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Abstract: In this study, two nitrile-functionalized spiro-twisted benzoxazine monomers, namely 2,2′-
((6,6,6′,6′-tetramethyl-6,6′,7,7′-tetrahydro-2H,2′H-8,8′-spirobi[indeno[5,6-e][1,3]oxazin]-3,3′(4H,4′H)-
diyl)bis(4,1-phenylene))diacetonitrile (TSBZBC) and 4,4′-(6,6,6′,6′-tetramethyl-6,6′,7,7′-tetrahydro-
2H,2′H-8,8′-spirobi[indeno[5,6-e][1,3]oxazin]-3,3′(4H,4′H)-diyl)dibenzonitrile (TSBZBN) were suc-
cessfully developed as cross-linkable precursors. In addition, the incorporation of the nitrile group
by covalent bonding onto the crosslinked spiro-twisted molecular chains improve the miscibil-
ity of SPE membranes with lithium salts while maintaining good mechanical properties. Owing
to the presence of a high fractional free volume of spiro-twisted matrix, the –CN groups would
have more space for rotation and vibration to assist lithium migration, especially for the benzyl
cyanide-containing SPE. When combined with poly (ethylene oxide) (PEO) electrolytes, a new type
of CN-containing semi-interpenetrating polymer networks for solid polymer electrolytes (SPEs) were
prepared. The PEO-TSBZBC and PEO-TSBZBN composite SPEs (with 20 wt% crosslinked structure
in the polymer) are denoted as the BC20 and BN20, respectively. The BC20 sample exhibited an ionic
conductivity (σ) of 3.23 × 10−4 S cm−1 at 80 ◦C and a Li+ ion transference number of 0.187. The
LiFePO4 (LFP)|BC20|Li sample exhibited a satisfactory charge–discharge capacity of 163.6 mAh g−1

at 0.1 C (with approximately 100% coulombic efficiency). Furthermore, the Li|BC20|Li cell was
more stable during the Li plating/stripping process than the Li|BN20|Li and Li|PEO|Li samples.
The Li|BC20|Li symmetric cell could be cycled continuously for more than 2700 h without short-
circuiting. In addition, the specific capacity of the LFP|BC20|Li cell retained 87% of the original
value after 50 cycles.

Keywords: spiro-twisted; benzoxazine; semi-interpenetrating polymer network; lithium-ion batteries
(LIBs)

1. Introduction

Lithium-ion batteries (LIBs) are widely used as energy storage devices in portable
electronics devices because of their high energy density and long lifetime [1]. Currently,
LIBs are considered the best option for energy storage in diverse applications, such as
electric vehicles and portable electronic devices. However, traditional LIBs contain organic
liquid electrolytes. Therefore, they have several drawbacks, including safety concerns re-
lated to short-circuiting, overcharging, thermal issues, and potential leakage of flammable
organic solvents [2]. Therefore, an urgent need exists for developing more reliable and safer
electrolyte systems. Solid polymer electrolytes (SPEs) are considered promising materials
for developing safe LIBs [3–6]. SPEs typically contain moveable polymer chains with
polar atoms, such as O, S, P, and N, at an ideal distance from the coordination site that
can efficiently dissociate lithium salts [7,8]. Wright and coworkers [9,10] found that the
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polyethylene oxide (PEO) polymer matrix can be used as an ionic conductor after doping
it with lithium salts; thus, PEO has become an irreplaceable material in SPE for decades,
mainly because of its ethylene oxide (EO) segment. The ether oxygen atoms in the EO
segment can interact with cations such as lithium ions, which makes PEO extremely disso-
ciative for a variety of salts [11,12]. Moreover, the excellent chain flexibility and segmental
mobility of the EO segment enable lithium-ion conduction [13,14]. SPEs have attracted
considerable attention from researchers as a promising candidate for use in rechargeable
batteries. Unfortunately, the high crystallinity of PEO considerably limits the conduction
and migration of lithium ions, and its low mechanical strength at high temperature limits
its practical applications. In addition, the possibility of dendrite-induced short-circuiting
limits the potential of PEO for use in LIBs [15–18]. Several attempts have been made to
obtain amorphous polyether matrices with adequate mechanical properties to facilitate
their use in practical applications. For instance, researchers have used materials such as
plasticizers [19,20], organic fillers [21–23], comb polymers [24,25], and interpenetrating
polymer networks (IPNs) [26–29] as well as methods such as copolymerization [30,31]
and cross-linking [32–34] to reduce the glass transition temperature and crystallinity of
polymers. Cross-linked polymer networks effectively improve the mechanical properties
and stability of SPEs. For example, IPN structures can be created in PEO through ultraviolet
light exposure or thermal treatment. These structures conduct lithium ions and strengthen
the polymer matrix, thereby improving the ionic conductivity and mechanical properties
of SPEs.

