear dependence of the activity of
compounds 54 on their lipophilicity. Thus, the values of the lipophilicity coefficient for
the most active compounds (C10, C12) were in the range of 1 to 3; at values higher than
6 or lower than 0, the activity decreased sharply [106]. Forman and colleagues studied
QAC derivatives of malachite green 53, comparing its mono- and bis-QACs. Analogs with
two long alkyl chains were generally comparable to mono-QACs but were more efficient
against resistant bacteria [107].

Similar to mono-QACs, the head of bis-QACs can have a saturated heterocyclic
structure (Figure 22).
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Kourai and colleagues, in their study of bis-QAC derivatives of piperazine 57, found
that compounds with different spacer structures but the same lipophilicity exhibited
different activities. This fact suggested that the dependence of the biocidal action on
lipophilicity was valid only for the series of QACs differing in the length of the tail [108].
Kontos and colleagues tested the dependence of the activity of 58-59 on the rigidity of
the structure. The initial assumption that a more flexible structure would provide easier
passage through the bacterial membrane and accelerate cell lysis turned out to be erroneous.
Thus, derivatives of the more rigid amine structure 59 of diazobicyclooctane (DABCO)
were most active in the series [109]. A series of heterocyclic QACs based on cardanol 60 was
developed by Ma and colleagues [110]. Along with moderate antibacterial activity, the
compounds appeared to be good surfactants.

There are several examples of mixed bis-QACs carrying two different heterocycles or
heterocyclic and alkyl parts (Figure 23).
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In the continuation of the work on preparation of the above-mentioned QAC deriva-
tives of quinine and nicotine, the usual “activation” of the second nitrogen charged center
did not lead to a significant increase in the activity of 61-62. Presumably, the total charge
of the molecule does not affect the activity as strongly as the addition of the second alkyl
chain [74]. In the work of Schallenhammer and colleagues, hybrid bis-QACs 63-64 combin-
ing CPC 5 and BAC 1 showed higher activity against Gram-negative bacteria than each of
the commercial “source drugs” applied separately. At the same time, hybrid monoderiva-
tives did not show such a result [111]. Piperazine bis-QAC derivatives 65 and their “soft”
analogs 66 showed similar relationships with the previous bis-QACs [72,112].

Additionally, there is a range of interesting works concerning QACs with polynuclear
heterocycles with several heteroatoms (Figure 24).
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Thomas and colleagues synthesized QACs based on bis-thiazole 67, bis-imidazole 68
and bis-triazole 69. While thiazole derivatives with an alkyl spacer and without lipophilic
tails 67 did not show high activity, bis-QACs with nitrogen heterocycles 68-69 demonstrated
MIC values lower than that of CHG [113].

In contrast, in the work of Shirai and colleagues, thiazole bis-QACs with alkyl tails 71
(Figure 25) exhibited a wide spectrum of antibacterial and antifungal effects [114]. This is
additional evidence that the tails in the QAC structure are strong inducer of the biological
effect against pathogens. Shrestha and colleagues studied the antibacterial and antifungal
activity of bis-triazole QAC based on benzoquinone 72 (Figure 25) [115].

Inspired by the success of octenidine on the market of cationic biocides, scientists
have begun to actively develop a class of bispyridinium salts with various types of spacers
(Figure 26).

In the work of Minbiole and colleagues, bispiridinium QAC derivatives of paraquats
73-75 and bis-QACs without a spacer between pyridinium heads were studied. The activity
of meta-75 and parameta-analogs 74 was more pronounced. Cyclovoltamperometric
analysis showed the predisposition of paraquats 73 to reversible oxidation-reduction
processes and the formation of “superoxide”. This presumably increases the toxicity,
while metaquats 75 and parametaquats 74 are not subject to this possibility and thus
can be less toxic. In addition, given the high activity of parameta-derivatives 74, this
indicates the incoherence between the increase in the biocidal action of QACs and their
redox capacity [116,117]. A study on the dependence of the activity on the rigidity of
the structure for bispyridinium-QACs with alkyl spacers with different saturations 76-78
showed ambiguous results. While this dependence was not observed for QACs with alkyl
chains as tails, and the MIC values remained approximately at the same level, in the case
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of bis-QACs with amide bridges in the tails, a sharp decrease in the activity was observed
upon increasing the structural rigidity. The authors showed that in such rigid structures,
the bis-QAC activity decreased as the charged heads moved away from each other [118].
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In the last few years, new biocidal pyridine-based bis-QACs containing an aro-
matic fragment in a spacer have been synthesized (Figure 27). Thus, bis-QACs with
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1,4-dioxophenyl as spacer 79 were significantly more active than commercial QACs (BAC 1,
CHG 7) [119–121]. Vereshchagin’s group studied the dependence of the activity of biocides
on the size of the aromatic spacer of salts, as well as the location of the spacer relative to
the charged pyridinium nitrogen 79-83 [122–126]. It was discovered that the QAC activity
increased upon increasing the length of the aromatic spacer. The activity increased in
the following order: mono- 79 < bi- 80 < terphenyl 82 [122,124]. It can be assumed that
in such structures, the activity increases with an increase in the distance between the
nitrogen atoms. It is worth noting that the optimal length of the alkyl tails also varied in
this series: C12 for phenyl 79, C10 for biphenyl 80, and C8 for terphenyl 82. The influence
of the position of substitution in pyridine turned out to be ambiguous. In the case of
biphenyl 80, the meta-salts turned out to be slightly more active than the para-derivatives,
while the opposite was observed for the more mobile biphenyl ether 81 [123,126]. The
ortho-salts showed strikingly lower activity. However, this was not the case for QACs
of 2,7-dihydroxynaphthalene derivatives 83, and the biocidal effect of the orthosalts was
extremely high [125]. From the viewpoint of their activity, the leading compounds from
the series of bis-QACs with aromatic spacers were superior to the widely used QACs, such
as CHG 7, CPC 5, BAC 1, and miramistin 4, and were comparable to OCT 6 (Figure 27).
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There is a broad variety of structures of bispyridinium salts containing mixed spacers
(Figure 28).
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Kourai and colleagues initiated studies on bis-pyridine salts 84, 86-88 [127–132]. Later,
Obando and colleagues proposed the synthesis of biologically active bis-QACs containing
mixed alkyl-aromatic spacers 89 [133]. In their recent investigation, Hao and colleagues
performed a comprehensive physical-chemical and biological analysis of bis-QACs with
amide bridges 85 [134].

