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Intrathecal IgG synthesis is a key biological feature of multiple sclerosis (MS). When acquired early, it persists over time. A
growing body of evidence suggests that intrathecal Ig-secreting cells may be pathogenic either by a direct action of toxic IgG or
by locally secreting bystander toxic products. Intrathecal IgG synthesis depends on the presence of CNS lymphoid organs, which
are strongly linked at anatomical level to cortical subpial lesions and at clinical level to the impairment slope in progressive MS.
As a consequence, targeting CNS lymphoid lesions could be a valuable new target in MS, especially during the progressive phase.
As intrathecal IgGs are end-products of these lymphoid lesions, intrathecal IgG synthesis may be considered as a specific marker
of the persistence of these inflammatory lesions. Here we review the effect upon intrathecal IgG synthesis of all drugs ever used
in MS. Except for steroids, all these therapeutic strategies, including rituximab, failed to decrease intrathecal IgG synthesis, with
the exception of a questionable incomplete action of natalizumab. Thus, IgG synthesis is a robust marker of persistent intrathecal
inflammation and its complete normalization should be one of the goals in future therapeutic strategies.

1. Introduction

Intrathecal IgG synthesis is a key biological feature ofmultiple
sclerosis (MS). A growing body of evidence suggests that
intrathecal IgG secreting cells may be pathogenic either by
a direct action of toxic IgG or by locally secreting bystander
toxic products of B-cells (review in [1]).

We first provide a brief introduction to the synthesis
pathway of intrathecal IgG in the context of CNS lymphoid
organs. As intrathecal IgGs are end-products of these lym-
phoid infiltrates, intrathecal IgG synthesis may be considered
as a specific marker of the persistence of these inflammatory
lesions. Here we review the consequences on intrathecal IgG
synthesis of all drugs given in the past in MS. We make
special mention of rituximab and natalizumab owing to their
paradoxical action on intrathecal IgG synthesis.

2. Pathway of Intrathecal IgG Synthesis

Multiple sclerosis (MS) is characterized by intrathecal IgG
synthesis that occurs as a very early event and is the most

robust diagnostic biological criterion of the disease. Either
an elevated IgG index or oligoclonal bands (OCB) are found
positive in more than 95% MS patients [2, 3]. In the few
patients (<0–5%) lacking intrathecal synthesis, a repeated
cerebrospinal fluid (CSF) exam is often positive [4–7] and
intrathecal secretion is demonstrated by many other tech-
niques such as MRZ reaction, high CSF IgA synthesis [8, 9],
oligoclonal free 𝜅 light-chains [10], or clonal 𝑉

𝐻
and CDR

rearrangements [11, 12], suggesting that OCB and IgG index
tests are insufficiently sensitive. Once acquired, intrathecal
synthesis persists mostly unchanged over time [13–17] and
never disappears. Moreover, the intimate affinity maturation
of IgG and the peptidic targets of OCB IgG persist over
time [2, 18, 19]. As a consequence, each patient has a unique
pattern “OCB fingerprint” of CSF immunoglobulins [20, 21].
This biological signature may be scored according to the
typical positions of mutational replacements (hotspots) on
IgG and can be used as a composite signature Z-score, which
is highly predictive of the conversion of clinically isolated
syndromes (CIS) to clinically defined MS [22, 23]. These
hotspot codons reside in the complementary determining
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region (CDR) where they are predicted to have contact with
the (unknown) antigen(s).

A growing set of evidences points to a central role of com-
partmentalized lymphoid tissue (tertiary lymphoid organs,
TLO) in the formation and maintenance of intrathecal IgG
synthesis ([24, 25], review in [26–28]). The main somatic
hypermutations found in IgG are to be found in the CDR
[12], which is targeted by the enzyme activation-induced
cytidine deaminase (AICD) that is specifically expressed by
B-cells in the context of lymphoid organs. The complex
process of IgG affinitymaturation also requires dendritic cells
as professional antigen-presenting cells; cognate maturation
of B-cells in collaboration with T-cells; clonal proliferation
and selection in local germinal centers, provided by the
TLO structure. Moreover, indirect evidence of intrathecal
lymphoid structures is provided by deep analysis of the clonal
lineage of IgG and B-cells inside and outside the CNS. CSF
IgG, plasmablasts, and plasma cells are expanded from a few
single ancestors and are clonally related. Although present
on both sides of the blood-brain-barrier (BBB), clonal B-
cell and T-cell lineages are mostly confined to the CNS,
sometimes “private” to brain regions, indicating a mainly
local continuous affinity maturation inside the CNS [29–33].
In animal models, the TLO correlates with epitope spreading
in T-cells [34].

Furthermore, both intrathecally synthesized IgG and
the underlying lymphoid organs are potentially involved in
the pathophysiology of cortical lesions (review in [1, 35]).
Although no specific target has yet emerged, converging
evidence indicates that IgG may directly target CNS struc-
tures [36–40]. Inflammatory cells may also be toxic owing
to IgG-independent mechanisms [41–44]—TNF𝛼, lympho-
toxin, and IFN𝛾 being good candidates [45] and B-cells their
potential source [46]. Finally, the meningeal lymphoid tissue
observed in MS patients is spatially correlated to type III
cortical lesions [25, 47, 48]. These cortical lesions represent
half of the cortical lesions, cover up to 40–60% of the cortical
ribbon in progressive MS, and are associated with a major
neuronal loss [49–51]. Lastly, both cortical lesions and TLO
strongly correlate with clinical impairment [25, 35, 47, 52].

