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Abstract: Beneficiation wastewater contains various types of pollutants, such as heavy metal ions and or-
ganic pollutants. In this work, a silica-based amphiphilic block copolymer, SiO2–g–PBMA–b–PDMAEMA,
was obtained by surface-initiated atom transfer radical polymerization (SI-ATRP) for Cu(II) and sodium
oleate adsorption in beneficiation wastewater, using butyl methacrylate (BMA) as a hydrophobic monomer
and 2-(dimethylamino)ethylmethacrylate (DMAEMA) as a hydrophilic monomer. FTIR, TGA, NMR,
GPC, XRD, N2 adsorption–desorption isotherms and TEM were used to characterize the structure and
morphology of the hybrid adsorbent. The introduction of PBMA greatly increased the adsorption of
sodium oleate on SiO2–g–PBMA–b–PDMAEMA. Adsorption kinetics showed that the adsorption of
Cu(II) or sodium oleate on SiO2–g–PBMA–b–PDMAEMA fitted the pseudo-second-order model well.
Adsorption isotherms of Cu(II) on SiO2–g–PBMA–b–PDMAEMA were better described by the Langmuir
adsorption isotherm model, and sodium oleate on SiO2–g–PBMA–b–PDMAEMA was better described
by the Freundlich adsorption isotherm model. The maximum adsorption capacity of Cu(II) and sodium
oleate calculated from Langmuir adsorption isotherm equation reached 448.43 mg·g−1 and 129.03 mg·g−1,
respectively. Chelation and complexation were considered as the main driving forces of Cu(II) adsorption,
and the van der Waals force as well as weak hydrogen bonds were considered the main driving forces of
sodium oleate adsorption. The adsorbent was recyclable and showed excellent multicomponent adsorption
for Cu(II) and sodium oleate in the mixed solution. SiO2–g–PBMA–b–PDMAEMA represents a satisfying
adsorption material for the removal of heavy metal ions and organic pollutants in beneficiation wastewater.

Keywords: silica; amphipathic; block copolymer; adsorption; beneficiation wastewater; Cu(II);
sodium oleate

1. Introduction

Mineral resources are essential and precious sources of wealth for the development of
human society. However, in the process of exploitation of mineral resources, a large amount
of industrial wastewater will inevitably be produced. If the wastewater is not properly
discharged, it will have a serious impact on plant growth, animal fitness and human health,
and can also cause serious damage to the local environment and ecology [1,2]. Thus, it is
very important to properly treat the wastewater produced during mineral processing.

Among various water treatment technologies, adsorption is widely used because of
its operability and high efficiency [3,4]. The adsorption of heavy metal ions from mineral-
processing wastewater has been widely studied [5–7]. In addition to harmful heavy metal
ions, mineral-processing wastewater also contains organic pollutants such as kerosene [8],
xanthate [9], aerofloat [10], sodium oleate [11], etc. However, limited research focuses on the
simultaneous removal of heavy metal ions as well as organic pollutants from beneficiation
wastewater. Therefore, it is necessary to develop a suitable adsorbent material and evaluate
its adsorption capacity for both heavy metal ions and organic pollutants.
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Copper is widely used in electrical engineering, light industry, machinery manu-
facturing, construction, national defense and many other fields for its ductility, thermal
conductivity and electroconductibility [12,13]. Despite being an essential micronutrient,
copper can cause human poisoning at high concentrations, leading to illness and even
death [14]. Sodium oleate is a commonly used collector in the mineral processing of ox-
idized copper ore [15,16]. Sodium oleate will increase the biochemical oxygen demand
of water, which may lead to the extinction of aquatic organisms, and will also affect the
soil and plant growth around the water [17]. The adsorption removal of copper has been
reported in many works in the literature, and the adsorbents involved include activated
carbon [18], carbon nanocomposites [19], mesoporous silica [20], zeolite [21], polymer [22],
organic–inorganic hybrids [23], etc. However, very few works in the literature deal with the
adsorption of sodium oleate. The only adsorbents we have seen in the literature are mod-
ified Ca-montmorillonite [24] and Zr-modified phosphogypsum/fly ash composite [25].
Therefore, it is of practical significance to study the removal of copper ions as well as
sodium oleate.

Organic–inorganic hybrids are widely used in wastewater treatment for their durabil-
ity, stability and variable adsorption driving forces [26–28]. Gao et al., reported silica-based
functional composite particles grafting with poly(2-(dimethylamino)ethyl methacrylate)
(PDMAEMA) by solution polymerization, and the hybrid was used for Cr(VI) and Cu(II)
adsorption [29]. Zhou et al., reported PDMAEMA brushes on silica particles synthesized
by surface-initiated atom transfer radical polymerization (SI-ATRP), and the hybrid was
used for Cr(VI) adsorption [30]. Wang et al., reported a kapok fiber coated by a mixture
of polybutylmethacrylate (PBMA) and hydrophobic silica, and the coated fiber was used
for oil adsorption [31]. In this work, a new kind of silica-based amphiphilic block copoly-
mer hybrid adsorbent, SiO2–g–PBMA–b–PDMAEMA, was prepared by SI-ATRP and was
used for Cu(II) and sodium oleate adsorption. DMAEMA and BMA were used as the
hydrophilic and hydrophobic monomer, respectively. FTIR, TGA, NMR, GPC, XRD, N2
adsorption–desorption isotherms and TEM were used to characterize the structure and
morphology of the hybrid adsorbent. The adsorption kinetics and adsorption isotherms
of Cu(II) and sodium oleate in water were studied, the simultaneous adsorption was
taken into account, and the possible adsorption mechanism was proposed. This study is
of practical significance to the removal of heavy metal ions and organic pollutants from
mineral-processing wastewater.

2. Materials and Methods
2.1. Materials

The materials and the corresponding purification methods are shown in Table 1.

Table 1. Materials and the corresponding purification methods.