Pentaerythritol-based bis-QACs 90-91 (Figure 29) were developed by Yamamoto
and colleagues. These substances revealed a broad scope of antibacterial and antifungal
activities [120]. At that time, the substances with condensed hydroxy groups 90 had
higher activity than those with free hydroxy groups 91. The biocompatibility of the series
leaders was similar to or higher than that of the common antiseptics (BAC, CPC, OCT,
PHMB). Furthermore, Vereshchagin presented a synthetic route and microbiological study
of pentaerythritol bis-QACs as OCT analogues 92 [135]. The salts were active towards
MRSA and E. coli (Figure 29).
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An overview of the antibacterial activity of bis-QACs, analyzed in the review, is shown
in Table 4.

Table 4. Antimicrobial activity of Bis-QACs *.

Series/
Compound Strain MIC,

mg·L−1
MBC,

mg·L−1 Method Notes Ref.

42

S. aureus SH1000 1 µM

Broth microdilution [75]
E. faecalis OG1RF 1 µM

E. coli MC4100 2 µM

P. aeruginosa PAO1-WT 4 µM

43

S. aureus SH1000 1 µM

Broth microdilution [71]
E. faecalis OG1RF 1 µM

E. coli MC4100 2 µM

P. aeruginosa PAO1-WT 4 µM

44

S. aureus SH1000я 1 µM

Broth microdilution [71]
E. faecalis OG1RF 1 µM

E. coli MC4100 1 µM

P. aeruginosa PAO1-WT 4 µM

46

S. aureus Mau 29/58 0.4 µM
Suspension

micromethod
[101]E. coli 377/79 3.1 µM

C. albicans 45/54 1.5 µM

47
S. aureus 13 µM

Broth microdilution [103]
E. coli 10 µM

48

S. aureus SH1000 2 2

Broth microdilution [105]
E. faecalis OG1RF 18 18

E. coli MC4100 18 18

P. aeruginosa PAO1-WT 37 37
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Table 4. Cont.

Series/
Compound Strain MIC,

mg·L−1
MBC,

mg·L−1 Method Notes Ref.

49

S. aureus SH1000 10 10

Broth microdilution [105]
E. faecalis OG1RF 18 18

E. coli MC4100 37 37

P. aeruginosa PAO1-WT 149 149

50

S. aureus SH1000 10 10

Broth microdilution [105]
E. faecalis OG1RF 30 30

E. coli MC4100 74 74

P. aeruginosa PAO1-WT 297 297

51

S. aureus SH1000 4 4

Broth microdilution [105]
E. faecalis OG1RF 18 18

E. coli MC4100 37 37

P. aeruginosa PAO1-WT 74 74

52

S. aureus SH1000 4 4

Broth microdilution [105]
E. faecalis OG1RF 10 10

E. coli MC4100 18 18

P. aeruginosa PAO1-WT 74 74

53

S. aureus SH1000 0.5 µM

Broth microdilution [107]

MRSA 300-0114 1 µM

MRSA ATCC 33592 0.25 µM

E. faecalis OG1RF 0.25 µM

E. coli MC4100 1 µM

P. aeruginosa PAO1-WT 2 µM

54

S. aureus ATCC 29213 0.5

Broth microdilution
Tested in vivo
with proved

efficiency
[106]

S. epidermidis (clinical) 2

B. subtilis 168 1

E. coli ATCC 25922 0.5

K. pneumoniae 1813 4

P. aeruginosa ATCC 27853 0.5

T. rubrum 1336 (clinical) 32

A. niger F-1119 16

C. albicans NCTC- 885-653 16

F. oxysporum KM-19 (clinical) 32

55 S. aureus ATCC 29213 4 Broth microdilution [65]

57

P. aeruginosa ATCC 27583 6.3 µM

Broth microdilution [108]

P. aeruginosa ATCC 10145 5.2 µM

P. aeruginosa ATCC 3080 1.6 µM

K. pneumoniae ATCC 4352 0.4 µM

K. pneumoniae ATCC 13883 0.8 µM

P. vulgaris ATCC 13315 0.4 µM

P. mirabilis NBRC 3849 6.3 µM
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Table 4. Cont.

Series/
Compound Strain MIC,

mg·L−1
MBC,

mg·L−1 Method Notes Ref.

E. coli K12 W3110 0.8 µM

E. coli IFO 3301 0.2 µM

E. coli IFO 3972 1.3 µM

B. subtilis IFO 3134 0.8 µM

B. subtilis ATCC 6633 0.8 µM

B. cereus IFO 3001 0.4 µM

B. megaterium IFO 3003 0.3 µM

S. aureus ATCC 25923 0.3 µM

S. aureus IFO 12732 0.4 µM

A. niger IFO 6341 8 µM

A. niger IFO 6342 4 µM

A. niger IFO 4414 4 µM

C. globosum IFO 6347 8 µM

R. oryzae IFO 31005 2 µM

P. citrinum IFO 6352 8 µM

A. pullulans IFO 6353 16 µM

C. cladosporioides IFO 6348 4 µM

G. virens IFO 6355 8 µM

58

S. aureus SH1000 1 µM

Broth microdilution [109]

MRSA 300-0114 1 µM

MRSA ATCC 33592 2 µM

E. faecalis OG1RF 8 µM

E. coli MC4100 8 µM

P. aeruginosa PAO1-WT 8 µM

59

S. aureus SH1000 0.25 µM

Broth microdilution [109]

MRSA 300-0114 2 µM

MRSA ATCC 33592 0.5 µM

E. faecalis OG1RF 4 µM

E. coli MC4100 2 µM

P. aeruginosa PAO1-WT 8 µM

60
S. aureus ATCC 25923 64 128

Broth microdilution Surfactant [110]B. subtilis ATCC 6633 16 32

E. coli ATCC 25922 16 64

61

S. aureus SH1000 1 µM

Broth microdilution Natural
derivatives

[74]

MRSA 300-0114 4 µM

MRSA ATCC 33592 2 µM

E. faecalis OG1RF 2 µM

E. coli MC4100 4 µM

P. aeruginosa PAO1-WT 32 µM
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Table 4. Cont.

Series/
Compound Strain MIC,

mg·L−1
MBC,

mg·L−1 Method Notes Ref.