In conclusion, intrathecal synthesis is an early-occurring
event in the course of MS, which, once acquired, persists
essentially unchanged throughout life and may be involved
in the pathogenesis of progressive MS. Since cortical subpial
lesions, TLO, intrathecal IgG synthesis, and impairment are
intimately linked, it might be valuable to target B-cells situated
in the TLO and to evaluate the effect in terms of their final
product, that is, intrathecal IgG synthesis.

3. Technical Limitations in
CSF IgG Measurement Leading to
Underestimation of Ig Synthesis

Techniques and norms have been developed in order to help
clinicians for the diagnosis of MS [53]. For example, unique
CSF BOC are discarded due to low specificity and the cut-
off for CSF IgG is high [54]. We propose here shifting from
the usual point of view to examining techniques used to

demonstrate intrathecal synthesis as low as appears in known
MS patients.

CSF is actively secreted by choroid plexus and drains
into the venous flow. Blood proteins passively enter the CSF
through natural leakages of BBB. Albumin is not secreted
in the CSF and comes exclusively from blood. A direct
measurement of the IgG synthesis rate would be useful but
unfortunately the existing formulae provide limited informa-
tion.

The de novo CNS IgG synthesis rate (Tourtellotte’s for-
mula) is calculated as

IgGSYN = [(IgGCSF −
IgGserum
369

) − (AlbCSF −
Albserum
230

)

×(

IgGserum
Albserum

0.43)] × 5,

(1)

based on isotope studies in MS patients [55]. Normal values
are lower than 3.3mg/day and the median value in MS
patients is 29mg/day (range 0 to 207mg/day) [55]. The
CSF synthesis rate (5 times a day) is highly variable and
the assumption that it is constant is incorrect. Moreover,
inconsistent negative results are sometimes obtained so this
formula appears unreliable.

The albumin quotient (or ratio), 𝑄Alb = [AlbCSF]/
[Albserum], is awidely used parameter of BBBdysfunction that
increases with its permeability. In the basal state, CSF IgG lev-
els come exclusively from the passive diffusion of blood IgG
since the latter are not normally secreted inside the CSF. As
a consequence, intrathecally secreted IgG cannot be directly
measured and are approximated by calculation using various
methods. The IgG quotient, 𝑄IgG = [IgGCSF]/[IgGserum],
denotes this proportionality, as does 𝑄Alb.

The widely used IgG index is a dimensionless formula
(𝑄IgG/𝑄Alb) expressing the relative excess from expected CSF
IgG [56, 57]. The normal limit of the IgG index is below 0.7,
based on the assumption of a linear relation between𝑄IgG and
𝑄Alb. However, the work of Reiber et al. largely demonstrated
the nonlinearity and age-dependence of this relation [2].
This has two major consequences: (1) a slight fluctuation
in IgG or albumin level (either caused by therapeutic or
natural fluctuation or by interassay variability) may directly
impact the IgG index although intrathecal IgG synthesis
remains constant. For example, a 10% decrease in serum
IgG is directly reported as a 10% increase in IgG index,
and day-to-day 10% variations of IgG index are commonly
reported [58, 59]. (2) The IgG index limit is thought to be
constant whereas it is not and depends on many factors (age,
𝑄Alb). It would not be a problem if intrathecal IgG synthesis
occurred at a high level, but this is unfortunately not the
case and the IgG index is commonly found to be close to
the normal limit. As a consequence, minor fluctuations in
IgG level may be translated into normal or abnormal IgG
index results, although the intrathecal IgG synthesis rate is
not really impacted.

The normal upper limit of CSF IgG is better assessed by a
hyperbolic discrimination line (𝑄Lim = (𝑎/𝑏)√𝑄2Alb + 𝑏2−𝑐

2),
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where a, b, and c are constants, taking into account a wide
range of normal population, age, and BBB permeability [2].
Displaying 𝑄IgG in a hyperbolic diagram, the Reibergram
gives a more exact appreciation of intrathecal IgG synthesis.
The fraction of intrathecally synthesized IgG (expressed in%)
is IgGIF = [1 − 𝑄Lim/𝑄IgG] × 100. The median IgGIF in MS is
43% (max. 86%), meaning that 57% of CSF IgG comes from
blood [2]. The intrathecally synthesized IgG concentration
(inmg/L) inCSF is IgGLoc = (𝑄IgG−𝑄Lim) × [IgGserum], with a
median value of 26mg/L (max. 172mg/L) inMS [2]. 𝐼𝑔𝐺

𝐿𝑜𝑐
is

the only accurate unbiased calculation available of intrathecally
synthesized IgG, giving quantitative results.

The Reibergram was constructed using 𝑄IgG of >4000
control subjects devoid of intrathecal synthesis. The mean
normal 𝑄IgG is noted by 𝑄mean, and 𝑄Lim—which is 𝑄mean +
3 SD (standard deviations) for higher specificity—is the
higher discriminant line for abnormal 𝑄IgG. 𝑄Low (𝑄mean −
3 SD) is not used. Very low intrathecal synthesis may be
displayed below 𝑄Lim. In MS patients, 𝑄IgG is higher than
𝑄Lim in about 75% of cases, which is commonly (and
erroneously) interpreted as a null synthesis in the other
quarter of patients. However, virtually all MS patients are
biased to 𝑄IgG > 𝑄mean and none is lower than 𝑄mean,
whereas, by definition, 𝑄IgG with null intrathecal synthesis
should be equally distributed (Gaussian) around 𝑄mean [2,
59]. Restraining𝑄Lim at𝑄mean +2 SD, which includes 96% of
controls, increases positivity of 𝑄IgG in MS by 10% [59]. This
bias demonstrates that the Reibergram still underestimates
intrathecal synthesis and is not sensitive enough to differentiate
very low and null intrathecal synthesis. Moreover, the range
of IgGCSF concentrations between 𝑄Low and 𝑄Lim is wide: for
common values of 8 g/L of IgGserum at 𝑄Alb 10

−3, the range of
IgGCSF from 𝑄Low to 𝑄Lim is about 24 to 64mg/L, which is
substantial.