In our previous work [29], the design of the semi-interpenetrating polymer network
(s-IPN) structure in the PEO matrix by using the hexanol group containing spiro-twisted
cross-linkable benzoxazine cross-linking agent TSBZ6D have preliminarily enhanced the
mechanical property and the electrochemical stabilities. These SPEs were called PTx and
the x was represented to the weight percentage of the TSBZ6D in the polymer matrix. The
lithium-ion transportation will be improved thanks to the increasing fractional free volume
in the entire polymer with appropriate size distribution by the spiro-twisted structure.
Moreover, the polybenzoxazine s-IPN structure in the PEO matrix led to the impressive
enhancement in the mechanical properties. The PT20 sample exhibited a maximum stress
about 300% higher and an elongation about 3000% which was 11 times more than that of
the PEO/LiTFSI electrolyte. The presence of a mechanically toughened network help to
mitigate the propagation of lithium dendrite in LIBs during operation. However, satisfac-
tory results in terms of electrochemical properties and the battery performances still can be
further enhanced. For example, the Li|PT20|Li symmetric cell only could be continuously
cycled for 200 h (0.1 mA cm−2) in the lithium platting and stripping test along with the tLi+

of 0.17. Apart from that, the LFP|PT20|Li battery exhibited 80% retention of discharge
specific capacity of its original value. In order to tune the electrochemical properties of
SPEs, incorporating functional groups through the placement of polar subunits, such as
acrylamide, acrylonitrile, maleic anhydride, and carbonate into the polymer chains was
regarded as a useful way to increase ionic dissociation [35]. These polar subunits (like suc-
cinonitrile; SN) not only coordinate ions and thus promote the dissociation of lithium salts
in SPEs but also effectively reduce crystallinity. The −C≡N bond is approximately 1.16 Å,
which reflects the sp hybridization of the triply bonded carbon [36,37]. The polar nitrile
group has a high dipole moment, dielectric constant, and strong electron-withdrawing
ability, which indicates that it possesses high electrochemical stability over a wide elec-
trochemical window and is suitable for battery applications [36]. Moreover, because the
attractive force between cations and anions is inversely proportional to dielectric permit-
tivity, the presence of nitrile groups with high dielectric permittivity possibly enhances
the dissociation strength of lithium salts [7,38,39]. Many SPEs blended with SN [40–42]
are frequently used as key ingredients in the electrolytes of LIBs. However, the physical
blending of SN in polymer matrix always faces the loss problem during fabrication process,
and the decline of mechanical problem due to plasticizer effect [43].
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Herein, we developed new cross-linkable benzoxazine molecules comprising a spiro-
twisted core and benzyl cyanide or benzonitrile groups to prepare s-IPN electrolytes for
LIBs. The synthetic route and ring-opening reaction of the nitrile group containing spiro-
bisindane benzoxazine monomers 2,2′-((6,6,6′,6′-tetramethyl-6,6′,7,7′-tetrahydro-2H,2′H-
8,8′-spirobi[indeno [5,6-e][1,3]oxazin]-3,3′(4H,4′H)-diyl)bis(4,1-phenylene))diacetonitrile
(named as TSBZBC) and 4,4′-(6,6,6′,6′-tetramethyl-6,6′,7,7′-tetrahydro-2H,2′H-8,8′-spirobi[indeno
[5,6-e][1,3]oxazin]-3,3′(4H,4′H)-diyl)dibenzonitrile (named as TSBZBN) are depicted in
Scheme 1. The spiro-twisted core and cross-linking network derived from the cured ben-
zoxazines play a crucial role in creating a high free volume and inhibiting the crystallinity
of PEO matrices. In addition, the different functional groups of the polybenzoxazine net-
work influence the migration of lithium ions. The TSBZBC and TSBZBN benzoxazine
cross-linkers were incorporated into the PEO matrix to form an s-IPN structure for SPEs,
and the performance of the resulting LIBs was evaluated.
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Scheme 1. Synthetic route and ring-opening reaction of spiro-twist TSBZBN and TSBZBC: (i) methane-
sulfonic acid (135 ◦C, 4 h), (ii) 4-aminobenzonitrile or 4-aminobenzyl cyanide with paraformaldehyde
in xylene reflux for 24 h, and (iii) thermal treatment (200 ◦C, 1.5 h).