Materials Abbreviations Purity Purification Methods Suppliers

Nano-silica SiO2

>99%wt, a mean particle
diameter of 20 nm and a

specific surface area
of 120 m2·g−1

Hai Tai Nano
(Nanjing, China)

(3-Aminopropyl) triethoxysilane APTES 99% Aladdin
(Shanghai, China)

2-Bromoisobutyrylbromide BiBB 98% Aladdin
Sodium hydroxide NaOH 97% Aladdin
Calcium hydride CaH2 95% Aladdin

Triethylamine TEA 99%
dried over CaH2 and

distilled under
reduced pressure

Aladdin

Butyl methacrylate BMA 99% rinsed with 5 wt % NaOH
and dried over CaH2

Aladdin

2-(Dimethylamino)ethylmethacrylate DMAEMA 99%
dried over CaH2 and

distilled under
reduced pressure

Aladdin



Polymers 2022, 14, 4187 3 of 17

Table 1. Cont.

Materials Abbreviations Purity Purification Methods Suppliers

Tetrahydrofuran THF 99%
dried over CaH2 and

distilled under
reduced pressure

Aladdin

Cyclohexanone CYC 99.5%
dried over CaH2 and

distilled under
reduced pressure

Aladdin

Cuprous chloride CuCl 97% [32] Aladdin
Copper chloride CuCl2 98% Aladdin
N,N,N′,N′,N′′-

Pentamethyldiethylenetriamine PMDETA 99% Aladdin

Ethyl α-bromoisobutyrate EBiB 98% Aladdin
Hydrofluoric acid HF 40% Aladdin

Ethanol 99.5% Aladdin
Sodium oleate NaOL 97% Aladdin

Copper(II) sulfate pentahydrate CuSO4·5H2O, 99%
Chengdu Kelong

Chemical Co., Ltd.
(Chengdu, China)

Nitric acid HNO3 68%
Foshan Huaxisheng
Chemical Co., Ltd.

(Foshan, China)

2.2. Preparation of Silica Initiator SiO2–Br

The preparation of the initiator was carried out in two steps [33].
The first step was the amination of SiO2. SiO2 (2.7 g) and co-solvent (87 mL deionized

water and 63 mL ethanol) were added to a three-necked flask and dispersed by sonication
combined with mechanical agitation. The ethanol solution of APTES (10.5 mL APTES
dissolved in 24 mL ethanol) was then dropped into the three-necked flask and the pH
of reaction mixture was set to 10 with ammonia. The reaction was conducted at 50 °C
for 24 h to obtain the crude product. The amino-modified nano-silica (SiO2–NH2) was
obtained after washing with deionized water and ethanol alternately and vacuum drying
at 50 °C. The second step was to graft bromine atoms on the surface of SiO2–NH2 to obtain
the initiator. SiO2–NH2 (0.5 g) was dispersed in THF (10 mL) in a dried Schlenk flask by
ultrasound. Under an ice bath, the Schlenk flask was filled with N2 and the suspension
was stirred for 30 min. Triethylamine (1.5 mL) was injected, and then the mixture of
2-bromoisobutyryl bromide (3 mL) and THF (40 mL) was added dropwise. The reaction
was kept in an ice bath for 4 h, and then kept at 35 °C for 48 h. The silica initiator (SiO2–Br)
was obtained after washing with deionized water and ethanol alternately and vacuum
drying at 50 °C. The synthesis scheme of the silica initiator SiO2–Br is given in Scheme 1.

Polymers 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 

The second step was to graft bromine atoms on the surface of SiO2–NH2 to obtain the 
initiator. SiO2–NH2 (0.5 g) was dispersed in THF (10 mL) in a dried Schlenk flask by ultra-
sound. Under an ice bath, the Schlenk flask was filled with N2 and the suspension was 
stirred for 30 min. Triethylamine (1.5 mL) was injected, and then the mixture of 2-bro-
moisobutyryl bromide (3 mL) and THF (40 mL) was added dropwise. The reaction was 
kept in an ice bath for 4 h, and then kept at 35 ℃ for 48 h. The silica initiator (SiO2–Br) was 
obtained after washing with deionized water and ethanol alternately and vacuum drying 
at 50 ℃. The synthesis scheme of the silica initiator SiO2–Br is given in Scheme 1. 

Br Br

O

triethylamine
tetrahydrofuran

SiO2
NH2
NH2

H2N
H2N SiO2

Br

Br

Br

N
H

C
O

C Br

SiO2-BrSiO2-NH2

SiO2

OH

OH

HO

HO

SiO2

OH

OH

H2N

NH2

Br

Br

Si
C2H5O

C2H5O
C2H5O NH2

ethanol

BMA CuCl
PMDETA

SiO2-g-PBMA

CuCl
PMDETA

DMAEMA

SiO2-g-PBMA-b-PDMAEMA

SiO2
N
H

C
O

C Br
COO(CH2)3CH3

mSiO2
N
H

C
O

C

COO(CH2)3CH3

m Br
COOCH2CH2N(CH3)2

n

PBMAPBMA PDMAEMA

 
Scheme 1. Synthesis of SiO2–g–PBMA–b–PDMAEMA. 

2.3. Preparation of SiO2–g–PBMA–b–PDMAEMA Hybrid by SI-ATRP 
One-step ATRP was used to obtain the SiO2–g–PBMA–b–PDMAEMA hybrid. CuCl 

and CuCl2 were added into a dried Schlenk flask, and the flask was filled with N2 before 
the sequential injection of BMA, PMDETA and solvent with initiator (SiO2–Br dispersed 
in cyclohexanone). It took 24 h for the grafting of BMA onto SiO2 at 90 ℃. The cyclohexa-
none solution of DMAEMA was injected into the flask after cooling the reaction system to 
70 ℃, and it took 24 h for the grafting of DMAEMA onto SiO2–g–PBMA at 70 ℃. SiO2–g–
PBMA–b–PDMAEMA was obtained after purification with THF and vacuum drying at 50 
℃. The synthesis scheme of SiO2–g–PBMA–b–PDMAEMA is also given in Scheme 1, and 
the detailed recipes of polymerization are listed in Table 2. 

