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Abstract: Tryptophan has a unique role as a nutritional signaling molecule that regulates protein
synthesis in mouse and rat liver. However, the mechanism underlying the stimulating actions of
tryptophan on hepatic protein synthesis remains unclear. Proteomic and metabolomic analyses were
performed to identify candidate proteins and metabolites likely to play a role in the stimulation
of protein synthesis by tryptophan. Overnight-fasted rats were orally administered L-tryptophan
and then sacrificed 1 or 3 h after administration. Four differentially expressed protein spots were
detected in rat liver at 3 h after tryptophan administration, of which one was identified as an ornithine
aminotransferase (OAT) precursor. OAT is the main catabolic enzyme for ornithine, and its expression
was significantly decreased by tryptophan administration. The concentration of ornithine was
increased in the liver at 3 h after tryptophan administration. Ornithine is a precursor for polyamine
biosynthesis. Significantly increased concentrations of polyamines were found in the liver at 3 h after
administration of tryptophan. Additionally, enhanced hepatic protein synthesis was demonstrated
by oral administration of putrescine. We speculate that the increase in ornithine level through
suppression of OAT expression by tryptophan administration may lead to accelerated polyamine
synthesis, thereby promoting protein synthesis in the liver.

Keywords: tryptophan; protein synthesis; omics; liver; rat

1. Introduction

Tryptophan (Trp) is an essential amino acid that cannot be synthesized in the body and must
be supplied by the diet [1,2]. The principal role of Trp is a constituent of proteins. Of the 20 amino
acids that comprise proteins, Trp is present in the lowest proportion in both proteins and plasma [3].
Therefore, Trp is relatively less available than the other amino acids and is thought to play a rate-limiting
role during protein synthesis [1]. Furthermore, it has been reported that Trp has a unique role as a
nutritional signaling molecule that regulates protein synthesis in mouse and rat liver, in addition to its
importance as a constituent of protein. Sidransky et al. demonstrated that a single tube feeding of
Trp to fasted animals (mice or rats) rapidly shifted hepatic polyribosomes toward heavier aggregation
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states and increased hepatic protein synthesis as measured in vivo and in vitro [4,5]. Subsequently,
they reported a Trp receptor in the hepatic nuclear envelope, and that the binding of Trp to this receptor
is saturable, stereospecific, and of high affinity [6]. They speculated that this specific binding of Trp to
hepatic nuclei plays a vital role in the ability of Trp to rapidly stimulate hepatic protein synthesis [7,8].
However, the mechanism underlying the stimulating actions of Trp on hepatic protein synthesis has
not been clearly elucidated.

Trp is also a precursor for a variety of biologically active compounds, including serotonin,
melatonin, tryptamine, quinolinic acid, and kynurenic acid. In addition, Trp is a precursor for
the coenzymes nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide
phosphate (NADP), and can replace niacin as an essential nutrient. Several recent studies highlight
the importance of serotonin in liver regeneration after partial hepatectomy [9]. Treatment with L-Trp
increased hepatic mammalian target of rapamycin (mTOR) phosphorylation after food deprivation,
and serotonin production was crucial for Trp-mediated mTOR phosphorylation in the liver [10].
The phosphorylation of mTOR leads to increased protein synthesis via phosphorylation of downstream
targets such as eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and ribosomal protein S6
kinase (S6K), leading to cell growth and proliferation. Therefore, we cannot exclude the possibility
that Trp metabolites contribute to the Trp-induced stimulation of hepatic protein synthesis.

Recently, “omics” technologies such as genomics, proteomics, and metabolomics have
become widely popular as complementary technologies for conventional analytical methodologies.
These powerful discovery tools allow studies of the functions of amino acids and enable in-depth
investigation of the regulatory roles of dietary amino acids as a nutritional signaling molecule in gene
and protein expression. Trp has been suggested to stimulate protein synthesis at the translational
level because polysome aggregation was observed shortly after oral administration of Trp to rats [4].
Therefore, we focused on the acute effects of Trp as a nutritional signaling molecule on protein synthesis.
In the present study, proteomic and metabolomic analyses were performed to identify likely candidate
proteins and metabolites that play a role in the stimulation of protein synthesis by Trp.