2. Experimental Section
2.1. Materials

Bisphenol A (BPA) and methanesulfonic acid were purchased from Alfa Aesar (Ward
Hill, MA, USA). Chloroform, anhydrous magnesium sulfate (MgSO4), 4-aminobenzonitrile,
4-aminobenzyl cyanide, and 1 N sodium hydroxide were purchased from TCI (Port-
land, OR, USA). Paraformaldehyde (extra pure grade) was purchased from Acros (Mor-
ris Plains, NJ, USA). The solid electrolyte polymer matrix, poly(ethylene oxide) (PEO)
with Mw = 600,000–1,000,000 g mole−1 was supplied by Acros (Morris Plains, NJ, USA).
Bis(trifluoromethane)sulfonimide lithium salt (LiTFSI), acetonitrile, xylene, and chloroform-
d (CDCl3) were supplied by Sigma-Aldrich (Darmstadt, Germany). The cathode (lithium-
ion phosphate, LiFePO4(LFP)) with a loading of 1.74 mAh cm−2, anode (lithium foil), and
CR2032 coin cell were purchased from UBIQ Technology Co. (Taoyuan, Taiwan).

2.2. Synthesis of Spirobisindane-Containing TSBZBC and TSBZBN

TSBZBC and TSBZBN (Scheme 1) were synthesized in a manner similar to that de-
scribed in our previous work [29]. BPA conversion in methanesulfonic acid (135 ◦C, 4 h) was
performed to obtain the spiro-twist compound 3,3,3′,3′-tetramethyl-1,1′-spirobisindane-6,6′-
diol (TSD). A mixture of 4-aminobenzyl cyanide (197.1 mmol, 26.0 g), paraformaldehyde
(388.2 mmol, 11.8 g), xylene (300 mL), and TSD (97.1 mmol, 22.5 g) was prepared. This mix-
ture was refluxed for 24 h to complete the reaction, and a yellow powder was then obtained
through precipitation. The resulting product was dissolved in chloroform, washed thrice
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with 1 N NaOH, and then dried using anhydrous MgSO4. Subsequently, the chloroform
was eliminated using a rotary evaporator to obtain yellow TSBZBC powder (yield: 70%).
TSBZBN was prepared in the same manner as mentioned in the aforementioned text by
replacing 4-aminobenzyl cyanide with 4-aminobenzonitrile.

TSBZBC:
1H nuclear magnetic resonance (NMR) (400 MHz, CDCl3): δ 7.23 (d, 2H), 7.11 (d, 2H),

6.79 (s, H), 6.25 (s, H), 5.29 (d, 2H), 4.67 (d, 2H), 3.68 (s, 2H), 2.24 (dd, 2H), 1.32 (d, 6H).
13C NMR (125 MHz, CDCl3): δ 153.6, 150.6, 148.3, 145.0, 128.8, 122.0, 119.6, 119.3, 118.3,

118.1, 112.4, 78.7, 59.5, 57.3, 50.7, 42.9, 31.8, 30.5, 22.8
Electrospray ionization mass spectrometry (ESI-MS): m/z value of C41H40N2O2Na

[M + Na]+: calculated value = 643.8 and measured value = 643.2. The analytical data
correspond to the theoretical data.

TSBZBN:
1H NMR (400 MHz, CDCl3): δ 7.58 (d, 2H), 7.08 (d, 2H), 6.83 (s, H), 6.28 (s, H), 5.32 (d,

2H), 4.73 (s, 2H), 2.27 (dd, 2H), 1.33 (d, 6H).
13C NMR (125 MHz, CDCl3): δ 153.5, 151.3, 150.8, 145.5, 133.6, 119.6, 119.0, 116.2, 114.4,

112.6, 102.5, 59.4, 57.3, 49.8, 43.0, 31.8, 30.4.
ESI-MS: m/z value of C39H36N4O2Na [M + Na]+: calculated value = 615.73 and

measured value = 615.27. The analytical data correspond to the theoretical data.

2.3. Preparation of SPE Membranes

The SPEs were prepared following the procedure described in our previous work [29].
TSBZBC or TSBZBN was added to the 5% PEO solution (in acetonitrile) in a weight ratio of
20/80 ([TSBZBC or TSBZBN]/PEO). The SPEs prepared using TSBZBC and TSBZBN are
hereafter denoted as BC20 and BN20, respectively. A certain quantity of LiTFSI (33 wt%
of lithium salt in polymer electrolyte) was added to each blend. The BC20 and BN20
samples were poured onto a polytetrafluoroethylene plate and dried at 60 ◦C for 5 h to
remove the solvent and obtain yellow-colored free-standing films. The color of these films
changed to dark brown after thermal treatment at 200 ◦C for 1.5 h. An s-IPN structure
comprising cross-linked polybenzoxazine/PEO was formed after the thermal treatment.
The thicknesses of the SPE were 200–250 µm.