62

S. aureus SH1000 1 µM

Broth microdilution Natural
derivatives

[74]

MRSA 300-0114 1 µM

MRSA ATCC 33592 1 µM

E. faecalis OG1RF 2 µM

E. coli MC4100 2 µM

P. aeruginosa PAO1-WT 8 µM

63

S. aureus SH1000 2 µM

Broth microdilution [111]

MRSA 300-0114 1 µM

MRSA ATCC 33592 2 µM

E. faecalis OG1RF 4 µM

E. coli MC4100 1 µM

P. aeruginosa PAO1-WT 4 µM

64

S. aureus SH1000 2 µM

Broth microdilution [111]

MRSA 300-0114 2 µM

MRSA ATCC 33592 2 µM

E. faecalis OG1RF 4 µM

E. coli MC4100 2 µM

P. aeruginosa PAO1-WT 4 µM

65

S. aureus SH1000 0.5 µM

Broth microdilution [112]
MRSA 300-0114 0.5 µM

E. coli MC4100 1 µM

P. aeruginosa PAO1-WT 2 µM

66

S. aureus SH1000 0.5 µM

Broth microdilution [72]MRSA 300-0114 0.5 µM

MRSA ATCC 33592 0.5 µM

67

S. aureus ATCC 29213 16

Broth microdilution [113]
E. faecalis ATCC 29212 64

E. coli ATCC 25922 128

P. aeruginosa ATCC 27853 256

68

S. aureus ATCC 29213 0.25

Broth microdilution [113]

MRSA (mecA) 0.5

E. faecalis ATCC 29212 0.5

Vancomycin-resistant E.
faecalis (vanA) 0.5

E. coli ATCC 25922 0.5

Extended-spectrum
b-lactamase-producing

E. coli
1

P. aeruginosa ATCC 27853 4

P. aeruginosa resistant,
efflux pump 8
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Table 4. Cont.

Series/
Compound Strain MIC,

mg·L−1
MBC,

mg·L−1 Method Notes Ref.

69

S. aureus ATCC 29213 0.5

Broth microdilution [113]

MRSA (mecA) 0.5

E. faecalis ATCC 29212 0.5

Vancomycin-resistant
E. faecalis (vanA) 0.5

E. coli ATCC 25922 0.5

Extended-spectrum
b-lactamase-producing

E. coli
1

P. aeruginosa ATCC 27853 2

P. aeruginosa resistant,
efflux pump 2

70

P. aeruginosa ATCC 27853 17 µM

Broth microdilution [114]

K. pneumoniae ATCC 4352 2.1 µM

P. mirabilis NBRC 3849 3.1 µM

E. coli IFO 12713 1.6 µM

S. marcescens ATCC 13880 3.1 µM

M. luteus IFO 12708 0.65 µM

B. subtilis ATCC 6633 0.91 µM

B. cereus IFO 3001 1.6 µM

S. aureus IFO 12732 0.23 µM

MRSA COL 1 1.6 µM

71

P. aeruginosa ATCC 27853 13 µM

Broth microdilution [114]

K. pneumoniae ATCC 4352 1.6 µM

P. mirabilis NBRC 3849 5.2 µM

E. coli IFO 12713 1.6 µM

S. marcescens ATCC 13880 6.3 µM

M. luteus IFO 12708 0.78 µM

B. subtilis ATCC 6633 1.0 µM

B. cereus IFO 3001 1.3 µM

S. aureus IFO 12732 0.33 µM

MRSA COL 1 1.3 µM

72

S. aureus ATCC 25923 4

Broth microdilution [115]

MRSA ATCC 33591 4

E. faecalis ATCC 1299 1

E. coli ATCC 25922 2

P. aeruginosa ATCC 27853 4

K. pneumoniae ATCC 13883 16

A. flavus 15.63

C. albicans 64124 3.91

C. albicans MYA2876 3.91

C. neoformans 3.9

R. pilimanae 2.0
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Table 4. Cont.

Series/
Compound Strain MIC,

mg·L−1
MBC,

mg·L−1 Method Notes Ref.

73

S. aureus SH1000 2 µM

Broth microdilution [117]
E. faecalis OG1RF 2 µM

E. coli MC4100 2 µM

P. aeruginosa PAO1-WT 16 µM

74

S. aureus SH1000 0.5 µM

Broth microdilution [117]
E. faecalis OG1RF 0.5 µM

E. coli MC4100 0.5 µM

P. aeruginosa PAO1-WT 1 µM

75

S. aureus SH1000 0.5 µM

Broth microdilution [117]
E. faecalis OG1RF 1 µM

E. coli MC4100 1 µM

P. aeruginosa PAO1-WT 2 µM

76

S. aureus SH1000 1 µM

Broth microdilution [118]

MRSA 300-0114 1 µM

MRSA ATCC 33592 1 µM

E. faecalis OG1RF 4 µM

E. coli MC4100 1 µM

P. aeruginosa PAO1-WT 4 µM

77

S. aureus SH1000 1 µM

Broth microdilution [118]

MRSA 300-0114 0.5 µM

MRSA ATCC 33592 2 µM

E. faecalis OG1RF 2 µM

E. coli MC4100 1 µM

P. aeruginosa PAO1-WT 2 µM

78

S. aureus SH1000 16 µM

Broth microdilution [118]

MRSA 300-0114 32 µM

MRSA ATCC 33592 16 µM

E. faecalis OG1RF 63 µM

E. coli MC4100 32 µM

P. aeruginosa PAO1-WT 63 µM

79

MRSA ATCC 43300 0.25

Broth microdilution [119]

E. coli ATCC 25922 4

K. pneumoniae ATCC 700603 16

A. baumannii ATCC 19606 4

P. aeruginosa ATCC 27853 8

C. albicans ATCC 90028 0.25

C. neoformans ATCC 208821 0.25
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Table 4. Cont.

Series/
Compound Strain MIC,

mg·L−1
MBC,

mg·L−1 Method Notes Ref.

80

MRSA ATCC 43300 0.25

Broth microdilution
[122,
126]

E. coli ATCC 25922 1

K. pneumoniae ATCC 700603 8

A. baumannii ATCC 19606 2

P. aeruginosa ATCC 27853 4

C. albicans ATCC 90028 0.25

C. neoformans ATCC 208821 0.25

81

MRSA ATCC 43300 0.25

Broth microdilution
[123,
126]

E. coli ATCC 25922 0.25

K. pneumoniae ATCC 700603 0.25

A. baumannii ATCC 19606 0.25

P. aeruginosa ATCC 27853 0.25

C. albicans ATCC 90028 0.25

C. neoformans ATCC 208821 4

82

MRSA ATCC 43300 0.25

Broth microdilution [124]

E. coli ATCC 25922 0.25

K. pneumoniae ATCC 700603 16

A. baumannii ATCC 19606 0.25

P. aeruginosa ATCC 27853 0.25

C. albicans ATCC 90028 0.25

C. neoformans ATCC 208821 0.25

83

MRSA ATCC 43300 0.25

Broth microdilution [125]

E. coli ATCC 25922 0.25

K. pneumoniae ATCC 700603 0.25

A. baumannii ATCC 19606 8

P. aeruginosa ATCC 27853 0.25

C. albicans ATCC 90028 0.25

C. neoformans ATCC 208821 0.25

84

P. aeruginosa ATCC 27583 6.3 µM

Broth microdilution [127]

K. pneumoniae ATCC 13883 3.1 µM

P. mirabilis IFO 3849 6.3 µM

E. coli K12 W3110 3.1 µM

M. luteus IFO 12708 0.78 µM

B. cereus IFO 3001 3.1 µM

S. aureus IFO 12732 0.39 µM

MRSA IID 1677 3.1 µM
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Table 4. Cont.