2. Materials and Methods

2.1. Animals and Experimental Design

The animal care protocol for this experiment was approved by the Utsunomiya University Animal
Research Committee under the Guidelines for Animal Experiments of Utsunomiya University (approval
number: A10-0014, approval date: 22 April, 2010). Three-week-old male Wistar rats purchased from
Clea Japan (Tokyo, Japan) were individually housed in stainless steel wire cages and maintained
at 22 ◦C under a 12-h light-dark cycle (lights on from 6:00–18:00). They were allowed free access
to water and AIN-93G [11] standard diet for 10 days, then were food-deprived for 18 h from 15:00
to 9:00 the following morning. The control group received an equivalent volume of distilled water
by oral gavage as a vehicle control and sacrificed after food-deprivation. The rats in the treatment
groups were sacrificed after 1 or 3 h following oral gavage of L-Trp or putrescine (Put). L-Trp was
suspended in distilled water and administrated at 135 mg/100 g bw. The amount of Trp administered
and experimental design were determined based on a previous study, which indicated that the single
oral administration of 135 mg/100 g bw of leucine was sufficient to stimulate protein synthesis in
rat skeletal muscle by accelerating translation initiation [12–14]. This amount of Trp is equivalent to
7–10 times the amount of Trp consumed in a 24-h period by age- and strain-matched rats allowed free
access to the AIN-93G standard diet. Put was similarly suspended in distilled water and 8.4 mg (1/16),
16.9 mg (1/8), or 33.8 mg/100 g bw (1/4) was administered. The amount of Put corresponded to 1/16,
1/8, and 1/4 of Trp administered (135 mg/100 g bw). The number of animals used in each experiment is
indicated in the figure legends.
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2.2. Sample Collection

The rats were killed by decapitation. Serum was obtained from the trunk blood for measurement
of amino acid concentrations using an automatic amino acid analyzer (JLC500-V2, JEOL Ltd., Tokyo,
Japan) after sulfosalicylic acid treatment. Immediately after the blood sample was taken, the liver was
excised and weighed. For proteomic analysis, the collected liver was cut into small pieces with scissors
in an ice-cold phosphate buffered saline. After centrifugation at 1000× g for 10 min at 4 ◦C, the resulting
pellet was homogenized in four volumes of an ice-cold homogenization buffer consisting of 7 M urea,
2 M thio-urea, 4% CHAPS, and 25 mM Tris-HCl. Homogenates were centrifuged at 100,000× g for
20 min at 4 ◦C and the supernatants were stored at −80 ◦C until proteomic analysis was performed.
The remaining portion of the liver was homogenized in seven volumes of an ice-cold homogenization
buffer consisting of 20 mM N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (pH 7.4), 100 mM
KCl, 0.2 mM EDTA, 2 mM ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid, 1 mM
dithiothreitol, 50 mM NaF, 50 mM β-sodium glycerophosphate, 0.1 mM phenylmethylsulfonyl fluoride,
1 mM benzamide, and 0.5 mM sodium orthovanadate (V) using a Dounce homogenizer (Wheaton,
Millville, NJ, USA). The homogenates were centrifuged at 10,000× g for 10 min at 4 ◦C. The supernatant
was combined with an equal volume of 2×SDS sample buffer (2 mL of 0.5 M Tris, pH 6.8, 2 mL of
glycerol, 2 mL of 10% SDS, 0.2 mL of β-mercaptoethanol, 0.4 mL of a 4% solution of bromophenol
blue, and 1.4 mL of water to a final volume of 8 mL), heated for 3 min at 100 ◦C, and stored at −80 ◦C
until Western blotting analysis was performed. For metabolomic analysis, the liver was collected and
immediately snap-frozen using liquid nitrogen, then stored until further analysis.

2.3. Proteomic Analysis

2.3.1. Two-Dimensional Electrophoresis

The protein concentrations of the liver extracts were determined by the Bradford method using a
Bio-Rad protein assay kit (Bio-Rad Laboratories, Hercules, CA, USA). All steps of the two-dimensional
electrophoresis (2-DE) analyses were conducted in pairs comprising the control and test samples.
Isoelectric focusing was performed using Immobiline Dry Strip Gels, pH 3–10 (GE Healthcare,
Little Chalfont, UK) in an Ettan IPGphor system (GE Healthcare). Each protein sample (500 µg) was
focused at 70 kV/h with four step voltages from 500 to 8000 V. After isoelectric focusing, the gel strip
was placed on a 12.5% (w/v) polyacrylamide gel (18 × 16 cm) and proteins were separated according
to their molecular weight. Subsequently, the gel was stained with Coomassie Brilliant Blue (CBB) to
visualize the protein spots.

2.3.2. Gel Analyses

CBB-stained gels were analyzed following the methods described previously [15] using the
Melanie Viewer version 3.08 software (Geneva Bioinformatics (GeneBio) SA, Geneva, Switzerland)
and Image Master 2D Platinum 5.0 software (GE Healthcare). After the image analysis, protein spots
whose expression changed significantly in four or more of six independent experiments were subjected
to mass spectrometry.