Consensual examination of oligoclonal bands (OCB) is
based on IgG staining after an isoelectric focusing (IF) run,
which is more sensitive than electrophoresis [60]. Intrathecal
synthesis is defined by the presence of CSF restricted OCB
and is usually positive in >95% of MS patients [60]. OCB
are almost always present when 𝑄IgG > 𝑄Lim but are also
commonly present when 𝑄IgG < 𝑄Lim [53, 60, 61].

However, isolated monoclonal immunoglobulin bands
are sometimes found in CSF. However, owing to their lack
of specificity [54], ≥2 OCB are required in most studies
to define an oligoclonal pattern with an optimal specificity.
Numerous bands are usually unambiguously found in MS
patients. The main technical problem is the ambiguity of
faint OCB, which are hardly distinguishable from an IgG
background, suggesting that techniques attenuating the IgG
background may increase test sensitivity. Isoelectric focusing
with affinity blotting against known antigens overcomes this
limitation. In paraneoplastic syndromes devoid of intrathecal
synthesis with classical techniques (OCB, IgG index), affinity
blotting against Hu, Yo, or GAD antigens unmasks a specific
intrathecal synthesis [62–64]. While affinity blotting gives
qualitative results, only OCB restricted to CSF or more
pronounced in CSF than in serum are discriminant. This
technique improves specific antibody detection in CSF, but

the specificity of intrathecally synthesized antibodies in MS
is still unknown. Nevertheless, the presence of nonspecific
intrathecal synthesis against the neurotropic viruses Measles,
Rubella, and VZV (MRZ), commonly observed in MS for
unclear reasons, appears very promising and gives a unique
opportunity of qualitative and quantitative measures. MRZ-
specific OCB are present in the CSF of 72% of MS patients
who otherwise fail to demonstrate OCB with IEF [65].

Specific antibody levels are more easily studied using
the ELISA technique. The specific antibody index (AI) is a
value calculated using the ratio of specific antibodies 𝑄Spec
= [SpecCSF]/[Specserum] in the formula AI = 𝑄Spec/𝑄IgG,
where AI values >1.3–1.5 represent an intrathecal synthesis.
For example, high AI values are obtained in paraneoplastic
syndrome (anti-GAD, -Hu syndromes) in the absence of
apparent intrathecal synthesis (negative OCB and 𝑄IgG <
𝑄Lim) [63, 66]. An MRZ pattern, defined by an elevated AI
against ≥2 neurotropic viruses, is observed in up to 90% of
MS patients [64, 67]. However, the AI is not usually assessed
in patients with 𝑄IgG < 𝑄Lim and negative OCB, because
they are taken to be MRZ-negative since AI correlates with
𝑄IgG [61]. A systematic assessment for multiple AI (VZV,
HSV, CMV, Measles, Rubella, and Borrelia) was undertaken
in patients without apparent intrathecal synthesis (𝑄IgG <
𝑄Lim and negative OCB). All but one of the 21 miscellaneous
infectious and autoimmune patients had at least one elevated
AI [61]. In MS patients without intrathecal synthesis, up
to 47% of patients have ≥1 elevated AI of MRZ pattern
[61, 65, 68–70]. Interestingly, AI results are not completely
congruent with those obtained by IEF with affinity blotting,
increasing the prevalence of intrathecal synthesis detected by≥1
technique to 64% in the “CSF negative” subgroup ofMS patients
[65]. Acknowledging that MRZ reaction is common but not
exclusive, and that reactions against many other viruses have
been confirmed in MS (review in [71]), it may be expected
that a larger antigenic test panel would improve the frequency
of IT synthesis detection [61].

Free light-chains (FLC) are produced in excess by Ig-
secreting cells and are eliminated through renal clearance
with a short plasma half-life (2–6 hours). Therefore, the
very small amounts of FLC detectable in CSF are less
contaminated by passive diffusion from blood. FLC assays
in CSF and serum have been tested with various modes
of calculation: absolute CSF concentration, 𝜅/𝜆 ratio, and
FLC index. FLC sensitivity seems to be near 100% but the
(expected) specificity lower than OCBmakes FLC less useful
in diagnostic-purposed clinical routine [72, 73]. However,
FLC offers a simple and sensitive quantitative parameter,
which appears suitable for monitoring intrathecal synthesis.

To our knowledge, no studies combining every technique
in MS patients, especially those with “negative CSF,” have
been undertaken to date. Such studies performed with the
more recent and sensitive laboratory methods would be the
only definitive way to examine the prevalence of the true
absence of intrathecal synthesis inMS, which is definitely less
than 5%. Moreover, we are unaware of such complete reports
in non-Caucasian descent MS patients where OCB positivity
is low [74, 75]. Our short review argues for a probable faint
intrathecal synthesis in the rare “CSF negative” patients.
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Nevertheless, common techniques (OCB and IgG index) are
positive in more than 95% of patients and Ig synthesis never
disappears, making intrathecal synthesis the most valuable
marker of MS to date.