Series/
Compound Strain MIC,

mg·L−1
MBC,

mg·L−1 Method Notes Ref.

P. funiculosam IFO 6345 1.6 µM

C. globosum IFO 6347 3.1 µM

A. pullulans IFO 6353 6.3 µM

R. stolonifera IFO 4781 25 µM

A. terreus IFO 6346 25 µM

A. niger IFO 6342 12.5 µM

85 E. coli 2.7 Broth microdilution [134]

86

P. aeruginosa ATCC 27583 13 µM

Broth microdilution [127]

K. pneumoniae ATCC 13883 1.6 µM

P. mirabilis IFO 3849 13 µM

E. coli K12 W3110 6.3 µM

M. luteus IFO 12708 0.39 µM

B. cereus IFO 3001 1.6 µM

S. aureus IFO 12732 0.39 µM

MRSA IID 1677 6.3 µM

P. funiculosam IFO 6345 1.6 µM

C. globosum IFO 6347 0.78 µM

A. pullulans IFO 6353 6.3 µM

R. stolonifera IFO 4781 25 µM

A. terreus IFO 6346 12.5 µM

A. niger IFO 6342 6.3 µM

87

P. aeruginosa ATCC 27583 25 µM

Broth microdilution [132]

K. pneumoniae ATCC 13883 1.6 µM

P. mirabilis IFO 3849 13 µM

E. coli K12 W3110 6.3 µM

M. luteus IFO 12708 0.78 µM

B. cereus IFO 3001 3.1 µM

S. aureus IFO 12732 0.39 µM

MRSA IID 1677 6.3 µM

P. funiculosum IFO 6345 0.78 µM

C. globosum IFO 6347 0.78 µM

A. pullulans IFO 6353 3.1 µM

R. stolonifera IFO 4781 6.3 µM

A. terreus IFO 6346 1.6 µM

A. niger IFO 6342 6.3 µM
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Table 4. Cont.

Series/
Compound Strain MIC,

mg·L−1
MBC,

mg·L−1 Method Notes Ref.

88

P. aeruginosa ATCC 27583 6.3 µM

Broth microdilution [129]

P. aeruginosa ATCC 10145 8.3 µM

K. pneumoniae ATCC 4352 1.0 µM

P. rettgeri NIH 96 2.1 µM

P. mirabilis IFO 3849 25 µM

E. coli IFO 12713 1.8 µM

S. enteritidis IFO 3313 1.3 µM

B. subtilis IFO 3134 0.57 µM

B. subtilis ATCC 6633 1.0 µM

B. cereus IFO 3001 3.1 µM

S. aureus IFO 12732 0.46 µM

MRSA IID 1677 1.1 µM

M. luteus IFO 12708 0.26 µM

A. niger IFO 6342 25 µM

A. niger TSY 0013 13 µM

A. pullulans IFO 6353 3.1 µM

P. citrinum IFO 6345 25 µM

P. funiculosum IFO 6345 8.3 µM

R. oryzae IFO 31005 13 µM

T. viride IFO 30498 25 µM

C. albicans IFO 1061 29 µM

89

C. neoformans ATCC 90112 1.3 µM

Broth microdilution [133]C. albicans ATCC 10231 1.3 µM

A. fumigatus ATCC 204305 88 µM

90

E. coli ATCC 25922 8 18

Broth microdilution [120]

P. aeruginosa ATCC 6538 32 8.3

S. aureus ATCC 278530 2.3 8.3

A. baumannii JCM 6841 11

B. cepacia JCM 5964 19

E. hirae ATCC 10541 5.3

E. faecalis ATCC 29212 6.7

MRSA ATCC 700698 11

S. epidermidis ATCC 12228 5.3

C. albicans ATCC 10231 13
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Table 4. Cont.

Series/
Compound Strain MIC,

mg·L−1
MBC,

mg·L−1 Method Notes Ref.

91

E. coli ATCC 25922 1.7 15

Broth microdilution [120]

P. aeruginosa ATCC 6538 21 8.3

S. aureus ATCC 278530 1.7 33

A. baumannii JCM 6841 16

B. cepacia JCM 5964 64

E. hirae ATCC 10541 16

E. faecalis ATCC 29212 19

MRSA ATCC 700698 8

S. epidermidis ATCC 12228 9.3

C. albicans ATCC 10231 27

92

MRSA ATCC 25923 2 ppm

Broth microdilution [135]E. coli ATCC 25922 4 pmm

P. aeruginosa ATCC 27853 16 ppm

* MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MRSA, methicillin-resistant S. aureus; only leader
compounds from the series are listed in the table.

2.2.4. Dicationic Ionic Liquids

A number of dicationic ILs have been tested for their antimicrobial activity (see
Figure 30, Table 5, and Table S3 for several examples) [90,136–139]. The high bactericidal
activity of some of these ILs (in particular, nitro-substituted imidazolium salts) suggests
their possible medical applications (see Table 5).

2.2.5. Multiple-Charged QACs (Multi-QACs)

Multi-QACs are salts with three or more charged nitrogen atoms in one molecule [8].
This biocide group is rather underexplored compared to mono- and bis-QACs, proba-
bly because of the more complicated synthesis and the lack of low-cost platforms for
multicharged QAC structures.

Wuest and Minbiole developed a simple synthetic route for obtaining tris- and tetra-
QACs on the basis of polyamine platforms 93-97 (Figure 31) [71,72,76,140]. The activity of
multi-QACs was significantly higher than that of mono-QACs but was comparable to that
of bis-QACs.

Several multi-QACs with aromatic fragments in the structure were also obtained
(Figure 32). Forman and colleagues demonstrated that tris-derivatives of crystal violet with
one alkyl tail 98 had lower activity than mono-QACs. However, analogs containing ethyl
groups at the charged nitrogen instead of methyl groups were more active [107]. Gallagher
and colleagues found that tris-QACs with two alkyl tails 99 were more effective against
Gram-negative bacteria than tris-QACs with one alkyl tail [141,142]. Tris-pyridinium salts
100 [143] and tetrapyridinium salts 101 [144] also comprised an efficient group of biocides
with a broad spectrum of action and surpassed the activity of the well-known pyridinium
antiseptic CPC 5 several times.
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An overview of the antibacterial activity of multiple QACs, analyzed in the review, is
shown in Table 6.
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Table 5. Antimicrobial activity of dicationic ILs *.

IL Acronym Species IZ, mm MIC, µg mL−1 MBC, µg mL−1 Method Ref.