2.3.3. Mass Spectrometry

For protein identification, chosen stained protein spots in the CBB-stained gels were digested
in-gel with trypsin, then analyzed by matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) using an Autoflex II TOF/TOF system (Bruker Daltonics GmbH,
Faellanden, Switzerland). Peptide mass fingerprint spectra were matched against the National Center
for Biotechnology Information (NCBI) non-redundant protein database or the Swiss-Prot protein
database using the Mascot protein identification software (Matrix Science Ltd., London, UK). The mass
tolerance of the fragment ions was 0.5 Da, and searches specified trypsin cleavages. The significance of
each identification was evaluated by calculating the probability-based MOWSE score.
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2.4. Immunoblotting

Proteins separated by 2-DE or SDS-PAGE were transferred to a PVDF membrane and then
immunoblotted with anti-BCKDE1α (branched chain keto acid dehydrogenase E1 alpha) (#sc-271538,
Santa Cruz Biotechnology, Inc. Dallas, TX, USA), anti-OAT (ornithine aminotransferase) (#sc-374243,
Santa Cruz Biotechnology, Inc.), anti-ODC (ornithine decarboxylase) (#sc-33539, Santa Cruz
Biotechnology, Inc.), anti-S6K1 (ribosomal protein S6 kinase beta-1) (#sc-230, Santa Cruz Biotechnology,
Inc.) and anti-4E-BP1 (eukaryotic translation initiation factor 4E-binding protein 1) (#sc-6936, Santa Cruz
Biotechnology, Inc.) antibodies. After incubation with appropriate secondary antibodies, the proteins
were visualized using enhanced chemiluminescence (ECL, GE Healthcare). Pixel intensities of
the immunoreactive bands were quantified using the Image Master 2D Platinum 5.0 software
(GE Healthcare) or Image Lab software (Bio-Rad). The phosphorylation of S6K1 and 4E-BP1 was
determined as described previously [12–14].

2.5. Metabolomic Analyses

Metabolome analyses were carried out by Human Metabolome Technologies Inc. (Yamagata,
Japan) following methods reported previously [16–18]. Briefly, 100 mg of frozen liver sample was
plunged into 500 µL of methanol containing 50 µM internal standards. The tissue was homogenized
using a homogenizer (Shake Master NEO, BMS-M10N21 Biomedical Science, Tokyo, Japan), then the
sample was mixed with 500 µL chloroform and 200 µL Milli-Q water and centrifuged at 2300× g at
4 ◦C for 5 min. Each group was pooled into one sample and 400 µL of pooled sample was filtered
by centrifugation through a Millipore 5-kDa cutoff filter (Millipore-Japan, Tokyo, Japan) at 9100× g
at 4 ◦C for 120 min. The filtrate was re-suspended in 50 µL Milli-Q water for CE-MS analysis.
CE-TOFMS analysis was performed using an Agilent CE-TOFMS system (Agilent Technologies,
Santa Clara, CA, USA). The detected peak data were analyzed using the MasterHands version 2.9.0.9
software (Keio University, Tokyo, Japan). The peaks were identified by matching m/z values and
migration times with the HMT metabolite library. The tolerance for migration time and m/z were set to
0.5 min and 10 ppm, respectively. All concentrations of identified compounds were calculated by a
single-point calibration with a standard compound. Redundant features, such as isotopic-, fragment-,
and noise-derived peaks were removed before statistical analysis.

2.6. Statistical Analyses

Data are expressed as means ± standard error of the mean (SEM). Statistical significance between
multiple groups were assessed by one-way analysis of variance followed by the Tukey–Kramer multiple
comparisons test. Student’s t-test was used for statistical comparisons of two groups. Metabolome data
comparison was performed using Welch’s t-test. Differences were considered significant at p < 0.05.

3. Results

3.1. Effects of Trp Administration on Serum Amino Acid Levels

The effect of Trp administration on serum amino acid concentrations was determined. At 1 h after
administration of Trp, the serum concentrations of Trp (32.3-fold), taurine (Tau) (1.6-fold), aspartic acid
(Asp) (6.8-fold), threonine (Thr) (1.3-fold), glutamic acid (Glu) (1.8-fold), and isoleucine (Ile) (1.3-fold)
were significantly increased compared with the control group (Table 1). The serum concentrations of
lysine (Lys) (0.7-fold) and arginine (Arg) (0.8-fold) decreased significantly at 1 h after Trp administration
(Table 1). At 3 h after administration of Trp, Trp (26.7-fold), Tau (1.4-fold), Asp (7.7-fold), Glu (2.1-fold),
glutamine (Gln) (1.4-fold), citrulline (Cit) (1.4-fold), alpha-aminobutyric acid (α-ABA) (2.2-fold),
branched-chain amino acids (BCAAs) (valine (Val) (1.6-fold), leucine (Leu) (1.6-fold), Ile (1.4-fold)),
ornithine (Orn) (2.1-fold) and histidine (His) (1.5-fold) levels were significantly higher than those
in the control group (Table 1). The levels of glycine (Gly) (0.6-fold), Lys (0.5-fold), Arg (0.8-fold),
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and hydroxyproline (hypro) (0.7-fold) were significantly decreased at 3 h after Trp administration
compared with the control group (Table 1).

Table 1. Serum amino acid concentrations in rats administered Tryptophan (Trp).