2.4. General Method

NMR spectra of the prepared compounds were recorded using a Bruker Avance III
HD-600 MHz NMR spectrometer with CDCl3 as the d-solvent. The mass spectrum of the
monomer was obtained through ESI-MS (AB SCIEX, QSTAR® XL). The glass transition
temperature (Tg) of the SPEs and the thermal properties of the monomer were determined
using a differential scanning calorimeter (TA Instruments, Q20) in a N2 atmosphere under a
heating rate of 10 ◦C min−1. The dynamic mechanical analyzer (TA Instruments, Discovery
DMA 850) was used to measure the mechanical properties of the SPE under a strain rate of
1% min−1. Electrochemical impedance spectroscopy (EIS) was performed for the SPEs over
a frequency range of 1 Hz to 1 MHz (20–80 ◦C). Linear sweep voltammetry (LSV) scans
of stainless steel (SS)|SPE|Li cells were performed at 0.2 mV s−1 to analyze the electro-
chemical stability of the prepared SPE samples (80 ◦C). The Li+ ion transference number
(tLi+) of the SPE samples was determined according to the polarization of Li|SPE|Li cells
under an applied voltage of 10 mV (80 ◦C). The EIS, LSV, and transference number tests
were performed using a VSP potentiostat (Bio-Logic Science Instruments, SP-50, Seyssinet-
Pariset, France). Lithium plating and stripping tests of the Li|SPE|Li symmetric cells and
charge–discharge performance tests of the LFP|SPE|Li batteries were performed between
2.5 and 4.0 V by using a battery tester (CT-4008-5V6A Neware, Hongkong, China) (80 ◦C).

2.5. Electrochemical Characterization

The ionic conductivity of the SPE samples was determined using electrochemical
impedance spectroscopy (EIS) at temperatures of 20–80 ◦C. The SPE samples (ranging in
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thickness from 150 to 170 µm) were cut into disks (area = 1.32 cm2). The resistance of the
polymer electrolyte membrane (Rb) was measured using the alternating current impedance
method, where the amplitude of the applied voltage was 10 mV (1 MHz to 1 Hz). Thereafter,
its ionic conductivity (σ) was evaluated using the equation σ = d/(Rb ×A) [44].

σ: ionic conductivity (S cm−1)
d: thickness of membrane (cm)
A: area of SPE membrane (cm2)
Rb: resistance (Ω)
The lithium-ion transference number (tLi+) was computed using the Bruce–Vincent–

Evans equation as follows: tLi+ = Is(∆U∆R0I0)
I0(∆U−RSIS)

[45,46]. Li|SPE|Li samples were tested at
80 ◦C by using a polarization voltage (∆U) of 10 mV. The initial current (I0) and initial
interfacial resistance (R0) before polarization were measured through EIS under the 10 mV
(1 MHz to 1 Hz) amplitude of the applied voltage.

The electrochemical stability of the electrolyte was studied by conducting liner sweep
voltammetry (LSV) measurements for the Li|SPE|stainless steel (SS) cells at 80 ◦C un-
der a constant scan rate of 0.2 mV s−1 from 3 to 6 V. The stripping/plating tests of the
Li|SPE|Li symmetric cells were performed at a current density of 0.1 mA cm−2 at 80 ◦C.
The LFP|SPE|Li cell was assembled for the battery test, and galvanostatic charge–discharge
cycling was performed over a voltage range of 2.5–4.0 V at current rates of 0.1–0.5 C. All
the electrochemical measurements were performed using samples assembled in CR2032
coin cells in an Ar atmosphere to avoid the side effects of humidity and air, and the cells
were maintained at 80 ◦C overnight before the tests.