2-Methyl-3-(4-(2-methyl-5-
nitro-1H-imidazolium

bromide)butyl-5-nitro-1H-
imidazolium

bromide

([NO2C1Im]-C4-
[NO2C1Im])[Br]2

S. aureus 16 0.25 0.25

Disk diffusion (100 µg
per well); broth
microdilution

[139]

E. coli 15 0.25 0.25

K. pneumoniae 16 0.255 0.255

P. aeruginosa 14 0.255 0.255

P. vulgaris 15 0.27 0.27

2-Methyl-3-(4-(2-methyl-5-
nitro-1H-imidazolium

tetrafluoroborate)butyl-5-
nitro-1H-imidazolium

tetrafluoroborate

([NO2C1Im]-C4-
[NO2C1Im])[BF4]2

S. aureus 15 0.27 0.27

Disk diffusion (100 µg
per well); broth
microdilution

[139]

E. coli 16 0.27 0.27

K. pneumoniae 12 0.27 0.27

P. aeruginosa 12 0.27 0.27

P. vulgaris 14 0.27 0.27

2-Methyl-3-(4-(2-methyl-5-
nitro-1H-imidazolium

hexafluorophosphate)butyl-
5-nitro-1H-imidazolium

hexafluorophosphate

([NO2C1Im]-C4-
[NO2C1Im])[PF6]2

S. aureus 16.5 0.255 0.255

Disk diffusion (100 µg
per well); broth
microdilution

[139]

E. coli 16 0.255 0.255

K. pneumoniae 15.5 0.255 0.255

P. aeruginosa 15 0.27 0.27

P. vulgaris 16 0.27 0.27

2-Methyl-3-(4-(2-methyl-5-
nitro-1H-imidazolium

trifluoromethanesulfonate)butyl-
5-nitro-1H-imidazolium

trifluoromethanesulfonate

([NO2C1Im]-C4-
[NO2C1Im])[TfO]2

S. aureus 16 0.27 0.27

Disk diffusion (100 µg
per well); broth
microdilution

[139]

E. coli 14 0.255 0.255

K. pneumoniae 14 0.27 0.27

P. aeruginosa 13 0.27 0.27

P. vulgaris 15 0.27 0.27

Erythromycin

S. aureus 24 0.23 0.23

Disk diffusion (30 µg per
well); broth

microdilution
[139]

E. coli 27 0.23 0.23

K. pneumoniae 26 0.23 0.23

P. aeruginosa 25 0.23 0.23

P. vulgaris 32 0.23 0.23
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Table 5. Cont.

IL Acronym Species IZ, mm MIC, µg mL−1 MBC, µg mL−1 Method Ref.

Nalidixic acid

S. aureus 22 0.23 0.23

Disk diffusion (30 µg
per well); broth
microdilution

[139]

E. coli 22 0.23 0.23

K. pneumoniae 27 0.23 0.23

P. aeruginosa 21 0.23 0.23

P. vulgaris 24 0.23 0.23

Amikacin

S. aureus 19 0.23 0.23

Disk diffusion (30 µg
per well); broth
microdilution

[139]

E. coli 20 0.23 0.23

K. pneumoniae 19 0.23 0.23

P. aeruginosa 17 0.23 0.23

P. vulgaris 17 0.23 0.23

* IZ, inhibition zone; MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration.
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Table 6. Antimicrobial activity of multi-QACs *.

Series/
Compound Strain MIC, mg·L−1 Method Notes Ref.

93

S. aureus SH1000 1 µM

Broth microdilution [71]
E. faecalis OG1RF 1 µM

E. coli MC4100 1 µM

P. aeruginosa PAO1-WT 2 µM

94

S. aureus SH1000 0.5 µM

Broth microdilution [71]
E. faecalis OG1RF 1 µM

E. coli MC4100 1 µM

P. aeruginosa PAO1-WT 4 µM

95

S. aureus SH1000 1 µM

Broth microdilution [112]MRSA 300-0114 0.5 µM

MRSA ATCC 33592 1 µM

96

S. aureus SH1000 1 µM

Broth microdilution [72]
MRSA 300-0114 1 µM

E. coli MC4100 2 µM

P. aeruginosa PAO1-WT 4 µM

96

S. aureus SH1000 0.5 µM

Broth microdilution [140]

MRSA 300-0114 0.5 µM

MRSA ATCC 33592 0.5 µM

E. faecalis OG1RF 1 µM

E. coli MC4100 0.5 µM

P. aeruginosa PAO1-WT 0.5 µM

98

S. aureus SH1000 1 µM

Broth microdilution [107]

MRSA 300-0114 0.5 µM

MRSA ATCC 33592 0.5 µM

E. faecalis OG1RF 1 µM

E. coli MC4100 0.5 µM

P. aeruginosa PAO1-WT 4 µM

99

B. cereus 2 µM

Broth microdilution [141]

E. faecalis ATCC 29212 2 µM

S. agalactiae J48 2 µM

S. aureus ATCC 29213 2 µM

E. coli ATCC 25922 4 µM

P. aeruginosa ATCC 27853 16 µM

100

S. aureus SH1000 0.5 µM

Broth microdilution [143]

E. faecalis OG1RF 1 µM

E. coli MC4100 1 µM

P. aeruginosa PAO1-WT 2 µM

MRSA 300-0114 0.5 µM

MRSA ATCC 33592 0.5 µM

101

MRSA ATCC 25923 4

Broth microdilution
The first

tetra-pyridinic
salts

[144]E. coli ATCC 25922 4

P. aeruginosa ATCC 27853 32

* MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MRSA, methicillin-resistant S. aureus; only leader
compounds from the series are listed in the table.
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2.2.6. Poly-Charged QACs (Poly-QACs)

Polymer structures with quaternary nitrogen occupy a large niche in the field of
cationic biocides. QACs exhibiting antimicrobial activity can be incorporated into polymer
structures in several ways [49]:

Ring-opening polymerization. Chain-growth polymerization, in which one end of the
polymer chain carries an active site for adding cyclic monomers. The terminal groups of
the resulting polymer depend on the initiator used and the termination reaction [145].

Controlled radical polymerization. Continuous polymerization includes several
stages: Initiation, growth, and chain termination [146].