Amino Acid
Control

(nmol/mL)
Trp 1h

(nmol/mL)
Trp 3h

(nmol/mL)

Ratio vs. Control

Trp 1h Trp 3h

P-Ser 8.78 ±1.75 8.73 ±0.85 12.26 ±1.95 1.0 1.4
Tau 327.62 ±18.54 a 523.95 ±37.82 b 448.06 ±29.40 b 1.6 1.4

Urea 3869.69 ±437.71 3710.70 ±308.08 3278.09 ±260.76 1.0 0.8
Asp 14.87 ±1.502 a 100.41 ±10.28 b 114.11 ±27.90 b 6.8 7.7
Thr 285.51 ±10.21 a 370.00 ±12.49 b 274.05 ±16.69 a 1.3 1.0
Ser 240.41 ±2.92 283.73 ±8.87 266.28 ±19.97 1.2 1.1
Asn 27.81 ±1.38 32.35 ±1.95 29.46 ±2.25 1.2 1.1
Glu 130.72 ±13.50 a 238.00 ±4.104 b 279.12 ±34.58 b 1.8 2.1
Gln 851.87 ±49.66 a 1043.51 ±32.76 ab 1153.35 ±67.22 b 1.2 1.4
Gly 313.06 ±10.69 a 247.47 ±12.76 ab 177.92 ±24.04 b 0.8 0.6
Ala 290.56 ±12.28 335.77 ±42.77 349.12 ±46.00 1.2 1.2
Cit 77.56 ±4.20 a 84.75 ±4.59 a 107.91 ±7.18 b 1.1 1.4

α-ABA 32.88 ±1.55 a 39.89 ±1.89 a 71.02 ±3.81 b 1.2 2.2
Val 143.72 ±5.66 a 188.51 ±5.49 ab 226.90 ±16.36 b 1.3 1.6
Met 49.75 ±2.06 49.41 ±2.46 50.26 ±4.61 1.0 1.0

Cysta 1.35 ±0.41 1.49 ±0.12 1.67 ±0.38 1.1 1.2
Ile 89.33 ±3.62 a 113.50 ±2.46 b 129.27 ±8.06 b 1.3 1.4

Leu 124.44 ±5.73 a 156.84 ±2.82 a 201.45 ±15.59 b 1.3 1.6
Tyr 80.86 ±4.65 82.45 ±1.93 78.07 ±3.16 1.0 1.0
Phe 65.73 ±4.01 73.60 ±3.06 75.78 ±3.11 1.1 1.2
NH3 191.52 ±18.68 181.06 ±9.92 209.50 ±21.01 0.9 1.1
Orn 38.19 ±1.99 a 37.63 ±2.46 a 79.37 ±6.20 b 1.0 2.1
His 45.99 ±2.68 a 57.21 ±2.25 ab 69.68 ±6.58 b 1.2 1.5
Lys 645.80 ±28.50 a 424.19 ±12.04 b 345.40 ±35.18 b 0.7 0.5

3M-His 9.24 ±0.47 8.04 ±0.52 7.59 ±0.66 0.9 0.8
Trp 32.12 ±2.62 a 1035.90 ±36.86 b 856.38 ±113.49 b 32.3 26.7
Arg 140.04 ±6.26 a 111.45 ±5.13 b 110.89 ±6.84 b 0.8 0.8

Hypro 55.26 ±2.24 a 46.12 ±2.37 ab 37.99 ±3.41 b 0.8 0.7
Pro 146.39 ±4.55 143.27 ±6.11 141.85 ±11.30 1.0 2.3

Different letters indicate significant differences between groups (p < 0.05). Values represent means ± SEM, n = 4–5.

3.2. Changes in the Levels of Amino Acids and Metabolites in the Liver Following Trp Administration

In the present study, 242 metabolites were identified in the liver. Three hours after Trp
administration, the levels of 128 of these metabolites were significantly changed compared with
the control group. In particular, the TCA cycle, the urea cycle, polyamine metabolism, kynurenine
metabolism, nicotinic acid and nicotinamide metabolism, purine metabolism, and glutathione
metabolism appeared to be affected by Trp administration. Of the metabolic pathways affected
by Trp administration, we focused on polyamine metabolism because polyamines are believed to play
important roles in protein synthesis processes. Three polyamines (Put, spermidine, and spermine) are
part of the very tightly regulated polyamine metabolic pathway. The concentrations of Put (11-fold),
spermidine (1.8-fold), and spermine (1.3-fold) in the liver were significantly increased compared to
the control group (Table 2). Polyamines are synthesized from ornithine, a urea cycle intermediate.
The concentrations of the urea cycle intermediates ornithine (1.5-fold), argininosuccinic acid (2.7-fold),
and Arg (1.3-fold) were significantly increased in the Trp-administered group (Table 2). In addition,
Glu (2.3-fold) and N-acetylornithine (1.8-fold), which are precursors of ornithine, were also increased in
the Trp-administered group (Table 2). These results suggested that polyamine synthesis was stimulated
by Trp administration. In addition, we evaluated the levels of BCAAs, which play a role in the
regulation of protein metabolism in the liver [12–14]. The concentrations of BCAAs were significantly
decreased (Val (0.8-fold), Leu (0.8-fold), Ile (0.8-fold)) after Trp administration (Table 2).
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Table 2. Changes in the hepatic levels of polyamines, related amino acids, and BCAAs at 3 h after Trp administration.