3. Results and Discussion
3.1. Characterization of TSBZBC and TSBZBN

The nitrile-group-functionalized spiro-twist benzoxazine monomers TSBZBC and
TSBZBN were prepared through a reaction among diol (TSD), primary amine containing
a nitrile group (4-aminobenzonitrile, 4-aminobenzyl cyanide), and paraformaldehyde
(Scheme 1). The synthesis route was similar to that described in our previous study [29].
The 1H NMR spectra of TSBZBC and TSBZBN are depicted in Figures S1 and S2, respectively.
The chemical shifts at 1.27–1.38 and 2.18–2.32 ppm correspond to the –CH3 and –CH2–
bonds of the spirobisindane structure. For TSBZBC, the chemical shifts of the cross-linkable
benzoxazine group were confirmed by specific –CH2– signals of the oxazine ring, namely
Ar-CH2-N and O-CH2-N, which appeared at 4.68 and 5.31 ppm [47], respectively, at
positions f and e, respectively (Figure S1). For TSBZBN, the oxazine ring appeared at
4.73 and 5.33 ppm at positions f and e, respectively (Figure S2). Furthermore, according
to the chemical shifts of the aromatic protons resonated at 7.12 (position d) and 7.25
(position b) ppm (TSBZBC) and at 7.1 (position d) and 7.55 (position b) ppm (TSBZBN), the
apparent shift of position b in TSBZBN was mainly caused by the strong polar nitrile group
on the benzene ring. Moreover, the aryl protons (-CH2-) at position g resonated at 3.68 ppm
for TSBZBC. The results of 13C NMR characterization (Figures S3 and S4) further confirmed
the structures of TSBZBC and TSBZBN. Characteristic peaks of the spirobisindane core
were observed at 59.5, 57.3, 42.9, 31.8, and 30.5 ppm for TSBZBC and at 59.4, 57.3, 43.0,
31.7, and 30.5 ppm for TSBZBN. Moreover, characteristic peaks of oxazine rings were
observed at 78.7 and 50.7 ppm for TSBZBC and at 102.5 and 49.9 ppm for TSBZBN [48].
The ESI-MS spectra of TSBZBC and TSBZBN (Figures S5 and S6, respectively) indicate their
[M + Na]+ results. The aforementioned results confirm the successful synthesis of TSBZBC
and TSBZBN.

3.2. Thermal Properties of TSBZBC, TSBZBN, and Their SPEs

Figure 1 shows the differential scanning calorimetry thermogram used to investigate
the thermal transitions of the synthesized s-IPN SPEs and their precursor in the temperature
range of−70 to 150 ◦C at a scan rate of 10 ◦C min−1. The ring-opening cross-linking reaction
of the benzoxazine segment occurs at about 200–250 ◦C [49–54]. According to the monomer
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reaction scan results presented in Figure 1a, an exothermal peak starting at 200 ◦C and
reaching its maximum value at about 260 ◦C is present in the thermograms of the two
aforementioned benzoxazine monomers. This phenomenon implies that the thermal cross-
linking reaction started in the aforementioned temperature zone, which is consistent with
the condition described in the literature. In addition, distinct crystallization temperature
(Tc) (143.8 ◦C) and melting point (Tm) (88.7 ◦C) peaks were observed for the TSBZBN
monomer. However, no Tc peak was observed for the TSBZBC monomer possibly because
of the presence of an additional sigma bond between the benzene ring and the nitrile group
of the benzyl cyanide group. The rotation of the single bond of the benzyl cyanide group
could obstruct the packing and movement of the monomer. Moreover, because the TSBZBN
monomer had a higher Tm value than did the TSBZBC monomer, its benzene ring was
stacked more easily than that of the TSBZBC monomer.
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Figure 1b shows the thermal properties of the two SPEs prepared using the TSBZBC
and TSBZBN monomers as the cross-linking agents, respectively. No Tc or Tm peaks were
observed for the BC20 and BN20 samples. Thus, the s-IPN structure effectively inhibited
PEO crystallinity, which is consistent with the results of our previous study [29]. In the
series of functionalized s-IPN SPEs, the PT20, BC20, and BN20 SPEs had the Tg in the same
order. Among all, the BN20 exhibited the largest Tg of −39.7 ◦C owing to the incorporation
of the aromatic ring and the higher possibility of packing ability. Nevertheless, a lower Tg
value was observed for the BC20 sample than for the BN20 sample possibly because of the
easier movement of the functional group in the BC20 sample. In addition, the mechanical
properties of the SPE samples were measured by a dynamic mechanical analyzer (DMA).
As shown in Figure S7, the BC40 sample exhibited 0.38 MPa in tensile stress and 40% in
tensile strength. However, the BC20 sample possessed extreme elastomeric properties so
that its mechanical properties measurement exceeded the DMA detection limit.

3.3. Lithium-Ion Conductivity

The ionic conductivities of SPEs were decreased with increasing crosslinked degree
of polybenzoxazine due to the lower mobility of the polymer segments (Table S1). The
ionic conductivities, processibility, and mechanical properties were taken into account for
choosing the SPE sample for further study. Based on the above, the BC20 and BN20 samples
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were chosen for electrochemical performance tests. SPEs should have good electrochemical
performance to ensure that they can be used in practical applications. As depicted in
Figure 2, the ionic conductivities of these newly developed s-IPN SPEs were measured
in the temperature range of 20–80 ◦C. The ionic conductivities of the SPEs increased with
increasing temperature because of the faster transfer of isolated ions and higher mobility of
polymer chain segments at elevated temperatures [55–57]. The ionic conductivities of the
samples had the same order at various temperatures, and their magnitudes were higher
than 10−4 S cm−1 at 80 ◦C (3.23× 10−4 S cm−1 for the BC20 sample and 2.63× 10−4 S cm−1