Click reaction. Polymerization that utilizes methods of click chemistry [147].
Similar to other types of QACs, the structure of poly-QACs can vary depending

on the monomer composition (homogeneous poly-QACs (Figure 33) in the case of the
same monomers, or copolymers (Figure 34) in the case of different monomers) and the
polymerization type.
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Lu and colleagues studied the biological properties of poly-QACs with benzyl sub-
stituents and ether groups in side chain 102 [148]. The activity of the polyderivatives was
significantly higher than that of the corresponding monomers; it increased upon increasing
the length of the alkyl substituent. Guo and colleagues compared polymers with quater-
nary nitrogen in the side 103 and main 104 chains [149]. The presence of charged nitrogen
atoms in the main polymer chain enhanced the antibacterial effect on Gram-positive and
Gram-negative bacteria by several times. The carbohydrate-based poly-QACs obtained by
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Badawy’s 108 [150] and Shaban’s 107 [151] groups also exhibited biocidal activity. Poly-
mer salts consisting of monomers with DABCO-containing heterocyclic QACs 106 were
obtained by Mathias’ group [152]. Researchers observed an increase in bactericidal activity
with the growth of alkyl chains. It should be noted that the monomer did not exhibit
antibacterial activity. Polymerization may be the key to achieving the required biocidal
effect for inactive QAC molecules. Timofeeva and colleagues developed an approach to
the synthesis of quaternary poly(diallyldialkylammonium) salts with various substituents
105 [153]. The researchers noted that the antibacterial effect, but not the antifungal effect,
became more pronounced upon increasing the mass of the polymer.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 64 of 77 
 

and Gram-negative bacteria by several times. The carbohydrate-based poly-QACs ob-
tained by Badawy’s 108 [150] and Shaban’s 107 [151] groups also exhibited biocidal activ-
ity. Polymer salts consisting of monomers with DABCO-containing heterocyclic QACs 
106 were obtained by Mathias’ group [152]. Researchers observed an increase in bacteri-
cidal activity with the growth of alkyl chains. It should be noted that the monomer did 
not exhibit antibacterial activity. Polymerization may be the key to achieving the required 
biocidal effect for inactive QAC molecules. Timofeeva and colleagues developed an ap-
proach to the synthesis of quaternary poly(diallyldialkylammonium) salts with various 
substituents 105 [153]. The researchers noted that the antibacterial effect, but not the anti-
fungal effect, became more pronounced upon increasing the mass of the polymer. 

 
Figure 34. Copolymer poly-QACs. 

Kallitsis and colleagues studied single- 109-110 and two-charged 111 copolymeric 
QACs in their work [154,155]. The peculiarity of this study was in the fact that the polymer 
chain in one of the target compounds 110 was an anion, while the cation was a conven-
tional mono-QAC alkyl cation of CTAB type 2, whereas compound 111 was poly-QAC 
bearing both cations and anions. This composition had a positive impact on the biocidal 
effect against a wide range of bacteria. The optimal structure was established as 75% ionic 
and 25% covalent bonds of the polymer with QAC. Jie and colleagues combined the QAC 
and N-chloramine 113 molecules in one polymer [128]. A similar successful approach was 
pursued by Liu and colleagues [56–58]. Bai and colleagues synthesized a polymer com-
bining amino and QAC groups 112, which showed excellent bacteriostatic potential [156]. 

The diversity of homogeneous and copolymeric QACs is very high and is beyond the 
scope of this review; only exemplary biologically active representatives of this class are 
presented here. More detailed information on poly-QACs can be found in other reviews 
[44,47,49,50,157–159]. 

Figure 34. Copolymer poly-QACs.

Kallitsis and colleagues studied single- 109-110 and two-charged 111 copolymeric
QACs in their work [154,155]. The peculiarity of this study was in the fact that the polymer
chain in one of the target compounds 110 was an anion, while the cation was a conventional
mono-QAC alkyl cation of CTAB type 2, whereas compound 111 was poly-QAC bearing
both cations and anions. This composition had a positive impact on the biocidal effect
against a wide range of bacteria. The optimal structure was established as 75% ionic and
25% covalent bonds of the polymer with QAC. Jie and colleagues combined the QAC and
N-chloramine 113 molecules in one polymer [128]. A similar successful approach was pur-
sued by Liu and colleagues [56–58]. Bai and colleagues synthesized a polymer combining
amino and QAC groups 112, which showed excellent bacteriostatic potential [156].

The diversity of homogeneous and copolymeric QACs is very high and is beyond
the scope of this review; only exemplary biologically active representatives of this class
are presented here. More detailed information on poly-QACs can be found in other
reviews [44,47,49,50,157–159].

An overview of the antibacterial activity of poly-QACs, analyzed in the review, is
shown in Table 7.
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Table 7. Antimicrobial activity of poly-QACs *.

Series/
Compound Strain MIC, mg·L−1 MBC, mg·L−1 Method Notes Ref.

102
E. coli ATCC 25922 1.56 Broth

microdilution
[148]

S. aureus ATCC 25923 1.56

103
E. coli ATCC 8099 0.78 Broth

microdilution
[149]

S. aureus ATCC 6538 0.91

104
E. coli ATCC 8099 0.13 Broth

microdilution
[149]

S. aureus ATCC 6538 0.28

105

E. coli ATCC 25922 7

Broth tube
dilution

[153]

S. aureus ATCC 6538 P 7

C. albicans
ATCC 865-653 3.5

P. aeruginosa
ATCC 9027 31

P. mirabilis 47 31

K. pneumoniae
ATCC 13883 62

106
E. coli 62.5 62.5

Broth dilution [152]
S. aureus 62.5 62.5

107

E. coli 22 mm/mg (IZ)

Disk diffusion
Possesses

anticorrosion
activity

[151]
S. aureus 20 mm/mg (IZ)

C. albicans 13 mm/mg (IZ)

P. aeruginosa 24 mm/mg (IZ)

A. niger 12 mm/mg (IZ)

108

B. cinerea 106
Radial growth

technique
Efficient against

fungal spores [150]F. oxysporum 720

P. debaryanum 164

109

S. aureus
5.3 (log

reduction, 24 h
contact) Plate count

Prevent
biofouling

[155]

P. aeruginosa
5.4 (log

reduction, 24 h
contact)

110

S. aureus
1.7 (log

reduction, 24 h
contact) Plate count [155]

P. aeruginosa
1.9 (log

reduction, 24 h
contact)

111

S. aureus 6 (log reduction,
24 h contact)

Plate count [154]E. coli 6 (log reduction,
24 h contact)

P. aeruginosa
4.5 (log

reduction, 24 h
contact)

112
S. aureus 128

Plate count [156]
E. coli 256

113

S. aureus ATCC 6538P
7.26 (log

reduction, 1 min
contact)

Plate count [160]

E. coli ATCC 1122
8.26 (log

reduction, 1 min
contact)

* IZ, inhibition zone; MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MRSA, methicillin-resistant
S. aureus; only leader compounds from the series are listed in the table.
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2.2.7. Polyionic Liquids

According to the strict definition, poly-ILs are ionic polymers with complete ion-
icity [161]. However, ionic polymers with lower levels of ionicity are often considered
poly-ILs in publications. In recent years, poly-ILs have been extensively studied as advan-
tageous materials for antibacterial coatings and surfaces [89,162–169]. Exemplary poly-ILs
with tested antibacterial activity are listed in Table 8 and Figure 36. Note that the table
includes substances 103 and 104, which are also considered poly-(QACs).
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Table 8. Antimicrobial activity of poly-ILs *.

Series/
Compound IL Species MIC, µM MBC, µM Method Notes Ref.