Metabolite m/z Migration Time

Relative Area

Control Trp 3h Trp 3h vs. Control

Mean SEM Mean SEM Ratio p-Value

Glu 148.060 10.59 8.7 × 10−2 4.0 × 10−3 2.0 × 10−1 4.4 × 10−3 2.3 4.4 × 10−5 ***
N-Acetylglutamic acid 188.056 12.75 3.2 × 10−4 2.9 × 10−5 2.6 × 10−4 6.4 × 10−6 0.8 0.151

N-Acetylornithine 175.107 9.34 1.5 × 10−4 3.8 × 10−6 2.8 × 10−4 1.6 × 10−5 1.8 0.011 *
Ornithine 133.097 6.77 1.3 × 10−2 6.9 × 10−4 1.8 × 10−2 1.4 × 10−3 1.5 0.039 *
Citrulline 176.103 10.70 1.8 × 10−3 1.7 × 10−4 1.5 × 10−3 1.8 × 10−4 0.8 0.315

Argininosuccinic acid 291.129 9.23 9.5 × 10−5 4.4 × 10−6 2.6 × 10−4 5.8 × 10−6 2.7 4.6 × 10−5 ***
Arg 175.118 7.06 3.5 × 10−4 2.3 × 10−5 4.4 × 10−4 2.1 × 10−5 1.3 0.045 *
Urea 61.040 19.23 4.8 × 10−2 2.4 × 10−3 4.5 × 10−2 7.5 × 10−4 0.9 0.309

Putrescine 89.108 4.74 1.7 × 10−4 9.8 × 10−6 1.8 × 10−3 1.8 × 10−4 11 0.012 *
Spermidine 146.165 4.56 2.3 × 10−3 1.2 × 10−4 4.2 × 10−3 2.0 × 10−4 1.8 0.003 **
Spermine 203.222 4.50 1.2 × 10−4 8.7 × 10−6 1.7 × 10−4 4.6 × 10−6 1.3 0.023 *

Val 118.086 9.78 2.6 × 10−2 2.4 × 10−4 2.0 × 10−2 2.5 × 10−4 0.8 8.8 × 10−5 ***
Leu 132.101 10.04 4.6 × 10−2 9.8 × 10−4 3.8 × 10−2 3.5 × 10−4 0.8 0.008 **
Ile 132.101 9.95 2.0 × 10−2 1.8 × 10−4 1.6 × 10−2 3.7 × 10−5 0.8 0.001 **

Isobutyryl CoA_divalent 417.570 9.70 N.D. N.A. N.D. N.A. N.A. N.A.

Values represent means ± SEM, n = 3. N.D.: Not Detected; N.A.: Not Available. (*), (**), and (***) indicate significant differences between control vs. Trp 3h (p < 0.05), (p < 0.01),
and (p < 0.001), respectively. BCAAs—Branched-chain amino acids.
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3.3. Changes in Protein Expression in the Liver after Oral Administration of Trp

Liver protein extracts were separated by 2-DE over the pI range 3–10, resolving 500 protein spots
(Figure 1A). Experiments were carried out independently and repeated six times. Changes were
accepted when at least four independent experiments showed a significant change in intensity. One and
four protein spots changed in intensity at 1 and 3 h after Trp administration, respectively (Figure 1B).
The differentially expressed protein spots were digested in-gel, then identified by peptide mass
fingerprinting and confirmed by peptide sequencing using tandem mass spectrometry (Table 3).
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Figure 1. Changes in protein expression in the liver after oral administration of Trp. (A) Shown are
representative CBB-stained 2-DE gels of whole liver lysate (250µg of protein for pI 3–10). Control animals
were sacrificed after administration of vehicle control. Trp 1h and Trp 3h were sacrificed 1 or 3 h
after Trp administration (135 mg/100 g body weight), respectively. The region in each gel surrounded
with a square contains protein spots differentially up- or downregulated in the Trp-administered
group. (B) Selected regions of 2-DE gels showing the candidate protein spots U1, U2, U3, and U4.
Large arrowheads highlight protein spots that were differentially up- or downregulated by Trp
administration. These proteins were identified by in-gel digestion and peptide mass fingerprinting,
as shown in Table 3.