Future studies dedicated to intrathecal synthesis may
combine quantitative techniques (IgGLoc or FLC) and highly
sensitive qualitative techniques (OCB or MRZ pattern).
Criteria for intrathecal Ig synthesis normalization should
be based on simultaneous normalization of all the tests. In
view of the fluctuations of intrathecal synthesis in individual
patients (up to 30% of IgGLoc [76]), the demonstration of a
drug action upon intrathecal synthesis should be statistically
demonstrated in groups. Aiming at an intrathecal reset, a null
Ig synthesis should be confirmed by multiple techniques.

4. None of the Available MS Drugs Deplete
Intrathecal Ig Synthesis

4.1. Steroids. Various protocols of steroid infusions ranging
from IV to intrathecal injections of various steroids have been
described in the literature but none of themhas demonstrated
any sustained clinical success upon impairment [77].

In a series of 101 MS patients, CSF was drawn imme-
diately before and after high-dosage steroid blood infusions
(1 g/d/10 d) [78]. The proportion of patients having an ele-
vated IgG index decreased from 93% before steroids to 84%.
IgM index positivity in 31% of patients was left unchanged
(Table 1). OCB were found in 92% of patients and OCB
count decreased from a mean of 5 to 4 in 82% of patients
[78]. Improvement was only demonstrated in a questionable
subgroup analysis. Comparable results were obtained in
smaller series, sometimes showing a disassociation between
a decrease in IgG synthesis and the preservation of OCB
[79–83]. Multiple steroid dosages and various administration
routes (intramuscular, intravenous, and intrathecal) had no
effect upon OCB [84]. On the contrary, the intrathecal IgG
synthesis rate dramatically decreased in all patients (𝑛 =
22) and sometimes normalized (8/11 after IM ACTH gel)
irrespective of the peripheral mode of steroid administration.
However, a rebound occurred in a few months.

Intrathecal injections of steroids significantly but tran-
siently depressed IgG synthesis in only 4 patients out of
7 but never normalized the IgG synthesis rate [84]. Even
though steroids decreased the IgG index in most but not all
patients, the decrease in CSF IgG synthesis was low and the
CSF total protein concentration remained unaffected [79].
In a study including 54 MS patients (either progressive or
RR), triamcinolone-acetonide (40–80mg) was intrathecally
infused 3–5 times over aweekwith a positive clinical outcome
measured on clinical parameters, but CSF levels of NFL and
S100 proteins showed minor changes and immunological
parameters were not available [85].

4.2. Irradiation. Plasmablasts but not plasma cells are sensi-
tive to irradiation. After irradiation (600–1800 rads) of the
whole cerebrospinal axis of 19 MS patients over 4–17-day
periods [81], only a transient drop in IgG synthesis rate was
observed in 3/7 patients who received 1800 rads, without any
effect upon clinical parameters. A combination of ACTH,

brain irradiation, and daily prednisone given in 5 patients
seemed to block IgG synthesis over a prolonged period and
tended to persist after cessation [86]. However, even though
CNS IgG synthesis failed in the normal range, the OCB
pattern and free light-chains persisted [86].

4.3. Interferon Beta. Immunomodulatory therapies had no
effect on CSF free light-chain levels [87]. Weekly 𝛽-IFN
given intrathecally had no effect upon IgGLoc or OCB at 6
months [20]. In the phase III study of IFN-𝛽1a, essentially no
change occurred for IgG index or OCB in CSF drawn at 104
weeks [88]. This absence of effect upon IgG parameters was
explained by the ability of IFN to stimulate in vivo expression
of IL4 and secretion of IgG [88], but the absence of action
upon plasma cell IgG secretion is more plausible.

4.4. Azathioprine. Azathioprine (2–4.5mg/kg/d) had no
effect upon CSF IgG synthesis (IgG index and OCB pattern)
after one year of treatment [89, 90]. A decrease in the more
elevated IgG indexes was observed but patients received
steroids (at an active dose in the control group) and the
control group had far lower pretherapy index values [90]. In a
different study, quantitative IgG synthesis in patients treated
by azathioprine did not differ from the control group with or
without steroid treatment [91]. No change in CSF OCB and
IgG level occurred in 8 patients treated by plasma exchange
given in association with prednisolone and azathioprine [92].

4.5. Cytarabine (Intravenous or Intrathecal). Cytarabine (ara-
C) is an antimetabolic agent interfering with DNA synthe-
sis and is used in chemotherapeutic regimens for treating
lymphomas. Cytotoxic levels administered in the systemic
compartment do not achieve cytotoxic levels in the CSF,
and reciprocally [93]. None of the 10 patients given cytara-
bine either systemically or intrathecally had changes in the
number or pattern of CSF OCB. CNS IgG synthesis slightly
decreased (about 10%) after systemic infusion during the next
month. However, CNS IgG synthesis transiently rose during
the week following intrathecal administration, while at the
same time CSF floating cells were low, and then all returned
to their pretreatment level [93].

4.6. Lomustine. Lomustine (CCNU) is an alkylating agent
used in neurooncology thanks to its high diffusibility in the
CSF (∼50% of serum concentration) [94]. Given in a single
oral dose at 130mg/m2 in four patients, the IgG synthesis rate
decreased by −11% at weeks 2 and 4 and by −20% at week 6
(statistically significant from baseline) [94].

4.7. 5-Fluorouracil (5-FU). 5-FU infused daily at 10mg/kg in
3 patients for 5 days showed no effect upon IT IgG synthesis
rate [94].

4.8. Methotrexate. No data is available about intrathecal
Ig synthesis during methotrexate treatment given via the
oral or IV route. Methotrexate is widely used via the CSF
route in oncology and appears to be relatively safe. In
a series of 121 progressive MS patients, intrathecal MTX
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(12.5mg/2 months/8 months) proved to be well tolerated
[95]. A minor clinical effect was obtained, but in the absence
of a control group these results should be considered with
caution. Unfortunately, no data was gathered concerning an
eventual modification of the CSF (OCB, cells, cytokines).