Table 2. Detailed recipes of polymerization for prepared samples. 

Sample SiO2–Br 
/mmol 

EBiB 
/mmol 

BMA 
/mmol 

DMAEMA 
/mmol 

CuCl 
/mmol 

CuCl2 

/mmol 

PMDETA 
/mmol 

Cyclohexanone 
/g 

SiO2–g–PBMA–b–PDMAEMA 0.73  21.90 109.50 0.73 0.073 0.73 32.31 
SiO2–g–PDMAEMA 0.73   131.40 0.73 0.073 0.73 32.80 

EBiB–g–PBMA–b–PDMAEMA  0.73 21.90 109.50 0.73 0.073 0.73 31.00 
Note: dosage of cyclohexanone was calculated based on a solid content of 40%. 

2.4. Characterization of Initiator and Hybrids 
Fourier transform infrared (FTIR) spectra were collected by FTIR spectroscopy (Ni-

colet-380, Thermo Electron Corporation, Waltham, MA, USA) in a spectral range of 4000–
400 cm−1. Thermogravimetric curves were obtained by a thermogravimetric analyzer 
(TGA, STA449, NETZSCH, Selb, Germany) under a N2 atmosphere using a heating rate of 
10 ℃·min−1 from 25 ℃ to 1000 ℃. The nuclear magnetic resonance (1H NMR) spectrum of 

Scheme 1. Synthesis of SiO2–g–PBMA–b–PDMAEMA.



Polymers 2022, 14, 4187 4 of 17

2.3. Preparation of SiO2–g–PBMA–b–PDMAEMA Hybrid by SI-ATRP

One-step ATRP was used to obtain the SiO2–g–PBMA–b–PDMAEMA hybrid. CuCl
and CuCl2 were added into a dried Schlenk flask, and the flask was filled with N2 before
the sequential injection of BMA, PMDETA and solvent with initiator (SiO2–Br dispersed
in cyclohexanone). It took 24 h for the grafting of BMA onto SiO2 at 90 °C. The cyclo-
hexanone solution of DMAEMA was injected into the flask after cooling the reaction
system to 70 °C, and it took 24 h for the grafting of DMAEMA onto SiO2–g–PBMA at
70 °C. SiO2–g–PBMA–b–PDMAEMA was obtained after purification with THF and vac-
uum drying at 50 °C. The synthesis scheme of SiO2–g–PBMA–b–PDMAEMA is also given
in Scheme 1, and the detailed recipes of polymerization are listed in Table 2.

Table 2. Detailed recipes of polymerization for prepared samples.

Sample SiO2–Br
/mmol

EBiB
/mmol

BMA
/mmol

DMAEMA
/mmol

CuCl
/mmol

CuCl2
/mmol

PMDETA
/mmol

Cyclohexanone
/g

SiO2–g–PBMA–b–PDMAEMA 0.73 21.90 109.50 0.73 0.073 0.73 32.31
SiO2–g–PDMAEMA 0.73 131.40 0.73 0.073 0.73 32.80

EBiB–g–PBMA–b–PDMAEMA 0.73 21.90 109.50 0.73 0.073 0.73 31.00

Note: dosage of cyclohexanone was calculated based on a solid content of 40%.

2.4. Characterization of Initiator and Hybrids

Fourier transform infrared (FTIR) spectra were collected by FTIR spectroscopy
(Nicolet-380, Thermo Electron Corporation, Waltham, MA, USA) in a spectral range of
4000–400 cm−1. Thermogravimetric curves were obtained by a thermogravimetric ana-
lyzer (TGA, STA449, NETZSCH, Selb, Germany) under a N2 atmosphere using a heating
rate of 10 °C·min−1 from 25 °C to 1000 °C. The nuclear magnetic resonance (1H NMR)
spectrum of SiO2–g–PBMA–b–PDMAEMA (etching with hydrofluoric acid to obtain
PBMA–b–PDMAEMA) was collected by NMR spectroscopy (Bruker Avance NEO 600,
Bruker, Karlsruhe, Germany) using deuterium generation of chloroform (CDCl3) as sol-
vent. The molecular weight of SiO2–g–PBMA–b–PDMAEMA (etching with hydrofluoric
acid to obtain PBMA–b–PDMAEMA) was measured by a gel permeation chromatograph
(GPC, Waters 1525, Waters, Milford, CT, USA) using THF as the eluent with a flow rate of
0.5 mL·min−1. X-ray diffraction (XRD) patterns were recorded on an X-ray diffractometer
(X’Pert Powder, Panalytical, Almelo, The Netherlands) with Ni-filtered Cu Kα radia-
tion (40 kV, 40 mA) in a 2 theta of 20–80◦. Nitrogen adsorption–desorption isotherms
were measured at 77 K with a specific surface area and porosity analyzer (ASAP 2460,
Micromeritcs, Norcross, GA, USA). The surface area was determined based on the
Brunauer–Emmett–Teller (BET) method. Mesoporous size distribution was derived from
the desorption branches of the isotherms based on the Barrett–Joyner–Halenda (BJH)
model. Transmission electron microscopy (TEM, Talos F200X, FEI, Hillsboro, OR, USA)
images were recorded after ultrasounding in water for 30 min at an acceleration voltage
of 200 kV.

2.5. Adsorption Kinetics

Adsorption kinetics experiments were conducted in batch mode with a shaking speed
of 120 rpm under a pH of 5, temperature of 25 °C, adsorbent dosage of 1 g·L−1, initial
Cu(II) or sodium oleate concentration of 100 mg·L−1 and controlled time t (5, 10, 20, 30,
60, 90, 120, 180 and 240 min). After centrifugation, the concentration of Cu(II) residue was
determined using an atomic absorption spectrometer (AAS, AA-7003, EWAI, Beijing, China).
The concentration of sodium oleate residue was determined using an ultraviolet–visible
spectrophotometer (UV–Vis, Cary 5000, Agilent, Palo Alto, CA, USA) with maximum
absorption wavelength of 225 nm (Supporting Information, Figure S1) [24,25].