One protein spot (spot no. U4) was significantly downregulated (0.61-fold) in the Trp 1h group
(Figure 1B). This protein spot was identified as ornithine amino transferase (OAT), a mitochondrial
precursor (Table 3). OAT is a key enzyme in the biosynthetic pathway of ornithine [19]. OAT catalyzes the
interconversion of ornithine to glutamate and proline via the intermediate L-glutamate 5-semialdehyde,
and it is the main catabolic enzyme for ornithine. OAT is synthesized in the cytoplasm as a precursor
containing a leader sequence. The precursor is transported to the mitochondrial matrix where
processing occurs, with cleavage of the leader sequence to form the mature subunit [20]. In the
Trp 3h group, the expression of OAT was significantly decreased (0.13-fold) (Figure 1B) (Table 3).
The remaining three protein spots, indicated as U1, U2, and U3, were identified as fragments of
2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial (BCKDE1α). BCKD is a key enzyme in
the BCAAs degradation pathway [21] (Figure 1B) (Table 3).
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Table 3. Protein identification by peptide mass fingerprinting using MALDI-TOF MS.

Spot No. Protein Accession No. Obs.
pI

Obs.
MM

Calc.
pI

Calc.
MM Mascot Score Protein Seq.

Coverage
-Fold Change

Trp 1h
-Fold Change

Trp 3h

U1 2-oxoisovalerate
dehydrogenase subunit alpha,

mitochondrial (Fragment)
P11960

5.0 42.5
7.6 50.1

132 37 - 3.14
U2 5.4 42.5 102 30 - 3.00
U3 6.1 41.6 103 34 - 0.28

U4 Ornithine aminotransferase,
mitochondrial precursor P04182 6.6 41.4 6.5 48.3 107 34 0.61 0.13

Obs. MM: Observed molecular mass; Calc. MM: Calculated molecular mass; Seq.: Sequence.
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3.4. Quantification of OAT and BCKDE1α Expression

Proteomic data indicated different levels of protein expression in the control and Trp-administered
groups. However, we could not exclude the possibility of false-positive findings in the proteomic
analyses. To address this issue, we quantified OAT and BCKDE1α expression by Western blotting.
We determined the expression of these proteins at 3 h after administration of Trp because the serum Orn
and BCAAs levels were significantly changed at this point (Table 1). OAT expression was significantly
decreased in the Trp 3h group compared with the control group (0.81-fold) (Figure 2). For BCKDE1α,
we performed 2D Western blotting. Antibodies against BCKDE1α reacted with four protein spots
with similar masses but different pI values, suggesting the presence of various post-translationally
modified forms [22] (Figure 3). Based on their apparent MW and pI on 2D gels, three of the four
protein spots were identified as U1, U2, and U3. The intensity of U3 was significantly decreased by
Trp administration, and the intensity of U1, which has a more acidic pI, was significantly increased.
These results suggest that the Trp administration induced post-translational modification of BCKDE1α
accompanying an acidic pI shift (−1.1).
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Figure 3. Altered expression of BCKDE1α in the liver after oral administration of Trp. Liver lysates
were immunoblotted for BCKDE1α. The bar graph shows the expression of each BCKDE1α protein
spot as a percentage of total BCKDE1α expression (Undetected +U1+U2+U3). Data are expressed as
means ± SEM, n = 5. The protein spot designated “Undetected” could not be detected in CBB-stained
gels. (*) Indicates significant difference between control versus Trp 3h (p < 0.05).



Nutrients 2020, 12, 2665 10 of 15

3.5. Quantification of ODC Expression

Metabolomic analysis demonstrated that Trp administration accelerated polyamine synthesis in
the liver. Polyamine biosynthesis is regulated by ornithine decarboxylase (ODC), which catalyzes
the decarboxylation of Orn to form Put. Although no significant difference was observed in ODC
expression by proteomic analysis, we quantitated the relative expression of ODC protein in the liver by
Western blot analysis. There was no difference in the expression of ODC protein between the control
and the Trp 3h group (Figure 4).
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3.6. Effects of Putrescine Administration on Hepatic Protein Synthesis

Polyamines (Put, spermidine, spermine) play an important role in cell proliferation and protein
synthesis. It was reported that the Put treatment activated mTOR, the master regulator of protein
synthesis, and its downstream targets such as S6K1 and 4E-BP1 [23]. To determine the effect of the
increased liver Put level on hepatic protein synthesis, we evaluated the phosphorylation/activation of
S6K1 and 4E-BP1 in the liver 3 h after the oral administration of Put. To elucidate the dose-dependent
effect of Put on the liver protein synthesis, 8.4, 16.9, or 33.8 mg/100 g bw of Put was administrated.
The amount of Put corresponded to 1/16, 1/8, and 1/4 of Trp administered (135 mg/100 g bw). After oral
administration of 1/8 Put (16.9 mg/100 g bw) and 1/4 Put (33.8 mg/100 g bw), the phosphorylation
of S6K1 and 4E-BP1 were significantly enhanced in the liver compared to the control group, but no
enhancement was observed following the administration of 1/16 Put (8.4 mg/100 g bw) (Figure 5).
Notably, the effect of Put administration was dose-dependent, and the effect of 1/8 Put administration
was comparable to that of Trp administration.