for the BN20 sample). Moreover, the relatively high ionic conductivities of the BC20 sample
at temperatures exceeding 80 ◦C can possibly be ascribed to the presence of an additional
sigma bond in the benzyl cyanide group compared to that in the benzonitrile group in
the BN20 sample. The rotation of this single bond could obstruct packing and result in
the easier movement of molecules. This result is consistent with the thermal properties
presented in Figure 1.
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A comparison of the effects of different functional groups on the ionic conductivities of
the SPEs is summarized in Table 1. The incorporation of nitrile-group functionalized spiro-
containing polybenzoxazine networks, along with the presence of abundant intermolecular
interactions between the -OH group of polybenzoxazine, nitrile group and LiTFSI, will
enhance the dissociation of the lithium-salt. However, in the samples with higher contents
of aromatic rings (BC20 and BN20) compared with that hexanol side group series PT20
SPE, the migration of charge carriers might be hindered, which might lower their ionic
conductivities marginally. Moreover, the difference in the molecular structure between the
BC20 and BN20 sample at a smaller scale is responsible for the higher ionic conductivity of
BC20 sample.
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Table 1. Ionic conductivity (S cm−1) values for the BC20, BN20, and PT20 samples at various
temperatures (◦C).

Temperature (◦C)

Ionic
Conductivities (S cm−1)

Sample

BC20 BN20 PT20 [29]

RT 7.047× 10−6 1.060× 10−5 1.749× 10−5

40 3.507× 10−5 4.011× 10−5 6.138× 10−5

60 1.419× 10−4 1.072× 10−4 1.769× 10−4

80 3.238× 10−4 2.633× 10−4 3.539× 10−4

RT: room temperature

3.4. Lithium-Ion Transference Number (tLi+) and Electrochemical Stability

A higher Li+ transference number (tLi+) represents more restricted anion movement,
which is a crucial factor affecting LIBs. A higher tLi+ can decrease the polarization effect
during the charging–discharging process [7,58,59]. Figure 3 shows the change in current
over 2000 s after polarization of the Li|SPE|Li cells at 10 mV with an EIS probe. The tLi+

values of the BC20 and BN20 samples were calculated to be 0.187 and 0.143, respectively, by
using the Bruce–Vincent–Evans equation. The impedance data of the Li|SPE|Li cells were
fitted to obtain the equivalent circuit by using the inserted model of the circuit depicted in
Figure 3. R1 represents the bulk resistance of the electrolyte whereas the interface resistance
such as the solid electrolyte interface formed on the lithium electrode (R2) and the charge
transfer resistance (R3) lead to the diameter of the semicircle. The charge transport at low
frequencies used a short Warburg element (W1) to describe.
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Furthermore, the inclusion of different nitrile moieties, namely benzyl cyanide and
benzonitrile, which have different electron-withdrawing abilities into the s-IPN structure,
influences the polarization of lithium symmetric cells. A rapid decay in the current density
of the BN20 electrolyte yielded a current ratio between the initial (I0) and steady (ISS) states
of 0.208, which is consistent with the values obtained for most PEO-based electrolytes in
the literature [60,61]. The current ratio of the BC20 electrolyte was 0.268. The decrease in
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cell polarization caused by the weaker electron-withdrawing ability of the BC20 electrolyte
is especially noteworthy. The two aforementioned BC20 and BN20 samples are capable of
blocking concentration polarization on the SPE surface [62,63].

The LSV curves recorded at potentials of 3–6 V (vs. Li+/Li) under a scanning rate
of 0.2 mVs−1 at 80 ◦C (Figure 4) indicate the electrochemical stability windows of the
BC20 and BN20 SPEs. The incorporation of the spiro-twist nitrile-side-functionalized
polybenzoxazine s-IPN structure can enhance the oxidation resistance of the SPEs. No
notable oxidation peak was detected at voltages of up to 5.38V in BC20 sample and in BN20
sample. Both the two samples exhibited a rather higher electrochemical window when
compare with the PEO/LiTFSI electrolyte. According to the literature [29,64,65], oxidation
of the PEO electrolyte starts at approximately 4 V. −C≡N···Li+···(EO)n coordination can
effectively delocalize the lone pair electrons in the EO units. The aforementioned results in-
dicate that the s-IPN-bearing benzyl cyanide group is beneficial for stabilizing the PEG/Li+

coordination structure [61] because of its electron-withdrawing ability. Thus, the BC20
sample was oxidized at potentials higher than 5.38 V (vs. Li+/Li). This result revealed that
the sample possessed anodic stability without considerable decomposition in the required
charge–discharge potential range of 3–5 V, which indicated the suitability of this sample for
further examination.
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Figure 4. Linear sweep voltammetry curves of SS|BC20|Li and SS|BN20|Li samples at 80 ◦C.