The equilibrium absorption capacity Qe (mg·g−1) was calculated according to
Equation (1) [34]. The removal efficiency η (%) was calculated according to Equation (2) [35]:

Q = (C0 − Ct)V/W (1)
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η = 100(C0 − Ct)/C0 (2)

Here, C0 (mg·L−1) and Ct (mg·L−1) refer to the initial concentrations and equilibrium
concentrations of Cu(II) or sodium oleate, respectively, V (L) refers to the volume of the
solution and W (g) refers to the weight of the adsorbent.

Adsorption rate was analyzed using the pseudo-first-order model expressed by
Equation (3) [34] and pseudo-second-order model expressed by Equation (4) [34] as follows:

ln(Qe − Qt) = −k1t + lnQe (3)

t/Qt = t/Qe + 1/(k2Qe
2) (4)

Here, Qe (mg·g−1) and Qt (mg·g−1) are the equilibrium absorption capacity and
absorption capacity at time t (min), respectively, k1 (min−1) is the pseudo-first-order rate
constant and k2 (g·mg−1·min−1) is the pseudo-second-order rate constant.

2.6. Adsorption Isotherms

Adsorption isotherm experiments were conducted in batch mode with a shaking speed
of 120 rpm under a pH of 5, temperature of 25 °C, adsorbent dosage of 1 g·L−1, equilibrium
adsorption time obtained from adsorption kinetics, and controlled initial concentration of
Cu(II) or sodium oleate. For Cu(II), 20, 50, 100, 500 and 1000 mg·L−1 were set to be the
initial concentration. For sodium oleate, 20, 40, 60, 80 and 100 mg·L−1 were set to be the
initial concentration. After equilibrium, the supernatant by centrifugation was analyzed
for the concentration of residual Cu(II) or sodium oleate.

The Langmuir isotherm model and the Freundlich isotherm model were investigated.
The Langmuir model is expressed by Equation (5) [34]:

Ce/Qe = 1/(QmKL) + Ce/Qm (5)

Here, Qe is the equilibrium adsorption capacity (mg·g−1), Ce is the equilibrium con-
centration in the solution (mg·L−1), Qm is the maximum adsorption capacity (mg·g−1) and
KL is the Langmuir adsorption isotherm constant (L·mg−1).

The Freundlich model is expressed by Equation (6) [34]:

lnQe = lnKf + (1/n)lnCe (6)

Here, Qe is the equilibrium adsorption capacity (mg·g−1) and Ce is the equilibrium
concentration in the solution (mg·L−1). Kf is the Freundlich adsorption isotherm constant
((mg·g−1) (L·mg−1)1/n). The term 1/n is an empirical constant related to the adsorption
driving force.

2.7. Recovery Experiments

Three adsorption–desorption cycles were performed. The adsorption of Cu(II) or
sodium oleate was carried out at a pH of 5, temperature of 25 °C, adsorbent dosage of
1 g·L−1 and initial Cu(II) or sodium oleate concentration of 100 mg·L−1. An amount of
0.1 mol·L−1 nitric acid and ethanol were used for the desorption of Cu(II) and sodium
oleate, respectively. The adsorbent was washed with deionized water and vacuum-dried
before use.

2.8. Multicomponent Adsorption

In order to investigate the practicability of the adsorbent, the simultaneous adsorption
of Cu(II) and sodium oleate was also taken into account. Multicomponent adsorption
experiments were carried out in batch mode with a shaking speed of 120 rpm under a pH of
5, temperature of 25 °C and adsorbent dosage of 1 g·L−1. A mixture of Cu(II) and sodium
oleate at equal concentrations was investigated. The adsorption was carried out for 4 h to
ensure adsorption equilibrium. The concentration of Cu(II) residue was determined using
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an atomic absorption spectrometer, and the concentration of sodium oleate residue was
determined using a UV–Vis spectrophotometer with a maximum absorption wavelength
of 225 nm. The equilibrium absorption capacity Qe (mg·g−1) was calculated according to
Equation (1), and the removal efficiency η (%) was calculated according to Equation (2).