4.9. Cyclophosphamide. High-dosage cyclophosphamide (Cyc)
immunosuppression was used in protocols of autologous
stem cell transplantation (see [96]). Cyc had a very minor
effect upon the IgG index, interacting with the effect of
steroids given as cotreatment [97, 98]. Cyc mainly tar-
gets T-cells rather than B-cells, and Ig-secreting cells are
considerably increased (×4) in blood after Cyc treatment
given without steroids, in association with a small increase
(∼20%) in Ig levels [99]. CSF IgG levels also increased but
no data were given about intrathecal secretion [99]. Since
the lipophilic properties of Cyc provide access to the CNS
through the BBB, CSF levels of Cyc are in the same range in
blood and in CSF [100]. Although never investigated, such
a paradoxical action may be expected in CSF, as is the case
after intrathecal cytarabine infusion. In five patients receiving
a daily IV dose of Cyc (2.5–5mg/kg) for 10 days, CSF IgG
synthesis decreased by −11%, which was not significantly
different from baseline [94].

4.10. Cyclosporine A (CsA). CsA specifically decreases the
biosynthesis of IgG [101]. CsA crosses the BBB with difficulty
since levels of CsA varied between 300 and 500 ng/mL in
blood and were under the test threshold (30 ng/mL) in CSF
[102]. A two-year regimen of CsA (10 then 22mg/kg/d)
resulted in no change in free light-chains in nine patients
[102]. In a two-center cohort including 82 patients, half
receiving CsA, the IgG index was significantly decreased as
compared to placebo in one center but not in the other one
[103].

4.11. EBV-Specific Adoptive Immunotherapy. A single patient
characterized by a blood CD8 T-cell deficiency and a blood
EBV-specific CD8 T-cell deficiency (lower than 10th per-
centile compared to control patients) carrying HLA-A2 and
HLA-B7 (which are restricting elements for several EBV
epitopes used in this treatment) received autologous CD8+T-
cells activated against EBV [104]. Blood T-cells were collected
from the patient, stimulated by AdE1-LMPpoly and IL2 and
returned IV by gradual increasing dosage (from 5 × 106 to
2 × 10

7 cells). Intrathecal IgG secretion and the IgG index
were normalized at month 4 [104]. This single case needs
confirmation.

4.12. Mitoxantrone. Intrathecal IgG synthesis was assessed
with amean follow-up of<2 years in a series of 22MS patients
treated with mitoxantrone [105]. No significant change in
IgG index occurred during the follow-up. A modification in
OCB bands was observed in 4/22 MS patients after 2 years of
treatment, but changes were a gain of new bands in 2 patients
or the loss and subsequent replacement of bands in other 2.
These changes did not differ from spontaneously occurring
changes in untreated patients [105]. However, CXCL13 levels

in the CSF at follow-up dropped to levels comparable to those
of controls.

In a series of 28 RR-MS patients treated with the as-
sociation ofmitoxantrone (20mg)+ rituximab (1 g) +methyl-
prednisolone (1 g), the frequency and intensity of OCB
remained unchanged at 12 months although CD19+ B-cells
were profoundly depleted in the CSF [106].

4.13. Alemtuzumab. Alemtuzumab targets CD52, which is
largely expressed in most lymphocytes, including B-cells but
not plasma cells. Serum Ig levels are mostly unchanged after
treatment although B-cells are completely depleted. Paired
CSF samples available in 15 patients treated with alem-
tuzumab demonstrated the persistence of OCB following
treatment [107].

4.14. Cladribine. Essentially no change in the OCB pattern
and CSF IgG synthesis occurred after one year of treatment
with cladribine [108].

4.15. Daclizumab. Daclizumab is a humanized anti-CD25
antibody with a pleotropic effect: expansion of CD56bright NK
cells, inhibition of T-cell activation by dendritic cells, and
reduction in lymphoid tissue-inducer cells [109]. Daclizumab
has a minimal effect on CSF lymphocyte count [110]. After 65
months of daclizumab therapy, the Ig index decreased by only
13% [111].

4.16. Fingolimod. Longitudinal CSF analysis during fin-
golimod treatment of MS patients showed that the cell count
decreased (mean 8.3 to 1.8 cells/𝜇L), while the IgG index,
which was elevated in 4/7 patients before, remained elevated
in 2/8 afterwards andwithout anymean significant difference,
whereas OCB persisted in all patients during follow-up [112].

4.17. Vitamin D. Low vitamin D levels are a risk factor for
MS and for an unfavorable course of the disease. The median
concentration of 25(OH)D was found to be 0.26 nM in CSF
and 61.5 nM in blood [113]. CSF levels of 25(OH)Dwere lower
than the in vitro concentration (250 nM) necessary to affect
B-cells [114, 115]. However, in two studies with 40MS patients
in each, neither serum nor intrathecal levels of vitamin D
correlated with IgG index or presence of OCB [113, 116].
In a series of 36 MS patients, serum vitamin D correlated
negatively with IgG index [117]. No data is available about the
effect of vitamin D supplementation on intrathecal synthesis.

4.18. Autologous Stem Cell Transplantation. Autologous stem
cell transplantation (HSCT) in MS provides a unique
opportunity to dissect the remaining intrathecal inflam-
mation. Combined myeloablative drugs completely abate
the peripheral immune, nonspecifically targeting normal,
autoimmune, and neoplastic components. Although HSCT
could be expected to be effective in MS, it often fails to halt
clinical progression [118–121], relapses [120, 122], and brain
atrophy even in the absence of new inflammatory lesions
[96, 121, 123]. In a postmortem study ofMS patients treated by
allogenicHSCT, acute demyelinating lesions and acute axonal
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degeneration persisted, [124–126] confirming the persistence
of ongoing diffuse inflammation.