To investigate whether SPE possessed the excellent stability required for its use in
intimate contact with lithium metal anodes, we performed lithium plating/stripping
tests on symmetric lithium cells under a constant current density of 0.1 mA cm−2 with
a plating/stripping duration of 1 h at 80 ◦C (Figure 5). According to the galvanostatic
discharge–charge profiles presented in Figure 5, the initial voltage polarization of the
Li|BC20|Li and Li|BN20|Li cells occurred at around 60 and 38 mV, respectively. The
Li|BC20|Li cell could be continuously cycled for more than 2700 h without short-circuiting,
and a small voltage polarization was obtained, which indicated homogeneous contact and
stable lithium plating/stripping behaviors between lithium metal and the BC20 sample. By
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contrast, the Li|BN20|Li cell could be continuously cycled for only approximately 900 h
and the Li|PT20|Li cell for about 200 h [29]. This result confirms that the incorporation
of the aforementioned nitrile-group-functionalized spiro-twisted polybenzoxazine s-IPN
structures can solve the problems caused by uncontrollable lithium dendrite growth in
a pristine PEO sample, as described in the literature. Moreover, the rotatable highly
polar nitrile group might enhance the transportation of lithium ions; therefore, the BC20
electrolyte was more stable.
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Figure 5. Lithium plating/stripping tests of Li|BC20|Li and Li|BN20|Li symmetric batteries at
80 ◦C.

3.5. Electrochemical Performance

The cell performances of the BC20 and BN20 samples were evaluated employing an
LFP cathode and a lithium metal anode. The potential–capacity curves of the LFP|BC20|Li
and LFP|BN20|Li cells are presented in Figure 6. The LFP|BC20|Li cell exhibited an initial
discharge capacity of 163.6 mAh g–1 with a coulombic efficiency of approximately 99%
(Figure 6a). Its specific capacity decreased as the current rate increased, and the specific
capacity subsequently increased as the current rate decreased to 0.1 C (163.6, 134.5, 64.8,
and 20.5 mAh g−1 at 0.1 C, 0.2 C, 0.3 C, and 0.5 C, respectively, and 159.1 mAh g−1 when
returning backing to 0.1 C), which indicated the satisfactory rate capability of the cell.
Moreover, the LFP|BN20|Li cell exhibited an initial discharge capacity of 149 mAh g–1