3. Results and Discussion
3.1. Adsorbent Characterizations

Characterizations of SiO2–g–PBMA–b–PDMAEMA are shown in Figure 1. Figure 1a
shows the FTIR spectra of SiO2, SiO2–Br and SiO2–g–PBMA–b–PDMAEMA. The peak
in SiO2 around 3440 cm−1 was attributed to SiO–H vibration, and the peaks around
1107 cm−1, 800 cm−1 and 474 cm−1 were attributed to Si–O vibration. Compared with
SiO2, the new peak in SiO2–Br around 2970 cm−1 was attributed to C–H vibration in
APTES and BiBB, and the new peak of C=O vibration around 1720 cm−1 was attributed to
the grafting of BiBB. This indicated that the initiator SiO2–Br was successfully prepared.
SiO2–g–PBMA–b–PDMAEMA expressed strong absorption peaks around 2970 cm−1 and
1720 cm−1, which were attributed to the grafting of PBMA and PDMAEMA, yet the ab-
sorption peaks of SiO2 around 1107 cm−1 and 474 cm−1 were still maintained. FTIR
results proved the chemical structure of SiO2–g–PBMA–b–PDMAEMA, indicating the
successful preparation of hybrid adsorbent. Figure 1b shows the TGA curves of SiO2,
SiO2–Br and SiO2–g–PBMA–b–PDMAEMA. The weight loss below 120°C was due to
the evaporation of absorbed water. The weight loss from 120 °C to 1000 °C for SiO2
and SiO2–Br were 5.14% and 20.35%, respectively, and the graft density of SiO2–Br was
calculated as 0.73 mmol·g−1 by the content of Br. The graft density of SiO2–Br laid a
foundation for the recipe design of subsequent polymerization. The weight loss from
120 °C to 1000 °C for SiO2–g–PBMA–b–PDMAEMA was 88.69%, which indicated that the
grafting percentage of PBMA–b–PDMAEMA was 83.55%. SiO2–g–PBMA–b–PDMAEMA
had a residual weight of 10.17%, which was attributed to the residual SiO2. Figure 1c
shows the 1H NMR spectrum of SiO2–g–PBMA–b–PDMAEMA. The signal of –C–CH3
protons was at δ 0.92 ppm (peak a). The signals of –C–CH2CH2–C– protons in PBMA were
at δ 1.39 and 1.61 ppm (peak b). The signal of –CH2– protons in the backbone was at δ
1.83 ppm (peak c). The signals of –N–CH3 and –N–CH2 protons in PDMAEMA were at δ
2.29 and 2.58 ppm (peaks d and e). The signal for –CH2 next to –O-C=O was found at δ
4.07 ppm (peak f). 1H NMR results further proved the grafting of PBMA–b–PDMAEMA
onto SiO2, indicating the successful preparation of hybrid adsorbent together with the
FTIR results. Figure 1d shows the GPC curve of SiO2–g–PBMA–b–PDMAEMA. It repre-
sented a number-average molecular weight of 18,541 g·mol−1 and a polydispersity index
(PDI) of 1.86. This indicated that the measured molecular weight was not far from the
theoretical molecular weight of a single arm (27,848 g·mol−1) and that the molecular
weight distribution was narrow. GPC results verified a typical ATRP process, and the
SiO2–g–PBMA–b–PDMAEMA was successfully prepared as expected. Figure 1e exhibits
XRD patterns of SiO2, SiO2–g–PBMA–b–PDMAEMA and EBiB–g–PBMA–b–PDMAEMA
to confirm the non-crystalline structure of the adsorbent. Pure SiO2 showed an amorphous
structure with a wide diffraction peak around 22.4◦ corresponding to the (101) plane [36].
The pure polymer showed an amorphous structure without sharp peaks, which was also
reported in the literature [37–39]. The hybrid material also showed an amorphous structure,
and the effect of polymer grafting onto SiO2 could be seen through the peak shift of the
(101) plane from 2θ = 22.4◦ to 2θ = 21.2◦. The XRD diffraction peak shifted to a lower angle,
indicating an increase in interplanar spacing [40], causing an easier diffusion of adsorbates
into the adsorbent’s structure. Figure 1f represents the nitrogen adsorption–desorption
isotherms and the corresponding pore size distribution of SiO2–g–PBMA–b–PDMAEMA.
The hybrid material displayed type-IV N2 sorption isotherms with an H3 hysteresis loop,
indicating its disordered mesoporous structure [41]. The hybrid material exhibited a lower
specific surface area of 79.89 m2·g−1 but higher adsorption capacity for metal cations than
other reported silica-based hybrid materials [41,42], suggesting that the grafted polymer
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played an important role in adsorption. The hybrid material also exhibited a pore volume
of 0.26 cm3·g−1 and an average mesoporous diameter of 36.38 nm, which was conducive
to the diffusion of sodium oleate. Figure 1g,h represent the TEM images of SiO2 and
SiO2–g–PBMA–b–PDMAEMA. Silica exhibited spherical particles with an average diam-
eter of 20 nm. After the grafting of PBMA–b–PDMAEMA chains, the hybrid formed
spherical particles with a significantly increased diameter of 30–35 nm. This additionally
proved the successful preparation of SiO2–g–PBMA–b–PDMAEMA. The aggregation of
the hybrid’s particles was reduced compared with pure SiO2, and this was because of the
grafting of PBMA–b–PDMAEMA chains. The better dispersity in water was favorable
to adsorption.
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Figure 1. Characterizations of adsorbent: (a) FTIR spectra of SiO2, SiO2–Br and SiO2–g–PBMA–
b–PDMAEMA. (b) TGA curves of SiO2, SiO2–Br and SiO2–g–PBMA–b–PDMAEMA. (c) 1H NMR
spectrum of SiO2–g–PBMA–b–PDMAEMA. (d) GPC curve of SiO2–g–PBMA–b–PDMAEMA. (e) XRD
patterns of SiO2, SiO2–g–PBMA–b–PDMAEMA and EBiB–g–PBMA–b–PDMAEMA. (f) Nitrogen
adsorption–desorption isotherms and the corresponding pore size distribution of SiO2–g–PBMA–b–
PDMAEMA. (g) TEM image of SiO2. (h) TEM image of SiO2–g–PBMA–b–PDMAEMA.

3.2. Adsorption Kinetics

Adsorption kinetics curves are shown in Figure 2. In order to investigate the con-
tribution of SiO2 and the grafted polymer to SiO2–g–PBMA–b–PDMAEMA adsorption,
the absorption capacity of the pure SiO2 and pure polymer for both pollutants was
taken into account. A detailed recipe for pure polymer (EBiB–g–PBMA–b–PDMAEMA)
is listed in Table 2, and the preparation of EBiB–g–PBMA–b–PDMAEMA was simply
proved by FTIR (Supporting Information, Figure S2). The adsorption capacity of Cu(II)
and sodium oleate on pure silica was small (14.33 mg·g−1 for Cu(II) and 7.85 mg·g−1

for sodium oleate), while the adsorption capacity of Cu(II) and sodium oleate on pure
polymer (88.48 mg·g−1 for Cu(II) and 65.67 mg·g−1 for sodium oleate) was close to that
of SiO2–g–PBMA–b–PDMAEMA (91.02 mg·g−1 for Cu(II) and 72.47 mg·g−1 for sodium
oleate). This indicated to us that the grafting of polymer effectively improved the adsorp-
tion capacity of the hybrid material.