103 Poly-(vinylbenzyl dimethylhexylammonium chloride)
S. aureus ATCC 6538 910

Broth microdilution Side-chain polymer [149]
E. coli ATCC 8099 780

104
Poly-((N,N-dimethyl-N-(4-((trimethylammonio)

methyl)benzyl)hexan-1-aminium) dibromide)
S. aureus ATCC 6538 280

Broth microdilution Main-chain polymer [149]
E. coli ATCC 8099 130

114 3-(2-(Methacryloyloxy)ethyl)-1-hexylimidazolium
bromide-based polymer E. coli ATCC 25922 3.62 Shake flask test Antibacterial coating [162]

115 3-(2-(Methacryloyloxy)ethyl)-1-octylimidazolium
bromide-based polymer E. coli ATCC 25922 1.67 Shake flask test Antibacterial coating [162]

116 3-(2-(Methacryloyloxy)ethyl)-1-dodecylimidazolium
bromide-based polymer E. coli ATCC 25922 <0.46 Shake flask test Antibacterial coating [162]

117 Poly(1-ethyl-3-vinylimidazolium bromide)
S. aureus ATCC 6538 110345

Broth microdilution [164]
E. coli ATCC 8099 110345

118 Poly(1-butyl-3-vinylimidazolium bromide)
S. aureus ATCC 6538 2961

Broth microdilution [164]
E. coli ATCC 8099 5922

119 Poly(1-octyl-3-vinylimidazolium bromide)
S. aureus ATCC 6538 1491 (3.71 for NPs)

Broth microdilution [164,170]
E. coli ATCC 8099 1192 (1.85 for NPs)

120 Poly(1-decyl-3-vinylimidazolium bromide)
S. aureus ATCC 6538 3.57

Broth microdilution NPs [170]
E. coli ATCC 8099 1.84

121 Poly(1-dodecyl-3-vinylimidazolium bromide)
S. aureus ATCC 6538 61 (2.52 for NPs)

Broth microdilution [164,170]
E. coli ATCC 8099 122 (1.19 for NPs)

122 Poly(1-hexadecyl-3-vinylimidazolium bromide)
S. aureus ATCC 6538 3.15

Broth microdilution NPs [170]
E. coli ATCC 8099 2.72

123 Poly(1-ethyl-3-(1-vinylimidazolium-3-hexyl)imidazolium
bromide)

S. aureus ATCC 6538 33180
Broth microdilution [164]

E. coli ATCC 8099 33180

124 Poly(1-butyl-3-(1-vinylimidazolium-3-hexyl)imidazolium
bromide)

S. aureus ATCC 6538 918
Broth microdilution [164]

E. coli ATCC 8099 1853

125 Poly(1-octyl-3-(1-vinylimidazolium-3-hexyl)imidazolium
bromide)

S. aureus ATCC 6538 81
Broth microdilution [164]

E. coli ATCC 8099 41

126
Poly(1-dodecyl-3-(1-vinylimidazolium-3-

hexyl)imidazolium bromide)
S. aureus ATCC 6538 9

Broth microdilution [164]
E. coli ATCC 8099 18

127 Poly-(N-Butyl-N-methylpyrrolidinonium bromide)
S. aureus 549

Broth microdilution [89]
E. coli 2196
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Table 8. Cont.

Series/
Compound IL Species MIC, µM MBC, µM Method Notes Ref.

128 Poly-(N-Hexyl-N-methylpyrrolidinonium bromide)
S. aureus 236

Broth microdilution [89]
E. coli 548

129 Poly-(N-Octyl-N-methylpyrrolidinonium bromide)
S. aureus 147

Broth microdilution [89]
E. coli 424

130 Poly-(N-Decyl-N-methylpyrrolidinonium bromide)
S. aureus 112

Broth microdilution [89]
E. coli 224

131 Poly-(N-Dodecyl-N-methylpyrrolidinonium bromide)
S. aureus 61

Broth microdilution [89]
E. coli 90

132 Poly-(1-vinylbenzyl-3-hexylimidazolium chloride)
S. aureus ATCC 6538 900

Broth microdilution Side-chain polymer [149]
E. coli ATCC 8099 770

133 Poly-(1-vinylbenzyl-4-hexyl-1,4-diazoniabicyclo[2
.2.2]octane-1,4-diium chloride bromide)

S. aureus ATCC 6538 1280
Broth microdilution Side-chain polymer [149]

E. coli ATCC 8099 1160

134 Poly-(1-hexyl-3-methylimidazolium bromide)
S. aureus ATCC 6538 230

Broth microdilution Main-chain polymer [149]
E. coli ATCC 8099 110

135 Poly-(1-hexyl-4-methyl-1,4-diazoniabicyclo[2.2.2]octane-
1,4-diium dibromide)

S. aureus ATCC 6538 560
Broth microdilution Main-chain polymer [149]

E. coli ATCC 8099 510

* IZ, inhibition zone; MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MBEC, minimum biofilm eradication concentration; MRSA, methicillin-resistant S. aureus; NPs,
nanoparticles.
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Antibacterial coatings on the basis of 3-(2-(methacryloyloxy)ethyl)-1-alkylimidazolium
ILs showed high bactericidal activity against E. coli (see entries 114-116 in Table 8) [162].
In the case of 1-alkyl-3-vinylimidazolium-based poly-ILs, the alkyl side chain length and
charge density were directly related to the antimicrobial activity against E. coli and S. aureus
(see entries 117-119, 121, and 123-126 in Table 8) [164]. In contrast, the bactericidal activity
of the corresponding poly-IL membranes increased upon increasing the charge density
but decreased upon increasing the alkyl chain length. A similar picture was observed
for pyrrolidinium-based ILs and membranes [89]. The homopolymeric ILs were active
against S. aureus and E. coli, and their antimicrobial activity increased upon increasing
the alkyl side chain length in the monomer (see entries 123-126 and 127-131 in Table 8).
The opposite was observed for the corresponding poly-IL-based membranes, which also
demonstrated good hemocompatibility and low cytotoxicity. Of note, nanoparticles on the
basis of 1-alkyl-3-vinylimidazolium poly-ILs showed significantly higher antimicrobial
activity than the original poly-ILs [170] (see entries 119-122 in Table 8).

(2-Ethylhexyl)ethylenediaminium bis(trifluoromethanesulfonyl)imide-loaded ionogel
surface coatings efficiently inhibited the growth of various microorganisms, including
those from the ESKAPE list, and prevented the formation of biofilms [163]. Microneedle
patches on the basis of salicylic acid-containing API-poly-IL were successfully tested
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in the treatment of Propionobacterium acnes skin infections [165]. Ionic graft copolymers
on the basis of [2-(methacryloyloxy)ethyl]trimethylammonium chloride were studied as
possible delivery systems for ionic drugs (p-aminosalicylate and clavunate) [171]. IL-grafted
wound dressings on the basis of 1-vinyl-3-methylimidazolium bromide demonstrated good
antimicrobial activity and low cytotoxicity [172,173].