Nutrients 2020, 12, 2665 11 of 15

Figure 5. Effects of putrescine administration on hepatic protein synthesis. Liver lysates were subjected
to SDS–PAGE, and the phosphorylation states of S6K1 and 4E-BP1 determined by immunoblot analysis.
During SDS–PAGE, S6K1 and 4E-BP1 were resolved into multiple isoelectric forms based on its
phosphorylation state. The rapidly migrating band was arbitrarily designated α, and the more slowly
migrating bands as β and γ, as indicated in the blot image. (A) The phosphorylation of S6K1 was
expressed as the amount of S6K1 in the β and γ forms as a percentage of total S6K1 (α + β + γ).
(B) The phosphorylation of 4E-BP1 was expressed as the amount of protein present in the γ-form as a
percentage of total 4E-BP1 (α + β + γ). Results represent mean ± SEM, n = 5. Values not sharing the
same letter are significantly different (p < 0.05).

4. Discussion

Sidransky et al. have reported the stimulatory effect of Trp on hepatic protein synthesis.
In attempting to unravel the mechanism involved in the stimulatory response of hepatic protein
synthesis by Trp, they reported that hepatic nuclei, and particularly the nuclear envelopes, have a
specific receptor for L-Trp. They also suggested that the nuclear envelope receptor binding of L-Trp is
important in the Trp-induced enhancement of protein synthesis. However, to date, there have been no
further reports concerning the mechanism of protein synthesis stimulation by Trp.

The results of the present study suggested that an increase in polyamine synthesis could be
involved in the enhancement of hepatic protein synthesis in rats, which is rapidly induced by the
administration of Trp. The levels of the three polyamines Put, spermidine, and spermine were
significantly increased in the liver of Trp-administered rats (Table 2). Ornithine, a substrate for
polyamine biosynthesis, is derived from the amino acid arginine as part of the urea cycle. Significantly
increased concentrations of ornithine were observed in both serum (Table 1) and liver (Table 2) 3 h
after Trp administration. Additionally, the concentrations of three components of the urea cycle,
ornithine, argininosuccinate, and arginine, were significantly increased in the Trp-administered group.
The increase in ornithine concentration could be explained by reduced OAT expression in the liver.
OAT is a mitochondrial matrix enzyme that controls the L-ornithine level in tissues by catalyzing
the reversible interconversion between L-ornithine and L-glutamate 5-semialdehyde [19]. OAT is
synthesized in the cytoplasm as a precursor containing a leader sequence. The precursor is transported
to the mitochondrial matrix where processing occurs, with cleavage of the leader sequence to form
the mature subunit [20]. Proteomic analysis revealed that the protein expression level of the hepatic
OAT precursor was suppressed in the Trp 3h group (Figures 1B and 2) (Table 3). Consistent with
our proteomic results, Western blotting confirmed decreased protein levels of OAT in the liver 3 h
after Trp administration (Figure 2). These results suggest that the increase in the concentration of
ornithine in serum and liver by Trp administration is due to suppression of the OAT precursor and
OAT expression. Therefore, these results suggest that Trp administration induced increased liver
ornithine levels by suppressing ornithine catabolism and consequently increased the substrate supply
for polyamine synthesis.
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ODC catalyzes the first step in the polyamine biosynthetic pathway for Put, which is then
converted into the polyamines spermidine and spermine. ODC provides the only established route for
de novo Put biosynthesis in mammals. Sidransky et al. reported that oral administration of Trp to
overnight-fasted rats increased hepatic ODC activities [24]. On the other hand, we demonstrated that
the expression level of ODC protein was not affected by Trp administration (Figure 4). Taken together,
these results suggest that the oral administration of Trp induced the activation of ODC without changing
the amount of enzyme protein. Thus, both increased levels of substrate for polyamine synthesis and
enhanced ODC activity appear to contribute to the Trp-induced increase in polyamine levels.

Polyamines (Put, spermidine, spermine) are essential for cell proliferation [25,26]. The polyamines
play an important role in the regulation of global translation, a major role in the regulation of cell
growth, and have a critical role in enhancing liver regeneration following partial hepatectomy [27,28].
In particular, spermidine has an essential and unique role in protein synthesis as the precursor of
hypusine. Hypusine is an essential component for post-translational modification to activate the
initiation factor eIF5A, which is necessary for initiation of protein synthesis [29–31]. In addition,
many experimental findings indicate that spermidine is specifically required for the initiation of rat liver
regeneration. An increase in liver ornithine, Put and spermidine were demonstrated in regenerating
liver [32]. Thus, we speculated that the increase in liver polyamine concentration by Trp administration
could contribute to the stimulation of hepatic protein synthesis. Therefore, we assessed the effect of the
increase of polyamine level on hepatic protein synthesis by oral administration of Put. Indeed, the oral
administration of Put enhanced phosphorylation of S6K1 and 4E-BP1 in a dose-dependent manner
(Figure 5). These data support our hypothesis that the increase in liver polyamine concentration by Trp
administration contributes to the stimulation of hepatic protein synthesis.