Polymers 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 1. Characterizations of adsorbent: (a) FTIR spectra of SiO2, SiO2–Br and SiO2–g–PBMA–b–
PDMAEMA. (b) TGA curves of SiO2, SiO2–Br and SiO2–g–PBMA–b–PDMAEMA. (c) 1H NMR spec-
trum of SiO2–g–PBMA–b–PDMAEMA. (d) GPC curve of SiO2–g–PBMA–b–PDMAEMA. (e) XRD 
patterns of SiO2, SiO2–g–PBMA–b–PDMAEMA and EBiB–g–PBMA–b–PDMAEMA. (f) Nitrogen ad-
sorption–desorption isotherms and the corresponding pore size distribution of SiO2–g–PBMA–b–
PDMAEMA. (g) TEM image of SiO2. (h) TEM image of SiO2–g–PBMA–b–PDMAEMA. 

3.2. Adsorption Kinetics 
Adsorption kinetics curves are shown in Figure 2. In order to investigate the contri-

bution of SiO2 and the grafted polymer to SiO2–g–PBMA–b–PDMAEMA adsorption, the 
absorption capacity of the pure SiO2 and pure polymer for both pollutants was taken into 
account. A detailed recipe for pure polymer (EBiB–g–PBMA–b–PDMAEMA) is listed in 
Table 2, and the preparation of EBiB–g–PBMA–b–PDMAEMA was simply proved by 
FTIR (Supporting Information, Figure S2). The adsorption capacity of Cu(II) and sodium 
oleate on pure silica was small (14.33 mg·g−1 for Cu(II) and 7.85 mg·g−1 for sodium oleate), 
while the adsorption capacity of Cu(II) and sodium oleate on pure polymer (88.48 mg·g−1 
for Cu(II) and 65.67 mg·g−1 for sodium oleate) was close to that of SiO2–g–PBMA–b–
PDMAEMA (91.02 mg·g−1 for Cu(II) and 72.47 mg·g−1 for sodium oleate). This indicated to 
us that the grafting of polymer effectively improved the adsorption capacity of the hybrid 
material. 

 

Figure 2. Adsorption kinetics of (a) Cu(II) or (b) NaOL on SiO2, EBiB–g–PBMA–b–PDMAEMA, 
SiO2–g–PBMA–b–PDMAEMA and SiO2–g–PDMAEMA (C0 = 100 mg·L−1, pH = 5, T = 25 °C, adsor-
bent concentration = 1 g·L−1). 

  

0 50 100 150 200 250

0

20

40

60

80

100

Cu2+

1s2
2s2
2p6

3s2
3p6

3d9

Q
e /

 (m
g·

g−1
)

t / min

   SiO2

   EBiB–g–PBMA–b–PDMAEMA
   SiO2–g–PBMA–b–PDMAEMA
   SiO2–g–PDMAEMA

(a)

Figure 2. Adsorption kinetics of (a) Cu(II) or (b) NaOL on SiO2, EBiB–g–PBMA–b–PDMAEMA,
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In particular, to investigate the contribution of hydrophobic PBMA to the multifunc-
tional adsorption of SiO2–g–PBMA–b–PDMAEMA, adsorption using SiO2–g–PDMAEMA
(detailed recipe of polymerization in Table 2) was also discussed. The preparation of SiO2–
g–PDMAEMA was simply proved by FTIR (Supporting Information, Figure S3). Figure 2a
shows the rapid and effective adsorption of Cu(II) by both hybrid adsorbents. The adsorp-
tion capacity increased rapidly within 0–30 min and tended to be a constant after 60 min.
Therefore, the adsorption equilibrium of Cu(II) on SiO2–g–PBMA–b–PDMAEMA was
reached within 60 min, providing an experimental parameter for subsequent adsorption
isotherms experiments. The equilibrium absorption capacity of Cu(II) on SiO2–g–PBMA–
b–PDMAEMA was 91.02 mg·g−1, which was slightly lower than the adsorption capac-
ity of Cu(II) on SiO2–g–PDMAEMA (92.48 mg·g−1), indicating a stronger affinity of hy-
drophilic PDMAEMA to Cu(II). Figure 2b shows that a small quantity of PBMA could effec-
tively improve the adsorption capacity of SiO2–g–PBMA–b–PDMAEMA to sodium oleate
(NaOL). The equilibrium absorption capacity of NaOL on SiO2–g–PBMA–b–PDMAEMA
was 72.47 mg·g−1, which was much higher than the adsorption capacity of NaOL on
SiO2–g–PDMAEMA (52.74 mg·g−1), indicating a stronger affinity of hydrophobic PBMA
to NaOL. The adsorption capacity of NaOL on SiO2–g–PBMA–b–PDMAEMA increased
rapidly within 0–120 min and tended to be a constant after 180 min. Therefore, the adsorp-
tion equilibrium of NaOL on SiO2–g–PBMA–b–PDMAEMA was reached within 180 min.

The adsorption kinetics data of Cu(II) and NaOL on SiO2–g–PBMA–b–PDMAEMA
were fitted to the pseudo-first-order and pseudo-second-order models. The fitting results
are shown in Figure 3 and Table 3. The pseudo-second-order model exhibited higher
correlation coefficients (R2 = 0.9966 for Cu(II) and R2 = 0.9966 for NaOL) and better agree-
ment between experimental adsorption capacity (Qe,exp = 91.02 mg·g−1 for Cu(II) and
Qe,exp = 72.47 mg·g−1 for NaOL) and calculated adsorption capacity (Qe,cal = 96.06 mg·g−1

for Cu(II) and Qe,cal = 83.75 mg·g−1 for NaOL). The adsorption data fitted to the pseudo-
second-order model well, indicating that the adsorption rates of Cu(II) and NaOL onto
SiO2–g–PBMA–b–PDMAEMA were controlled by chemical processes [43].
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Table 3. Fitting parameters of adsorption kinetics for Cu(II) and NaOL on SiO2–g–PBMA–b–PDMAEMA.