Receiver intrathecal inflammatory cells persist in CNS
even after being completely abated in the periphery after
HSCT. Marker of lymphocytes activation (sCD27) is elevated
in CSF and only lowered after HSCT, confirming a persistent
lymphocytic infiltration [122]. This process was dissected
in a female patient having received bone marrow from a
male donor and surviving 20 weeks [127]. A postmortem
study based on in situ fluorescence hybridization performed
for X and Y chromosomes in plaques distinguished male
donor cells from female recipient T-cells. Male donor cells
constituted only 3–17% of CD45 cells and 10% of CD68
macrophages, although all the blood cells originated from the
male donor [127]. CD3+T-cells from the donorwere sparse in
the parenchyma [127]. This case shows that most of the CNS
inflammatory cell pool, which is not limited to nondividing
plasma cells, is composed of resident resistant cells and that it
seems poorly replenished from the periphery, at least in this
context.

Multiple serum OCB usually develop during the first
months following HSCT treatment, indicating the probable
recapitulation of the B-cell ontogeny after grafting [128].
CSF OCB are rather stable after HSCT grafting: intrathecal
pretreatment OCB mainly persists [121], although enriched
by multiple OCB diffused from blood because of the dis-
ruption of the BBB [128]. In a study of 20 patients, 9 out of
the 12 patients having OCB before HSCT were still positive
after, and one OCB-negative patient at baseline gained OCB
[96]. In a review of 34 HSCT patients, OCB persisted in
30/34 patients while 2 out of the 10 who were initially
OCB-negative became positive [122]. One case of SP-MS
treated by a nonmyeloablative conditioning allo-HSCT for
follicular lymphoma showed the disappearance of baseline
OCB for four years, unlike CSF CXCL13 which changed from
undetectable to detectable levels [129]. The failure to cure
OCB is linked to the persistence of plasma cells rather than to
a longer half-life of Ig in CSF [130] since their CSF clearance
rate is extremely high. Immunoablation no more abates
total blood Ig, IgG, or IgM against various common targets
(i.e., myelin, influenza, and tetanus) [131]. This resistance is
probably due to the intrinsic properties of long-lived plasma
cells residing in bone marrow survival niches.

In conclusion, rigorous protocols aiming at the ablation of
peripheral lymphocytes have always failed to abate intrathecal
IgG synthesis significantly (Figure 1) and as is shown in what
follows.

Drug Action on Intrathecal IgG Synthesis

No Action. Peripheral administration includes Irradiation,
𝛽-IFN conventional, Azathioprine, Cytarabine, Lomustine,
5-FU, Methotrexate, Cyclophosphamide, Cyclosporine A,
Mitoxantrone, Alemtuzumab, Rituximab, Cladribine, Dacli-
zumab, Fingolimod, Stem cell transplantation. Intrathecal
route includes 𝛽-IFN, Cytarabine, Rituximab.

Decreasing Ig Synthesis. Peripheral administration includes
steroids, natalizumab (conflicting reports), EBV-specific

adoptive immunotherapy (needing confirmation). Intrathe-
cal route includes steroids.

Normalizing Ig Synthesis.This was none (only transient effect
of steroids).

5. Partial Repression of Intrathecal IgG
Synthesis by Natalizumab

Natalizumab is a humanized monoclonal antibody directed
against VLA-4, preventing leukocyte transmigration to CNS
and inducing a sustained decline in all CSF leukocyte subsets
up to 6–14 months after cessation of treatment. As soon as
the first injection (5 days) of natalizumab and even 6 months
after therapy cessation, CSF WBC, CD19+, CD4+ T-cells,
CD8+ T-cells, and CD138+ plasma cells are lowered to the
same level as those of controls—almost a null count [132]. At
6 months, CD4+ and CD8+ T-cells rose again in only one
patient who relapsed [132]. Interestingly, not only T-cells are
depleted in MS brain treated with natalizumab but also the
same is true for B-cells and dendritic cells, which are usually
increased in MS compared to controls [133]. The delayed
onset of progressive multifocal leukoencephalopathy (PML)
after the first year of natalizumab therapy suggests that the
long-term uninterrupted use of natalizumab eventually leads
to a reduction in dendritic cells to levels unable to prevent
the onset of PML [133]. The number of doses needed to
deplete dendritic cells from perivascular spaces, the maximal
proportion of depletion that may be expected, and the time
to reconstitute the pool after cessation are unknown [133].

In a series of 6 patients treated with natalizumab and
positive for OCB before treatment (Table 1), 4/6 patients
became OCB-negative (spinal tap controlled by a means of
10 infusions), whereas their IgG index increased in two of the
four and dropped in the other two [134]. In a larger series
of 76 patients, all the patients had OCB before natalizumab
whereas 16% were found to be negative and the proportion
of intrathecal synthesized IgG fraction (Reibergram) in the
normal range increased from 20% to 45% [135]. In a study
involving 24 MS patients, the abnormal IgG index decreased
from 67% to 33%, the OCB positive pattern decreased from
92% to 42%, and the mean IgGLoc normalized [136]. Mean
IgGLoc was unusually low in this study (mean 0.5mg/L, max.
2.4mg/L), which may have biased results toward a high
suppressive effect [136]. These results suggest that intrathecal
secretion is merely repressed rather than suppressed by
natalizumab. In another study including 17 patients, although
a minor effect was observed on OCB and IgG index, the
changes were not significant at one year [137]. OCB remained
detectable in the majority (94%) of 52 patients included in a
cross-sectional study [138]. However, a statistically significant
but small decrease in IgGLoc and IgG index was observed
[138]. AI toMRZ,whichwas tested in 6 patients, also declined
in three of them and remained below the limit in the other
three [138].