with a coulombic efficiency of approximately 97% (Figure 6b). The specific capacity of this
cell decreased with increasing current rates, and it subsequently increased when current
rate was decreased to 0.1 C (149, 80.8, 40.2, and 20.3 mAh g–1 at 0.1 C, 0.2 C, 0.3 C, and 0.5 C,
respectively, and 134.9 mAh g–1 when returning back to 0.1 C). The potential–capacity
curves at the current rates of 0.1–0.2, which were recorded during the charge–discharge
processes of the BC20 and BN20 samples, exhibit a stable and clear voltage plateau arising
from the Li/Li+ redox reaction. This observation indicated a good reversible process
in the battery. Moreover, the consumption of lithium ions during the cycling process
led to the polarization effect and a partly irreversible electrode reaction. Furthermore,
the thickening of the solid electrolyte interphase film led to a decrease in the specific
discharge capacity of the SPE at high C-rates [66]. This functional s-IPN structure design
can help alleviate the overcharging phenomenon in pristine PEO electrolytes, which might
be caused by the poor mechanical properties of the PEO electrolyte and results in the
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formation of lithium dendrites [67]. According to the ionic conductivities and tLi+ results
presented in Figures 2 and 3, respectively, lower ionic conductivities and tLi+ values of the
BN20 sample resulted in higher internal resistance and lower reaction kinetics of active
materials during the generation of lithium ions and electrons. Therefore, at the same
current rate, the battery capacity of the LFP|BN20|Li cell was lower than that of the
LFP|BC20|Li cell. Furthermore, the C-rate and cyclic performance of the assembled cells
are presented in Figure 7. The cycle stability of the LFP|BC20|Li cell was superior to
that of the LFP|BN20|Li cell. After 50 charge–discharge cycles, the LFP|BC20|Li cell
retained 87.2% of its discharge capacity in the initial state, whereas the LFP|BN20|Li cell
retained only 59.2% of its discharge capacity in the initial state. It is important to note that
an abnormality of a coulombic efficiency larger than 100% at 0.5 C was found in the cycles
of 16–20 for the LFP|BC20|Li cell. The rather thick BC20 films (200–250 µm) in this study
might cause the concentration polarization phenomenon and lead to a coulombic efficiency
larger than 100% at 0.5 C. Therefore, a BC20 sample of (150 µm) was further fabricated for
the lithium battery with the same operating condition. The abnormality of a coulombic
efficiency larger than 100% at 0.5 C was not observed for the battery with a thinner SPE
film (Figures S8 and S9).
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Figure 7. C-rate and cycling performance of the LFP|BC20|Li and LFP|BN20|Li cells at 80 °C. 
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The electrochemical performance comparison of SPEs in this work and those reported
in the literature is shown in Table S2 [29,65,68–72]. The SPEs in this work exhibited
comparable electrochemical properties for the LIBs. Especially, the BC20 sample in the
platting and stripping test presented a continuous cycle for over 2700 h (0.1 mA cm−2). The
presence of benzyl cyanide groups in the BC20 sample would certainly bring about better
compatibility among polybenzoxazine networks, PEO matrix, and lithium salts [61]. The
incorporation of the rather flexible high polar groups such as benzyl cyanide groups, instead
of benzonitrile groups, in the SPE sample might provide a viable way for fabricating a high-
performance lithium battery. In addition, when compared with our previous work [29], the
electrochemical properties were significantly improved by replacing the hexanol group-
containing spiro-twisted benzoxazine (TSBZ6D) with the benzyl cyanide group-containing
spiro-twisted benzoxazine (TSBZBC). The benzyl cyanide group-containing BC20 sample
could be continuously cycled for over 2700 h in the plating/stripping test along with the
tLi+ of 0.187, whereas the hexanol group-containing PT20 sample could be continuously
cycled for only 200 h in the plating/stripping test along with the tLi+ of 0.170. In addition,
the LFP|BC20|Li battery possessed 87.2% whereas the LFP|PT20|Li battery possessed
80.0% of its initial discharge capacity after 50 cycles.
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Figure 7. C-rate and cycling performance of the LFP|BC20|Li and LFP|BN20|Li cells at 80 °C. Figure 7. C-rate and cycling performance of the LFP|BC20|Li and LFP|BN20|Li cells at 80 ◦C.

4. Conclusions and Outlook

In this study, lithium batteries based on two SPEs, benzyl cyanide-containing BC20
and benzonitrile-containing BN20, were developed. The BC20 sample exhibited an ionic
conductivity of 3.23 × 10−4 S cm−1 along with a tLi+ of 0.187, whereas the BN20 sample
exhibited an ionic conductivity of 2.63 × 10−4 S cm−1 along with the tLi+ of 0.143. Apart
from that, the BN20 sample can be continuously cycled for 900 h and the BC20 sample can be
continuously cycled for over 2700 h in the plating/stripping test. The LFP|BC20|Li battery
possessed 87.2% of its initial discharge capacity after 50 cycles. Better electrochemical
properties were achieved by the benzyl cyanide-containing BC20 sample with relatively
mobile nitrile groups. The robustness of the proposed LFP|BC20|Li cell is ascribed to
interactions between abundant hydrogen bonding sites and polar species (such as TFSI-

anions), and −C≡N···Li+···(EO)n coordination can effectively delocalize the lone pair
electrons of EO units that immobilize anions, thereby enhancing the transfer of lithium ions.
Thus, through the suitable functional structural design of the spiro-twisted s-IPN structures
in SPEs, one can develop advanced polymer electrolytes with synergistic improvements in
electrochemical stability, ionic conductivity, and battery performance.
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//www.mdpi.com/article/10.3390/polym14142869/s1, Figure S1: 1H NMR spectrum of TSBZBC,
Figure S2: 1H NMR spectrum of TSBZBN, Figure S3: The 13C NMR spectra for TSBZBC, Figure S4:
The 13C NMR spectra for TSBZBN, Figure S5: The ESI mass spectra of TSBZBC, Figure S6: The ESI
mass spectra of TSBZBN, Figure S7: DMA stress−strain curves of the BC20 and BC40 sample, Figure
S8: Cycling performance of the LFP|BC20|Li cell at 0.5C (80 ◦C), Figure S9: Charge/discharge profile
of the LFP|BC20|Li cell at 80 ◦C, Table S1: The ionic conductivities result of the BC10, BC20, BC30,
and BC40 samples at various temperatures, Table S2: Comparison of SPEs in this work and those
reported in literature.
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