Systems Qe,exp
/mg·g−1

Pseudo-First-Order Pseudo-Second-Order

Qe,cal
/mg·g−1

k1
/min−1 R2 Qe,cal

/mg·g−1
k2

/g·mg−1·min−1 R2

Cu(II) 91.02 18.10 0.0410 0.7236 96.06 0.0011 0.9966
NaOL 72.47 113.58 0.0390 0.9456 83.75 0.0004 0.9966

3.3. Adsorption Isotherms

Adsorption isotherm results of Cu(II) on SiO2–g–PBMA–b–PDMAEMA are shown in
Figure 4 and Table 4. The Qe of Cu(II) increased with an increase in equilibrium concentra-
tion and then tended to be a constant. The Langmuir adsorption isotherm model exhibited
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a higher correlation coefficient (R2 = 0.9978), indicating that Cu(II) was mainly adsorbed by
the monolayer. The maximum adsorption capacity of Cu(II) reached 448.43 mg·g−1. The
Freundlich adsorption isotherm model exhibited an n value of 2.15; an n value between
2 and 10 indicated that the adsorption of Cu(II) easily occurred at 25 °C [44].
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Table 4. Adsorption isotherm parameters for the adsorption of Cu(II) and NaOL on SiO2–g–PBMA–
b–PDMAEMA.

Systems
Langmuir Freundlich

Qm
/mg·g−1

KL
/L·mg−1 R2 n Kf R2

Cu(II) 448.43 0.0509 0.9978 2.15 31.3643 0.9448
NaOL 129.03 0.0433 0.9631 1.48 7.8096 0.9994

Adsorption isotherms results of NaOL on SiO2–g–PBMA–b–PDMAEMA are shown in
Figure 5 and Table 4. Under low initial concentration (C0 ≤ 100 mg·L−1) conditions, the Qe
of NaOL increased with an increase in equilibrium concentration. The Freundlich adsorp-
tion isotherm model exhibited a higher correlation coefficient (R2 = 0.9994), indicating the
multilayered adsorption of NaOL on a heterogeneous surface. The n value was 1.48 (n > 1),
indicating that the adsorption of NaOL on SiO2–g–PBMA–b–PDMAEMA was a beneficial
adsorption process [45]. The maximum adsorption capacity of NaOL calculated from the
Langmuir adsorption isotherm equation reached 129.03 mg·g−1.
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3.4. Adsorption Mechanism

FTIR was used to investigate the possible adsorption mechanism (Figure 6). Compared
with SiO2–g–PBMA–b–PDMAEMA, the peak of C=O vibration around 1720 cm−1 in the
complex of SiO2–g–PBMA–b–PDMAEMA with Cu(II) was significantly weakened, indicat-
ing that the oxygen atoms of carbonyl participated in the complexation with Cu(II). The
new peak in 625 cm−1 was attributed to Cu–O vibration [46]. Combining the results of the
pseudo-second-order fitting results (chemical process was the rate-determining step) and
Langmuir adsorption isotherm results (monolayer absorption), the proposed mechanisms
for Cu(II) adsorption extend to metal cation (M) adsorption, shown in Figure 7. Chelation
and complexation were the main driving forces of adsorption. For the FTIR spectrum of
SiO2–g–PBMA–b–PDMAEMA with NaOL, the peak of C=O vibration around 1720 cm−1

was also significantly weakened, indicating that the oxygen atoms of carbonyl participated
in the adsorption with NaOL. The new peak of H–O vibration around 3440 cm−1 was at-
tributed to the adsorption of oleic acid. This was because at a pH level of 5, a part of sodium
oleate was in the form of oleic acid [11,15]. The new peak around 1639 cm−1 was attributed
to –COO– vibration. Combining the results of the pseudo-second-order fitting results and
Freundlich adsorption isotherm results (multilayer adsorption), the proposed mechanisms
for NaOL adsorption are shown in Figure 8. The van der Waals force was, of course, a very
important driving force for NaOL adsorption. In addition, weak hydrogen bonding [47,48]
was a driving force that was easily overlooked. The hydrogen atom attached to the carbon
atom had the ability to form weak hydrogen bonds with oxygen and nitrogen atoms, and
the weak hydrogen bonds further increased the adsorption capacity of sodium oleate on
SiO2–g–PBMA–b–PDMAEMA.
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3.5. Practicability Assessment

Adsorption–desorption cycles (Figure 9) were conducted to evaluate the recyclability
of SiO2–g–PBMA–b–PDMAEMA. After three cycles, the adsorption capacity of Cu(II) was
80.56 mg·g−1, which was 88.58% of the initial adsorption capacity. For NaOL adsorption,
the adsorption capacity was 68.59 mg·g−1 after three cycles, which was 94.67% of the initial
adsorption capacity. These results indicated that the adsorbent was recyclable and of green
economic value.

Multicomponent adsorption (Figure 10) was also carried out to investigate the practi-
cability of the adsorbent. The adsorbent showed excellent adsorption capacity for Cu(II)
and sodium oleate in the mixed solution. When the initial concentrations of Cu(II) and
sodium oleate were both 20 mg·L−1, the removal efficiency of Cu(II) reached 98.60% and
the removal efficiency of sodium oleate reached 91.70% simultaneously. When the initial
concentrations of Cu(II) and sodium oleate were both 100 mg·L−1, the removal efficiency
of Cu(II) reached 93.88% and the removal efficiency of sodium oleate reached 85.27% si-
multaneously. The better adsorption of the multicomponent system might be due to the
formation of copper oleate, and this did not affect the removal efficiency and practical value
of SiO2–g–PBMA–b–PDMAEMA.

Generally, the silica-based amphiphilic block copolymer hybrid (SiO2–g–PBMA–b–
PDMAEMA) showed good performance toward Cu(II) as well as sodium oleate in both
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single-component and multicomponent adsorption. The adsorption capacity of the hybrid
compared to other materials is given in Table 5 [18–21,23–25,29,49–54].
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Table 5. Comparison of Adsorption Capacity.