The repression of IgG synthesis in the intrathecal com-
partment by natalizumab, which was highly unexpected and
paradoxical, deserves three nonmutually exclusive expla-
nations. First, 𝛼4𝛽1-integrin is expressed not only by T-
cells but also by B-cells (CD19+ and CD138+) and CD14+
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Figure 1: Schematic targets of MS treatments upon CNS compartmentalized inflammation, especially in tertiary lymphoid organs (TLO).
Except for natalizumab (owing to unclearmechanisms), none of the treatments targeting bloodB-cells have shown any action upon intrathecal
IgG synthesis. Preliminary results suggest that rituximab also fails to reduce IgG synthesis. Future treatment strategies might be redirected
to reset all the components of intrathecally compartmentalized inflammation. APC: antigen-presenting cells; BMT: bone marrow transplant;
PB/PC: plasmablasts/plasma cells; TLO: tertiary lymphoid organs.

monocytes at higher levels than CD3+ T-cells [139, 140]. As a
consequence, B-cell trafficking to the brain is highly impeded
by natalizumab and the renewal of the CNS plasmablast
pool may also be highly impeded, ultimately leading to the
nonrenewal and flush of the terminally differentiated plasma

cell pool. Blood retention of lymphocytes after initiation of
natalizumab is even disproportionately increased more for
CD19+ B-cells than for CD3+ T-cells [140, 141], but this is
probably better explained by a purge effect on lymphoid
progenitors from bone marrow than by the inhibition of
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the transmigration of small lymphocytes to the CNS [141].
Secondly, plasma cells survive in niches where they interact
with cytokines, and T-cells may also play a supportive
survival role among the surrounding cells [45]. Moreover,
natalizumab flushes MZ-B-cells from secondary lymphoid
organs [141], but whether it has an effect on intrathecal lym-
phoid tissue cells is unknown. Thirdly, natalizumab inhibits
the CNSmigration of dendritic cells, which in turnmay affect
the maintenance of CNS lymphoid tissue [142]. Of note, a
significant decrease in IgM (and less significantly in IgG)
plasma levels also occurs during natalizumab treatment but
is not correlated with treatment duration, suggesting that this
drug effectively perturbs the IgG synthesis pathway [138, 143].

Future experiments should examine whether patients
who have normalized intrathecal IgG secretion and then dis-
carded natalizumab may regain this secretion. Data obtained
from a single patient devoid of OCB under natalizumab and
withdrawing treatment for PML showed that OCB shortly
returned with a slightly modified pattern [134], whereas a
sustained negativationwas observed at 6months in two other
patients [135].

6. Rituximab Depletes CSF B-Cells without
Modifying Intrathecal IgG Synthesis

Rituximab is an IgG1K monoclonal antibody targeting
CD20 by multiple and synergistic mechanisms: apoptosis,
complement-mediated cell lysis, and antibody-dependent
cellular toxicity. All the B-cells expressing high levels of CD20
(CD20bright) and a subfraction of CD20+ T-cells are targeted,
whereas a minor population of B-cells expressing a lower
concentration of CD19 (CD19dim) may resist rituximab—
even more so at low concentrations—and expand during
reconstitution [144]. Plasma cells, which do not express CD20
but secrete high levels of Ig, are fully resistant.

In a singleMS case receiving rituximab infusion in blood,
CD19+ B-cells were completely depleted from blood and CSF
at 8weeks and 6months [145]. In another case studied forCSF
at 7 time points, CD138+ disappeared after the first infusion
until month 7; CD19+ and CD20+ decreased from 3% to
0.25% after the first infusion and then disappeared before
month 4 only to reappear briefly at month 5 (0.2–0.4%) and
then disappeared again until month 10 [146]. By contrast in
blood, CD20+ cells and CD138+ cells, which completely dis-
appeared before the fourth infusion, reappeared at month 10
[146]. In a study of 22 MS patients, CSF was compared before
and 24 weeks after IV rituximab [147]. CD19+ and CD3+ cells
decreased in CSF but did not completely disappear [147].The
two cytokines CXCL13 and CCL19 decreased in CSF at week
24 compared to baseline, but CXCL10 remained unchanged
[147]. In a phase II clinical trial, 16 RR-MS patients were
treated by rituximab and were investigated one week prior
to and 24 weeks after infusion [76]. In CSF, the CD19+ B-
cell count decreased by 90% and the CD3+ T-cell count
by 50%. However, the CSF IgG level, IgG index, and OCB
number remained essentially unchanged since the overall
mean reduction in IgG synthesis of 21% was not statistically
significant [76, 147]. In another study (phase II/III trial in

PPMS), aminor depletion of CSFCD19+B-cells was achieved
in some patients (1/4) but never to the same extent as in blood
[144]. When a second infusion of rituximab was given, the
CSF CD19+ cell count no longer dropped either in blood or
in CSF [144]. In fact, this failure to lower the intrathecal IgG
secretion was predictable from the absence of effect of blood-
infused rituximab upon serum IgG and IgA levels, contrary
to a minor effect upon IgM levels [76, 148].