2.2.8. QAC-Containing Bactericidal Coatings

QACs also find application in the composition of bioactive materials and antibacterial
coatings. This topic is more relevant than ever due to the growing part of the paint and
coatings industry in the biocide market. Thus, research on the application of QACs at
surfaces continues to expand.

Antimicrobial films based on surface-modified microfibrillated cellulose grafted with
mono-QACs showed high antibacterial activity against S. aureus and E. coli even at low
concentrations [174]. Silica nanoparticles functionalized with quaternary ammonium silane
inhibited the growth of Gram-negative bacteria due to the synergistic effect of hydropho-
bicity and antibacterial activity [175]. QACs with N-halamine coated onto cotton fibers
were active against S. aureus [176,177]. Similarly, the combination of these biocides was
highly effective in macroporous cross-linked antimicrobial polymeric resin [160]. An
antibacterial coating of immobilized QACs tethered on hyperbranched polyuria demon-
strated high contact-killing efficacies toward adhering staphylococci [178]. Antimicrobial
acrylic coatings with a QAC-containing perfluoroalkyl monomer were synthesized by
using a self-stratification strategy via one-step UV curing [179]. Polyvinylidene fluoride
membranes modified by QACs possess antibiofouling effects [180]. Bacterial cellulose
incorporated with QACs showed strong and long-term antimicrobial activity against
S. aureus and S. epidermidis [181]. QAC-based silver nanocomposites demonstrated syn-
ergistic antibiofilm properties along with a low hemolysis rate [182]. More examples of
QACs immobilized on material surfaces with antibacterial activities can be found else-
where [45,47,49,159].

2.2.9. Ionic Liquid-Containing Bactericidal Coatings

Usage in bactericidal surface coatings seems one of the most promising applications
of antibacterial ILs in medicine and other areas. Thus, the number of publications on
the topic has been increasing steadily in recent years. As already mentioned above, ILs
are proposed to be used as components of ionogels, films, and membranes that demon-
strate considerable antimicrobial and antifouling activities (see, e.g., [89,93,163]). Cel-
lulose nanofibers grafted with ammonium ILs and silver ions demonstrated significant
antimicrobial activity against S. aureus MRSA and E. coli [183]. Zinc ion-coordinated
poly-IL membranes with bactericidal properties were efficiently used for wound heal-
ing [184]. A conductive hydrogel wound dressing composed of a poly-IL (1-vinyl-3-
(aminopropyl)imidazolium tetrafluoroborate) and konjac glucomannan demonstrated
long-lasting bactericidal activity against S. aureus and E. coli [185]. Similarly, promising
results were obtained with a poly-IL (1-vinyl-3-butylimidazolium bromide)/poly(vinyl
alcohol) wound dressing [172], a reusable 1-vinyl-3-butylimidazolium bromide-grafted
cotton gauze wound dressing [173], and molecular brushes with 3-(12-mercaptododecyl)-1-
methylimidazolium bromide [186]. Composite membranes composed of bacterial cellulose
and cholinium poly-ILs with amino acid anions were active against Gram-negative and
Gram-positive bacteria and fungi [187]. Poly(vinylidene fluoride) (PVDF) materials grafted
with ILs (1-vinyl-3-butylimidazolium chloride, 1-vinyl-3-ethylimidazolium tetrafluorob-
orate) showed activity against both common bacteria and “superbugs” [188]. Calcium
phosphate–IL (1-alkyl-3-methylimidazolium chloride) materials with bactericidal prop-
erties were proposed to be used for implants [189]. Halloysite nanotubes functionalized
with various ILs demonstrated antimicrobial activity [190].Coatings based on dicationic
imidazolium ILs efficiently inhibited bacterial growth on titanium surfaces [191]. TiO2
nanomaterials coated with poly-IL brushes on the basis of imidazolium ILs demonstrated
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antibacterial and antifouling properties [192]. Cholinium salicylate-containing gelatin films
with bactericidal activity were proposed to be used in food packaging [193]. In addition,
1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4Mim][NTf2]) was
tested as a bactericidal additive in orthodontic adhesive and was shown to reduce biofilm
formation [194].

3. Conclusions

Despite the vast diversity of the available QAC structures, there are certain structural
criteria designating the biocidal activity of the compounds.

Usually, the optimal alkyl tail length is within C10-C14; it can vary depending on the
number of charges: C12 and longer for mono-QACs and C10-C12 for bis-QACs. Neverthe-
less, in some series of compounds, those with tails of C10 and shorter demonstrated the
highest activity. This observation suggests that the optimal chain length is specific for each
set of structures and is related to the other fragments of the molecule.

In general, QACs with two or more charges (bis-QACs, multi-QACs, poly-QACs)
have superior biocidal effects compared to mono-QACs. Moreover, many mono-QACs
show little or no activity against Gram-negative bacteria. However, the addition of the
second charged nitrogen without an alkyl chain does not always increase the activity,
whereas the addition of the second and third alkyl chains increases the toxicity. The
introduction of ether or amide bridges into QACs decreases both the toxicity and activity
of the corresponding substances.

The combination of two bactericidal fragments with different mechanisms of action in
one QAC has been proven to be a successful approach. These biocides have antibacterial
and antifungal effects on a wide range of pathogens.

The assessment of the direct relation between the presence of aromatic and heterocyclic
fragments/substituents in QAC molecules and their activity is complicated because this
factor is highly specific for some structures. Relatively speaking, pyridine QACs, especially
bis-pyridine salts with broad antibacterial/antifungal activity, are the most advanced and
promising among all heterocyclic QACs. Aromatic structures are often used in QACs due
to their strong reactivity. They can be spacers, substituents, tails, head parts, etc.

In 2016, in his report on antibacterial resistance, O’Neill predicted that by 2050, 10 mil-
lion people would die because of resistant bacteria annually [195]. Moreover, SARS-CoV-2
aggravated the issue. During the current pandemic, antibacterial drugs are being used
rather indiscriminately. It should be expected that the threat from resistant bacteria will
increase significantly in the next few years. To avert this danger, the next generation of
antibacterial drugs, including QACs, should be developed in the near future.

In this review, we analyze some of the structure–activity dependences and provide
a general overview of the current situation in the research on antimicrobial QACs. In
addition, a brief overview of the antimicrobial activities of various subclasses of ionic
liquids, which are often considered advantageous antimicrobial agents, is also provided.
We hope that it will serve as a highlight for future studies on these classes of biocides.
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antimicrobial activity of new “Soft” bisquaternary ammonium salts. Fol. Microbiol. 1994, 39, 176–180. [CrossRef] [PubMed]
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