Adsorbent Material Experimental Conditions Cu(II)/
mg·g−1

Sodium Oleate/
mg·g−1 References

activated carbon pH = 5, T = 27 ◦C, C0 = 2 mg L−1,
Ca = 1 g·L−1 1.581 [18]

carbon nanocomposites pH = 6.8, T = 20 ◦C 256 * [19]
amino-Fe(III)-functionalized

mesoporous silica
pH = 5.5, T = 25 ◦C,

Ca = 1 g·L−1 475.1 * [20]

natural zeolite pH = 4.5, T = 22 ◦C, C0 = 20 mg L−1,
Ca = 37 g·L−1 3.37 [21]

halloysite nanotube–alginate
hybrid beads

T = room temperature,
C0 = 100 mg L−1 74.13 [23]

PDMAEMA/SiO2
pH = 5.0, T = 30 ◦C,

Ca = 4 g·L−1 20 [29]

chitosan using tri-sodium citrate and
epichlorohydrin as cross-linkers

pH = 6.0, T = 25 ◦C,
Ca = 2 g·L−1 151.52 * [49]

functionalized maghemite nanoparticles pH = 5.5, T = 25 ◦C, C0 = 40 mg L−1,
Ca = 0.56 g·L−1 88.2 [50]

succinylated mercerized cellulose
modified with triethylenetetramine pH = 5.5, Ca = 1 g·L−1 69.4 * [51]

diethylenetriamine-bacterial cellulose pH = 4.5, T = 25 ◦C,
Ca = 1 g·L−1 63.09 * [52]

mesoporous nanocellulose/sodium
alginate/carboxymethyl–chitosan

gel beads

pH = 5, T = 30 ◦C,
Ca = 0.6 g·L−1 169.94 * [53]

beta-cyclodextrin polymers
pH = 5.0, T = 25 ◦C,

C0 = 200 mg L−1,
Ca = 0.5 g·L−1

164.43 [54]

modified Ca-montmorillonite pH = 5, T = 25 ◦C, C0 = 100 mg L−1,
Ca = 1.5 g·L−1

69.199
(22. 73 mmol/100 g) [24]

Zr-Modified Phosphogypsum/Fly
Ash Composite pH = 7.19, T = 25 ◦C, Ca = 5 g·L−1 14. 376 * [25]

SiO2–g–PBMA–b–PDMAEMA pH = 5, T = 25 ◦C, Ca = 1 g·L−1 448.43 * 129.03 * This study

Note: C0 refers to the initial concentration of Cu(II) or sodium oleate. Ca refers to the concentration of adsorbent.
* refers to the maximum adsorption capacity calculated from the Langmuir adsorption isotherm equation.

4. Conclusions

In this work, a silica-based amphiphilic block copolymer, SiO2–g–PBMA–b–PDMAEMA,
was obtained via SI-ATRP methodology. The hybrid gained excellent adsorption capacity
for Cu(II) and sodium oleate, and broadened the application of organic–inorganic hybrids
in beneficiation wastewater treatment. All the results can be summarized as follows:

(1) SiO2–g–PBMA–b–PDMAEMA was prepared as expected. FTIR and 1H NMR directly
proved the chemical structure of SiO2–g–PBMA–b–PDMAEMA. TGA illustrated that
the grafting percentage of PBMA–b–PDMAEMA was 83.55% and the content of SiO2
was 10.17%. GPC demonstrated a desired molecular weight of 18,541 g·mol−1. TEM
also proved the grafting of PBMA–b–PDMAEMA chains. XRD was used to confirm
an amorphous structure. Nitrogen adsorption–desorption isotherms exhibited a
specific surface area of 79.89 m2·g−1, a pore volume of 0.26 cm3·g−1 and an average
mesoporous diameter of 36.38 nm;

(2) The effect of hydrophobic chains was investigated. Compared with SiO2–g–PDMAEMA,
the introduction of a small amount of PBMA did not noticeably affect the adsorption
of Cu(II) on SiO2–g–PBMA–b–PDMAEMA, but could greatly increase the adsorption
of sodium oleate on SiO2–g–PBMA–b–PDMAEMA (72.47 mg·g−1 with a removal effi-
ciency of 72.47%), which was 1.374 times that of sodium oleate on SiO2–g–PDMAEMA
(52.74 mg·g−1);

(3) Adsorption kinetics showed that the adsorption of Cu(II) and sodium oleate on
SiO2–g–PBMA–b–PDMAEMA fitted the pseudo-second-order model well, indicating
that the adsorption rates were controlled by the chemical process;

(4) Adsorption isotherms of Cu(II) on SiO2–g–PBMA–b–PDMAEMA were better de-
scribed by the Langmuir adsorption isotherm model, indicating that Cu(II) was
mainly adsorbed by the monolayer. Adsorption isotherms of sodium oleate on
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SiO2–g–PBMA–b–PDMAEMA were better described by the Freundlich adsorption
isotherm model, indicating the multilayered adsorption of sodium oleate on a het-
erogeneous surface. The maximum adsorption capacity of Cu(II) and sodium oleate
calculated by the Langmuir adsorption isotherm equation reached 448.43 mg·g−1 and
129.03 mg·g−1, respectively;

(5) The adsorption mechanism was investigated. Combining FTIR, adsorption kinetics
and adsorption isotherm analysis, chelation and complexation were considered as
the main driving forces of Cu(II) adsorption on SiO2–g–PBMA–b–PDMAEMA. The
van der Waals force as well as weak hydrogen bonding were considered as the main
driving forces of sodium oleate adsorption on SiO2–g–PBMA–b–PDMAEMA;

(6) The practical value of the adsorbent was evaluated. SiO2–g–PBMA–b–PDMAEMA
was recyclable with a 88.58% adsorption capacity for Cu(II) and a 94.67% adsorption
capacity for sodium oleate after three cycles, and the adsorbent showed excellent
multicomponent adsorption for Cu(II) and sodium oleate in the mixed solution.

Further research will be conducted on simultaneous adsorption of various pollutants.
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