Rituximab concentration in CSF does not exceed 0.2% of
its concentration in serum, and repetitive infusions in blood
fail to increase its CSF concentration [149, 150]. Given the low
diffusion of rituximab in CSF and a growing body of evidence
demonstrating the safe use of intrathecally infused rituximab,
a rationale to infuse intrathecal rituximab in progressive MS
recently emerged. Data obtained from a single patient receiv-
ing intrathecal rituximab (10mg each month for 2 months)
showed a major effect upon CSF cytokine levels (especially
TNF𝛼, IL2, IL15, and CXCL10), although intrathecal IgG
synthesis was unchanged [151, 152]. These preliminary results
deserve further studies and two trials using intrathecal rit-
uximab either alone or associated with intravenous infusion
are now recruiting (RIVITaLISE: NCT01212094, ITT-PMS:
NCT01719159, in https://www.clinicaltrials.gov/, last access in
August 2014). Many aspects of intrathecal rituximab infusion
are to be clarified concerning its biological and clinical effects
and optimized administration protocols. For example, should
the intrathecal route be used alone or associated with blood
infusion? Are multiple intrathecal infusions to be scheduled?
Do repeated infusions reduce intrathecal IgG synthesis in
the long term? Future trials should deal with these pending
questions.

7. Targeting Intrathecal IgG Synthesis:
A Whole New Paradigm in Treating MS

Intrathecal IgG synthesis appears to be partly sensitive to
steroids but never abates completely. Since the 70s, authors
have hypothesized the existence of two populations of IgG
secretory cells that differ in their sensitivity to steroids [80,
153]: one population of B-cells continuously recruited via the
attraction of chemotactic factors might be downregulated by
steroids, whereas the other population of plasma cells might
permanently reside inside the CNS and resist steroids and
irradiation [86, 153]. This hypothesis was further supported
by the demonstration of a dual population of CNS IgG secret-
ing B-cells: short-lived (days to weeks) fully differentiated
plasmablasts retaining their capacity to divide and long-lived
(years to decades) plasma cells unable to proliferate.

Some blood-infused treatments have been demonstrated
to decrease CSF B-cell levels. For example, B-cell count
decreases by 90% after blood infusion of rituximab whereas
IgG synthesis remains essentially unchanged. This dissoci-
ation suggests that B-cell depletion mainly concerns plas-
mablasts andCSFfloating cells whereasmost of the parenchy-
mal residing B-cells (probably plasma cells) remain and
secrete IgG. The small decrease in intrathecal IgG synthesis
observed after natalizumab is not the consequence of a simple
interruption of B-cell traffic into the CNS: traffic is inter-
rupted both after natalizumab and after rituximab infusion,
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either by traffic blockade or by destruction of blood B-cells.
Natalizumab probably provides an additional condition (see
above) favoring the attrition of CNS plasmablasts and/or
plasma cells. Whatever the exact cause and the duration of
the effect are, the few MS patients losing intrathecal synthesis
after steroids or natalizumab provide the proof of concept
that intrathecal IgG synthesis is reversible in MS. Intrathecal
infusion of rituximab might overcome the BBB problem and
CSF plasmablasts but no plasma cells are expected to be
completely eliminated from the CNS. Results of ongoing
trials will clarify whether CNS plasmablasts are resistant
to rituximab as observed in synovial tertiary lymphoid
organs of rheumatoid arthritis and decipher which B-cell
subpopulation drives intrathecal IgG synthesis.

Moreover, it has long been thought that the progressive
phase of MS is driven by neurodegenerative processes since
the compartmentalized inflammation consistently resists
immunosuppressive strategies. In our opinion, this point of
view cannot be validated until a long-lasting eradication of
the CNS immune reaction is obtained. Only after this goal is
achieved we will be in a position to assess the possible ben-
efits of immunosuppression in MS [86]. Future therapeutic
strategies (Figure 1) may target each component of intrathe-
cally compartmentalized autoimmunity with a “magic bullet”
(Ehrlich) associating a few of monoclonal antibodies against
key targets, including plasma cells [1]. Depending on the
primary antigenic stimulation, the estimated half-life of long-
lived plasma cells varies from a decade to one hundred
years, and prolonged survival depends on antiapoptotic
factors provided by cell niches [154]. Plasma cells expelled
from survival niches during competition challenges undergo
apoptosis [154, 155]. As a consequence, it cannot be expected
that a complete attrition of the terminally differentiated
plasma cells residing inside the CNS could be attained in a
human life time with road-blocking therapies. Rather, future
therapies should also target CNS-resident plasma cells [1].

Intrathecal IgG synthesis is a key characteristic of MS
that, once installed at the onset of MS, never fails or abates.
Intrathecal IgG synthesis is present in almost every MS
patient unlike other CSF markers, which are elevated only
in a subset of patients. For example, mean levels of common
markers like soluble sCD27 (a marker of T-cell activation),
neurofilament light-chain (marker of neurodegeneration),
and CXCL13/CXCL10 (attractive cytokines for B-cells) are
all elevated in MS series but remain normal in a large
proportion of individual MS patients. On the other hand,
IgG synthesis (BOC or IgG index) is always elevated in MS
patients and intrathecal IgG level normalization is a goal yet
to be attained with treatments. Moreover, a major decrease
in intrathecal IgG synthesis, which recapitulates the terminal
function of Ig-secreting cells, should be more predictive of
an intraparenchymal depletion of the B-cell population. We
consider that normalization of intrathecal IgG synthesis, which
is easily assessed by spinal tap, could be the main goal in future
therapeutic trials targeting intrathecal inflammation. Future
work should attempt to decipher whether the normalization
of intrathecal synthesis might be predictive of clearance
of CNS inflammation and could be associated with MS
remission.
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