In this study, we demonstrated that BCAAs concentrations in the liver were significantly decreased
(Table 2), whereas serum concentrations of BCAAs were significantly increased after Trp administration
(Table 1). Moreover, 2-DE and immunoblot analysis suggested post-translational modification of
BCKDE1α accompanying with acidic pI shift induced by Trp administration (Table 3) (Figure 3).
BCKD catalyzes the rate-limiting step in the oxidation of BCAAs. The major mechanism in BCKD
regulation is reversible serine phosphorylation of the E1α subunit by branched-chain alpha-keto
acid dehydrogenase kinase (BDK) [33]. At low levels of BCAAs, BCKD is inactivated through
phosphorylation of its E1α subunit [34]. The differences between the changes in BCAAs concentrations
in the liver and in serum can be explained by competitive inhibition of BCAAs transport by Trp.
BCAAs and Trp are transported by the L-type amino acid transporter (LAT) system, which is a
major route for providing cells with large neutral amino acids, including branched and aromatic
amino acids. It is known that increasing the blood concentration of a large neutral amino acid
(LNAA) such as Trp, tyrosine, phenylalanine or the BCAAs increases the brain uptake of that
LNAA and reduces uptake of the others [35]. Additionally, it was reported that high leucine levels
inhibit Trp uptake in isolated liver cells by competing for membrane transport [36]. Therefore,
the elevation of serum concentrations of BCAAs is believed to be caused by competitive inhibition of
liver uptake of BCAAs by Trp. Since decreased levels of BCAAs inactivates BCKD [34], we speculate the
post-translational modification on BCKDE1α accompanying with acidic pI shift was phosphorylation
modification due to the decreased liver BCAAs level by Trp administration. However, because there
are other post-translational modifications that affect protein pI [37], further investigation is required
to conclude about the post-translational modification on BCKDE1α. The first step in the catabolism
of BCAAs, reversible transamination, is catalyzed by one of two isoforms of branched-chain amino
acid aminotransferase (BCAT), the mitochondrial isoenzyme (BCATm), and the cytosolic isoenzyme
(BCATc). Neither BCAT isoenzyme is found in the liver [38]. The liver is therefore unable to perform
the first step of BCAAs metabolism, namely, their transamination to the corresponding keto acid.
Thus, it would be difficult to assess the physiological effects of phosphorylation of hepatic BCKDE1α
by Trp administration. The study of tissues other than the liver are required to explain the mechanism
of increase in serum BCAAs levels by Trp administration.
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We demonstrated that Trp administration acutely stimulated protein synthesis by increasing of
ornithine levels and polyamine synthesis through suppression of OAT expression. The important
role of serotonin in liver regeneration was reported previously [9]. It was also reported that Trp
induced mTOR activation was mediated by serotonin [10]. However, oral administration of Trp did
not affect the liver serotonin concentration (1.2-fold, p = 0.378) in the present study. On the other
hand, there was a significant increase in the liver kynurenine level (652-fold, p < 0.005) after Trp
administration. The kynurenine pathway is responsible for major dietary Trp degradation (~95%)
and tryptophan 2,3-dioxygenase (TDO) is the rate-limiting enzyme of the kynurenine pathway [39].
The TDO enzymatic activity is regulated by Trp via enhanced conjugation of the apoenzyme with
its heme cofactor and stabilization of the holoenzyme. It was reported that the administration of
500 mg/kg of Trp increased the half-life of TDO holoenzyme from 7.7 to 11.4 h [40]. Based on these data,
we speculated that the serotonin synthesis was not increased because of the activation of the kynurenine
pathway by Trp administration. In addition, it is suggested that the effect of Trp administration-induced
acute protein synthesis in this study is independent of the serotonin mediated pathway which was
reported previously.

In summary, this study was performed in order to identify candidate proteins and metabolites
likely to play a role in the stimulation of hepatic protein synthesis by Trp. The expression of OAT,
the main catabolic enzyme for ornithine (Figure 6), was significantly decreased by Trp administration.
In line with that, the concentration of ornithine was increased in both serum and liver. Additionally,
Trp administration significantly increased concentrations of liver polyamines, a metabolic product
of ornithine. Finally, we demonstrated enhanced hepatic protein synthesis by oral administration of
Put, a primary substrate of other polyamines. Based on these results, we speculate that the increase in
ornithine levels through suppression of OAT expression by Trp administration may lead to accelerated
polyamine synthesis, thereby promoting protein synthesis in the liver.
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